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Abstract

Unravelling the underlying mechanisms of protein interactions re-
quires knowledge about the interactions’ binding sites. In this paper,
we use a novel concept, binding motif pairs, to describe binding sites. A
binding motif pair consists of two motifs each derived from one side of
the binding protein sequences. The discovery is a directed approach that
uses a combination of two data sources: 3-D structures of protein com-
plexes and sequences of interacting proteins. We first extract mazimal
contact segment pairs from the protein complexes’ structural data. We
then use these segment pairs as templates to sub-group the interacting
protein sequence dataset, and conduct an iterative refinement to derive
significant binding motif pairs. This combination approach is efficient
in handling large datasets of protein interactions. From a dataset of
78,390 protein interactions, we have discovered 896 significant binding
motif pairs. The discovered motif pairs include many novel motif pairs
as well as motifs that agree well with experimentally validated patterns
in the literature.

1 Introduction

Protein-protein interactions play a crucial role in the operations of many
key biological functions such as inter-cellular communications, signal
transduction, and regulation of gene expressions. Unravelling the under-
lying mechanisms of these interactions will provide invaluable knowledge
that could lead to the discovery of new drugs and better treatments for
many human diseases.

Physically, protein interactions are mediated by short sequences of
residues that form the contact interfaces between two interacting pro-
teins, often referred as their binding sites. Though many experimental
methods' and computational methods have been developed to detect
protein interactions with increasing levels of accuracies, few methods can
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pinpoint the specific residues in the proteins that are involved in the in-
teractions. Such information are necessary for the interaction data to be
directly useful for drug discovery. To determine the binding sites between
interacting proteins, usually experimental methods include mutagene-
sis studies and phage display®, which are tedious and time-consuming.
Computational methods often include docking approaches and domain-
domain interaction approaches. The docking approach is based on the
analysis of bound protein structures. The use of this approach is very
limited. The main reason is that resolved structures of proteins are often
not available due to the limitations in scalability and coverage of cur-
rent protein structural determination technologies. The domain-domain
interaction approach assumes that protein interactions are determined
by the interactions between domains and is aimed to figure out the in-
teractions only among predefined domaing">%. However, some domains
may not directly determine the interactions, but only function as deter-
minants of protein folding. Even though the domains involve in protein
interactions, not all of their residues are contained in the binding sites
and contribute to the role of the interactions.

In this work, we study the problem of binding site at residue level
rather than at domain level. Our basic idea is that correlated sequence
motif pairs determine the interactions. A similar concept, correlated
sequence-signature pairs, was first proposed by Sprinzak! with the ex-
pression of domain pairs. We focus on efficient in silico discovery of
our motif pairs from multiple data sources about protein interactions.
Ideally, such interacting motif pairs should be discovered from protein
complex structural data. However, as discussed above, the availability of
such data is very limited. Alternatively, interacting motif pairs may be
discovered by analyzing their co-occurrence rates in interacting protein
pairs’ sequences. However, as high-throughput detection technologies
such as two-hybrid screenings”® can rapidly generate large datasets of
experimentally determined protein interactions, the search space on the
associated protein sequences is enormous. The high false positive rates
observed in high-throughput protein interaction data could also dimin-
ish the biological significance of motif pairs detected solely from protein
interaction sequences.

To address these issues in mining motif pairs, we propose a joint
approach that makes use of the two available types of interaction data:
(1) the limited structural data of protein complexes that provide ex-
act information on inter-protein contact sites, and (2) the abundantly
available interacting protein sequence pairs from high-throughput inter-
action detection experiments. The structural data of protein complexes
are carefully mined for contact residues; these are then computation-
ally extended into the so-called mazimal contact segment pairs which we
will define later. The complexes’ maximal segment pairs are then de-



ployed to seed the discovery of motif pairs from large sequence datasets
of interacting proteins, followed by an iterative refinement procedure to
ensure the significance of the derived motif pairs. This combined di-
rected approach reduces the formidable search space of interacting pro-
tein sequences while providing some biological support for the motifs
discovered. Indeed, many of our motif pairs discovered this way can be
confirmed by biological patterns reported in the literature, as we will
show later.

We present the overall picture of our method in Section 2. In Sections
3 and 4, we describe new algorithms to discover maximal contact segment
pairs from protein complex data, and then to discover binding motif pairs
from interacting protein sequence data. Results showing the effectiveness
and significance of this joint approach are presented in Section 5. Finally,
we conclude and discuss about possible future work in Section 6.

2 Overview of Our Method and Data Used

A key idea in our proposed method for discovering significant binding
motif pairs is the detection of mazimal contact segment pairs between
two proteins residing in a complex. First, all possible pairs of spatially
contacting residues are determined from the 3-D structure data of a pro-
tein complex. These contact points are then extended to capture as many
continuous binding residues along the two proteins as possible, deriving
the maximal contact segment pairs. Computationally, the derivation of
maximal contact segment pairs is a challenging problem. In Section 3,
we will describe an algorithm to discover them efficiently.

Our objective is to discover significant binding motif pairs from protein-
protein interaction sequence datasets. Using the maximal contact seg-
ment pairs that we have discovered from the protein complex structural
data, we cluster the interacting protein sequence data into sub-groups,
each corresponding to one maximal contact segment pair. Then from
each sub-group, we use a new motif discovery algorithm and an iterative
optimization refinement algorithm to discover a binding motif pair. To
assess the significance of binding motif pairs in the refinement proce-
dure, we define a measure called emerging significance, which is similar
to the concept of emerging patterns’. This measure is based on both pos-
itive and negative interaction datasets: A pattern or motif pair is said to
have a high emerging significance if it has a high frequency in the positive
dataset but a relatively low frequency in the negative dataset.The iter-
ative refinement is terminated when the motif pairs reach an optimized
level of emerging significance.

The protein complex dataset used in this study is a non-redundant
subset from PDB where the maximum pairwise sequence identify is 30%
and only structures with resolution 2.0 or better are included. The set



used was generated on 9th June 2003 and contained 1533 entries in which
each entry has at least 2 chains. As mentioned, our emerging signifi-
cance approach requires the use of both positive and negative instances
of pairwise protein-protein interactions. For positive protein-protein in-
teraction sequence data, we used the data by von Mering et al'. This
dataset covers almost all those interaction data generated by experimen-
tal methods and in-silico methods for yeast proteins. In total, there are
78,390 non-redundant interactions in this dataset. However, there are
currently no large datasets of experimentally validated negative interac-
tions. As such, we generated a putative negative interaction dataset by
assuming that any possible protein pair in yeast that do not occur in the
positive dataset as a negative interaction. As our emerging significance
measure only requires that the detected patterns have relatively lower
frequency in the negative datasets, the effect of potential false negative
interactions in this putative negative dataset is minimal.

3 Discovering Maximal Contact Segment Pairs from Protein
Complexes

3.1 Preprocessing: Compute Contact Sites

Given a pair of proteins in a complex, a contact site is an elemental pair
of two residues or atoms, each coming from one of the two proteins, that
are close enough in space. A protein complex usually consists of multiple
proteins, in this study we then consider all pairs of proteins in a protein
complex to obtain all contact sites in this step.

We define a contact site mathematically as follows: Suppose two pro-
teins with 3-D structural coordinates in (t,y,2), Lo = {(ai, Ta;, Ya;, Za;),t =
1..m} and Ly = {(bj, Tv;, Yv;, 2b;),j = 1...n}. The pair (a;,b;) is a con-
tact site if dist(ai, bj) < e, where a; and b; are the atom id in the protein
L, and Ly respectively, and € is an empirical threshold for the Euclidean
distance function dist(.,.). Such a pair is denoted Contact(ai, b;), or
equivalently Contact(b;, a;).

Note that a contact site in the atom level directly implies a contact
site in residue level because each atom is a part of a unique residue.
Hereafter, we will discuss contact sites only at the residue level. Since
two residues are said to be in contact if one of the atoms in a residue is
in contact with one atom in the other residue, it is possible for a residue
to be in contact with multiple residues.

3.2 Extract Contact Segment Pairs

Next, we extend the concept of contact sites to the concept of contact
segment pairs, aiming to search for large areas of contact sites in a pair of
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Figure 1: An illustration of contact segment pairs in a pair of interacting proteins A and B.
Here, protein A is said to be the opposite protein of B, and vise vesa.

binding proteins. Figure 1 shows our idea, depicting a typical scenario
where segments of residues in one protein are continuously in contact
with segments of residues in the other protein. As an illustration, the
segment [a10, a15] in protein A of Figure 1 is in contact with the segment
[b21, ba7] in protein B. That is, they are a contact segment pair. But the
segment [aso,a40] in protein A and the segment [b21,b27] in protein B
are collectively not a contact segment pair.

Formally, the definition is: A contact segment pair is a segment pair
([aiy, ais], b, , bj,]) satisfying, for Va; € [ai,,ai,], 3bj € [bj,,bj,] such
that (ai,bj) is a contact site, where ai,,aiy,bj, ,bj, are residue ids in
two proteins Lo and Ly. Such a pair of segments is sometimes denoted
ContaCt([ah ) aiz]a [bjl ) bjz])'

A maximal contact segment pair is then defined as a contact
segment pair such that no other contact segment pair can contain the
both segments of this contact pair. In this paper, we are interested in
the following problem:

Definition 1 Maximal Contact Segment Pairs Problem: Given a
pair of binding proteins L, and Ly, suppose C = {(a;i,b;)| Contact(a;,b;)
with respect to the two proteins Loand Ly}, the problem is how to find
all possible mazimal contact segment pairs from C with their segment
lengths all longer than a threshold.

A naive approach to solving this problem would require testing all
possible segment pairs. Suppose two proteins L, and L; have m and
n residues respectively, then the proteins L, and L, will have m? and
n? possible segments respectively. For each combination, O(mn) time
complexity would be required for the computation. So, the total time
complexity for such a naive approach will be O(m® * n®) per pair of
proteins in each complex. This is very expensive particularly when the
protein complexes are large and there are hundreds or thousands of pro-
tein complexes need to be examined. We present a more efficient method
to discover maximal contact segment pairs here.

Observe that for each residue, it may be in contact with multiple



residues in the opposite protein (see Figure 1). We introduce a concept
named coverage to capture this phenomenon; it will be shown later that
this is a useful concept for improving the efficiency of our discovery
algorithm. The coverage of a residue a;, denoted Cov(a;), is the set of
all residues in the opposite protein that are in contact with this residue,
namely Cov(a;) = {bj|(ai,b;) € C}.

The coverage of a segment [a;,,as,], denoted Cov([as,,ai,]), is the
union of the coverages of all its residues, namely,
Cov([aiy, air]) = Ua,efas, ai,1C0v(a0).

The following proposition is useful in our algorithm to discover max-
imal contact segment pairs efficiently.

Proposition 1 A segment pair ([ai,, ai,], [bj,,bj,]) is a contact segment
pair iff the coverage of any of the two segments contains the other seg-
ment, i.e. Contact([ai,,ai,], [bj1,b55]) < (Cov([ai,,ais]) 2 [bj1,b5s])
A (COU([in ) bj2]) 2 [ai1 ) aiz])'

Proof: =: We use contradiction to prove. Suppose Cov([a;,, ai,]) 2
[bj,,bj,] is not true, then there exists a b; € [bj,,b;,] but this b; ¢&
Cov([aiy, ai,]). This means there is no a; € [ai,,ai,] in contact with b;.
This contradicts the assumption. Therefore, Cov([ai,, ai,]) 2 [bj;,bj,].
We can prove Cov([b;,,b;,]) 2 [ai,,ai,] in a symmetrical manner.

«<: If Cov([aiy,ai,]) 2 [bji,bj,], this means that for each b; €
[bj1,bj,], there exist at least one contact site in [a;;,ai,]. Similarly,
the residues in the other segment have the same property. |

Our algorithm is a top-down recursive algorithm. At the initial step,
each entire protein in a pair is treated as a segment. A series of recursive
breaking-down are then performed to output maximal contact segment
pairs, using the above proposition to determine when to break-down a
segment into several smaller segments and when to terminate produc-
ing a new candidate segment pair. The details of our algorithm are as
follows:

Input: Two proteins L, = {(ai,Za;,Ya;s2a;),t = 1l..m} and L, =
{(bj, zv;,yv; 5 26, ), § = 1...n}, two special segments [a1, @], and [b1, by.],
and C = {(ai, b;)| Contact(a;,b;), 1 <i<m,1<j<n}

Output: A set of maximal contact segment pairs.

Preparation Step: Compute Cov(a;) and Cov(b;) for all 1 < i < m,
1<j<n.
Initialization Step: Put the initial segment pair ([a1, am], [b1, br]) into
the candidate list.
repeat
Segment Coverage Step: Remove the first segment pair from the
candidate list, denoted ([zi,, Zs,], [¥j1, ¥j]); Compute the coverage
for COU([miuxiz]) N [yjuyjz]'
Splitting Step:



if (Cov([ziy, zi,]) N (Y51, Y5]) == Y51, ¥s2] then
if (Cov([yj1,y52]) N [wiy, Tin]) == [zi1, %] then
Output the segment pair.
else
Add ([yj1,Yjs], [Ti1, Tis]) into the candidate list.
end if
else
Split Cov([zs;,Zis]) N [Y)1, Yjo] into w number of continuous sub-
segments, denoted [Yry,_; ) Yks,],t = 1....w, put each segment pair
([Ykar 15 Ykae |, [Tir, Tis]), t = 1...w, into the candidate list.
end if
until The candidate list is empty.

A detailed example can be found in this paper’s supplementary informationt®.

4 Discovering Binding Motif Pairs from Interacting Protein
Sequence Pairs

Next, we describe how to discover binding motif pairs from protein inter-
action sequence data using the maximal contact segment pairs detected
from protein complexes.

4.1 Seeded Sub-grouping and Consensus Motif Discovery

We use each of the discovered maximal contact segment pairs as seed
to sub-group the interaction sequence pairs such that all the interaction
pairs that contain the contact segment pair are grouped together. We
then conduct a consensus motif discovery in each of the sub-groups of
protein interaction sequences.

First, let us give the following two definitions:

Contain: Suppose a sequence S = 5182...8y, and a segment P =
p1.p2...pv. S contains P, denoted Contain(S, P), if Local_Alignment(S,
P) > )\, where X is an empirical threshold.

Cluster of a Contact Segment Pair: Given an interaction dataset
D consisting of n sequence pairs, denoted D = {(S},57),1 < i < n},
and o segment pair P = (Pyi, P»), the cluster of this segment pair with
respect to D, denoted Gp(P), is

{(S1, 83)| (S1,S3) € D,Contain(St, P1),and Contain(Ss, P2)}
U {(S7,S%)| (S5,SY) € D,Contain(SY, P1),and Contain(Sy, P»)}

By this way of sub-grouping the interaction dataset, the resulting
clusters of different segment pairs may overlap with one another. Bio-
logically, this is important because one protein may involve interactions
with different proteins in different locations.



Given the cluster of a contact segment pair, our subsequent step is
to find two consensus motifs, one from all those S plus all those SY
(namely the left-side sequences of those protein sequence pairs), and the
other from all those S5 plus all those S5 (namely the right-side sequences
of those protein sequence pairs). At each side, we align all the sequences
according to the best alignments with respect to the corresponding seg-
ment (P, or P> in this case). We used the score matrix developed by
Azaryall for the local alignment'?, since structure is preserved for any
residue pairs that have high scores in the matrix.

To obtain the consensus motif from each side of these alignments,
every column in the alignment is examined as follows: If the occurrence
of a residue in this column is above the stated threshold, we include it
in the the consensus motif. If there are no such residues, we treat this
column as a wildcard. It is also possible to use alternative methods such
as EMOTIF'? to find the consensus motifs.

These two consensus motifs form a binding motif pair. Note that we
derive this binding motif pair starting from one contact segment pair.
So, given a set of maximal contact segment pairs discovered from the
protein complex dataset, we can obtain a set of binding motif pairs by
going through all these maximal contact segment pairs on the interacting
protein sequence datasets.

4.2 Iterative Refinement

Next, we perform an iterative refinement on the binding motif pairs
discovered in the last subsection. The purpose of doing this is to optimize
these binding motif pairs. Given a binding motif pair ), our refinement
algorithm uses @ to sub-group the interacting protein sequences dataset,
and generates a new binding motif pair Q' (using eract match instead of
local alignment here), as discussed in the last subsection but replacing
the maximal contact segment pair P with Q. Iteratively, the algorithm
repeats the procedure, using Q' as @, until Q' reaches an optimized
state.

The stopping criteria used here is based on a concept of emerging
significance of consensus motifs. Recall that we have established two
protein sequence pair datasets: the interaction dataset (also called the
positive dataset) and the negative dataset. So far, we have used only
the positive dataset in generating the consensus motifs. To measure the
emerging significance of a pair of consensus motifs, we make use of both
of the positive and negative datasets. If a motif pair is significant, it
is reasonable to expect the pair to occur in the positive dataset much
more frequently than in the negative dataset. We give the definitions for
emerging significance below:

Frequency of a motif pair with respect to a dataset: Suppose



we have a dataset D consisting of sequence pairs D={(S},S?)|1 < i < n},
the frequency of a motif pair P=(Py, P>) with respect to D is defined as:
Freq(P,D) = —‘GDn(P)l.

Significant motif pairs: Suppose we have a positive dataset Dpos
and o negative dataset Dyeg. A motif pair P is significant if:

ratio(P,Dpos, Dneg) = %ﬁi:g > 7, where T is a threshold. We

also call ratio(P, Dpos, Dneg) the emerging significance of P.

4.8 Time Complexity of the Method

The time complexity for sub-grouping based on a segment pair is O((|Dpos|+
|Dneg|) * |CP|) because of using local alignment. Here C'P represents
the set of maximal contact segment pairs. The size of binding motif
pairs is O(|CPJ) in the case of using our column-by-column consensus
algorithm. The time used to compute the clusters for motif pairs in
each pass is linear if the suffix tree approach'® is applied to conduct
the exact match for regular patterns. The complexity of computing
a consensus motif pair from a cluster is also linear. Suppose there is
at most K passes for the algorithm to terminate, the number of motif
pairs is Ngp, the time complexity for the refinement of motif pairs is
O(((|Dpos| + |Dnegl) * Nop + |CP|) * K). In total, the time complexity
for this step is O((|Dpos| + |Dneg|) * (|CP| + Neop % K) + |CP| % K).

5 Implementation and Results

In the initial step of computing contact sites from the protein complex
data, we set the threshold ¢ to 5A. More than 56% of the complexes
were found to contain at least one contact site. We also set the number
4 as the threshold of segment length. We found 1403 maximal segment
pairs from this complex dataset.

For sub-grouping the interaction dataset using the maximal segment
pairs, a threshold should be set in the contain operation. Instead of
setting A to be a constant, it is more reasonable to set the threshold
strictly for short segments but loosely for long segments. The actual
parameters used in our experiment are provided in our supplementary
information 0.

Our refinement procedure was performed for 7 iterative passes. After
that all the motif pairs became stable. We found a total of 896 motif
pairs to be significant when the emerging significance threshold 7 was
set to be 2. The detailed distribution of emerging significance values can
again be found in our supplementary information '°.

All our source codes of the algorithms were run on a Pentium 4 PC
with 2.4 GHZ CPU and 256M RAM. Most of the time (around 12 hours)
were spent to sub-group the interaction sequence data using the maximal



contact segment pairs. The mining of all the maximal segment pairs was
very fast, spending only 50 seconds. The refinement algorithm was also
fast, spending about 1 hour. Note that this time cost is acceptable
considering the enormity of the problem space.

Although the objective is to discover novel motif pairs, to evaluate
the biological significance of the motif pairs found by our algorithms,
it is important to verify that some of the discovered motifs agree well
with experimentally validated patterns in the literature. However, most
publications on the experimental discovery of binding motifs only report
a single motif on one side rather than a pair of binding motifs. As such,
we can only confirm the coincidence of individual motifs in our motif
pairs with the reported binding motifs found by traditional experimen-
tal methods. For example, for the mutagenesis method, we used key
words ‘binding motif OR site AND mutagenesis’ to search all biomedical
abstracts in PUBMED of NCBI. 202 motifs were found, in which 91 mo-
tifs are compatible with at least one in our motifs, 58 motifs are highly
similar with ours. We show the first 5 matches in Table 1. Similar com-
parison with the phage display method is provided in our supplementary

information *°.

Table 1: Motif coincidence with the mutagenesis method.

Our Motif Mutagenesis Motif | PMID of Mutagenesis Motif
ALETS LETS 11435317
P[IV]DL PVDLS 11373277
L[DN]LL LLDLL 11451993
K[DEJK[EK] KEKE 10748065
PIDLSLKP P*DLS 11062046

Table 2 illustrates how we can compare motif pairs using the indi-
vidual binding motifs reported in the literature. As an example, we use
the binding consensus sequences in the list compiled by Kay et al'® for
various proteins by phage display. First, we identify the individual mo-
tifs in our population of discovered motif pairs that match closely with
a binding consensus sequence in the compiled list. Then, for each of
such matched motifs, we verify whether the motif on the other side of
the corresponding motif pair are found in proteins known to bind to the
particular consensus sequence. In Table 2, we list six example binding
consensus sequences from Kay et al ' compiled list in the first column.
In the second column, we list the individual matched motifs from our
population of discovered motif pairs—we arbitrarily assign these motifs
as the “left motifs”. In the third column, we show the motifs on the other
sides (the “right motifs”) of the matched motif pairs. Since these right
motifs are also found in the proteins (shown in the fourth column) re-
ported to bind to the corresponding consensus sequence, the motif pairs



can be considered to be biologically verified. More examples are detailed
in our website 1°.

Table 2: Motif pair coincidence between our motif pairs and peptide-protein binding pairs.

Consensus Sequence Left motif Right Motif Binding Protein
P*LP*KR P[EK]*P GVIFI]S CRK A
P*LP*KR P[ILV][FIL]PG P[ILV][FLIPG CRK A
P*LP*KR, P[ILV][FLIPG P[ILV][FIL]PG CRK A

[RKH]PP[AILVP]P[AILVP]KP | P[IV][EP][IV]A AAS[FI Cortactin
RLP*LP P[EK[*P GVIFI]S Synaptojanin I
[RKH|PP[AILVP]P[AILVP]KP | P[IV][DP]|P[FL] PL[DP]PL Shank

6 Conclusion and Further Work

The mining of binding motif pairs from protein interaction data is im-
portant for extracting knowledge that can lead to the discovery of new
drugs. Most of the work reported in the literature only dealt with finding
individual binding motifs rather than pairs of interacting motifs. Since
motif pairs—unlike single binding motifs—can provide better informa-
tion for understanding the interactions between proteins, we studied the
problem of finding binding motif pairs from large protein interaction
datasets.

Our approach combines the mining of large protein interaction se-
quence datasets with the use of smaller protein complex structural datasets
to direct the search. For mining protein complex structural data, we have
formulated the detection of maximal contact segment pairs as a novel
computational search and optimization problem, and we have provided
an efficient algorithm for that. The maximal contact segment pairs de-
rived can then be deployed as seeds for sub-grouping the vast dataset
of interacting protein sequence pairs so that motif discovery algorithms
can be directed to find the motif pairs within sub-groups. By iteratively
applying this technique, we refine these motif pairs until they reach a
satisfactory level of emerging significance.

The results have shown that our combination approach is efficient and
effective in finding biologically significant binding motif pairs. Many of
the motif pairs that we have discovered coincided well with known motif
pairs independently discovered by experimental methods. However, our
this directed approach heavily depends on protein complex data source.
As the current complex dataset is very limited, our approach may miss
many other important motif pairs. On the other hand, it is worthwhile
to improve our approach for discovering more significant binding motif
pairs. For example, in our current definition of contact segment pairs,
each residue in one segment is strictly required to have at least one con-
tact residue in the other segment. Biologically, contact segment pairs
are still valid even if a few residues in the segments are not in contact.



Computationally, however, our top-down recursive algorithm for finding
maximal contact segment pairs will no longer be valid without this con-
straint. Therefore, one future research direction will be to explore the
relaxation of this constraint while retaining the efficiency of the algo-
rithm.
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