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Recently presented protein sequence classification models can identify relevant re-
gions of the sequence. This observation has many potential applications to de-
tecting functional regions of proteins. However, identifying such sequence regions
automatically is difficult in practice, as relatively few types of information have
enough annotated sequences to perform this analysis. Our approach addresses this
data scarcity problem by combining text and sequence analysis. First, we train
a text classifier over the explicit textual annotations available for some of the se-
quences in the dataset, and use the trained classifier to predict the class for the
rest of the unlabeled sequences. We then train a joint sequence text classifier over
the text contained in the functional annotations of the sequences, and the actual
sequences in this larger, automatically extended dataset. Finally, we project the
classifier onto the original sequences to determine the relevant regions of the se-
quences. We demonstrate the effectiveness of our approach by predicting protein
sub-cellular localization and determining localization specific functional regions of
these proteins.

1 Introduction

Supervised learning techniques over sequences have had a tremendous amount
of success in modeling proteins. Some of the most widely used methods are
Hidden Markov Models (HMMs) to model protein families >3 and neural
network techniques for predicting secondary structure*.

Recently a new class of models which use margin learning algorithms such
as the Support Vector Machine (SVM) algorithm, have been applied to model-
ing protein families. These models include the spectrum kernel® and mismatch
kernel® which have been shown to be competitive with state-of-the-art methods
for protein family classification. These methods represent sequences as collec-
tions of short substrings of length k or k-mers. One property of these classifiers
is that we can examine the trained models generated by these methods and
discover which k-mers are the most important for discriminating between the



classes. By projecting these k-mers onto the original sequences, we can discover
which regions of the protein specifically correspond to the class and potentially
discover the relevant functional region of the protein. In a recent paper, it has
been shown that some of the k-mers with the highest weights in a protein
family classification model correspond to known motifs of the protein family”.

This technique is general in that it can be applied to determine the relevant
functional region of a set of proteins given a set of example proteins by creating
a data set where the examples of the class of proteins are positive training
examples and a sampling of other proteins are negative examples. However,
despite the large size of protein databases and the large amount of annotated
proteins, very few types of information are sufficiently annotated to generate
a large enough training set of proteins to perform this analysis. For example,
consider the sub-cellular localization of proteins. Only a very small fraction
of the database, 15%, is annotated with sub-cellular localization despite the
fact that 35% of the database is annotated with functional annotation which
corresponds to localization. If we can somehow use the functional annotation as
a proxy for localization information, we can then apply our analysis to identify
the regions of the proteins that are specific to each sub-cellular location. In
their recent work, Nair and Rost ®, defined a method for inferring localization
information from the functional annotation which greatly influenced our work.

In this paper, we introduce a framework that combines text-mining over
database annotations with sequence learning to both classify proteins and de-
termine the functional regions specific to the classes. Our framework is de-
signed specifically for the case when we are given a relatively small set of
example sequences compared to a much larger amount of text annotated, yet
unlabeled sequences. Our framework learns how the text is correlated with
the labels and jointly learns over sequences and text of both the example (la-
beled) and unlabeled (yet annotated) examples. The output of the learning is
a sequence classifier which can be used to identify the regions in the proteins
specific to the class.

We demonstrate our method with a proof of concept application to identify
regions correlated to sub-cellular localization. We choose sub-cellular location
as the proof of concept application because two recent works by Nair and Rost
8,9 show that functional annotations of proteins correlate with localization and
localization can be inferred from sequences. Using the small set of labeled
examples and sequences as a seed we train a text classifier to predict the sub-
cellular localization based on the functional annotations similar to the approach
presented in Nair and Rost, 2002°. This effectively augments the seed set of
labeled sequences with a larger set of sequences with predicted localizations.
We then jointly learn a sequence and text classifier over the extended dataset.
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Figure 1: Framework for Extending and Combining Textual Annotations with Sequence
Data.

This is similar to the work by Nair and Rost, 2002 where they showed that
sequence homology can be used to predict localization. Finally we then use
the sequence model to identify the localization specific regions of the proteins.
Preliminary analysis of the regions shows that some correspond with known
biological sites such as DNA-binding sites for the nuclear proteins.

2 Methods

2.1 Framework Overview

The framework for discovering functional regions of a proteins given a set of
examples of the protein consists of several steps, as shown in Figure 1. First
we create a seed dataset which consists of the labeled proteins as positive
training examples and a sampling of other proteins as the negative examples.
Using this seed set, we train a text classifier over the annotations of the se-
quences. Then using the text classifier, we predict over the database additional
sequences which correspond to the class. Using this extended dataset, we train
a joint sequence and text classifier. By projecting the classifier onto our origi-
nal sequences, we can identify which regions of the protein have a high positive
weight with respect to the class corresponding to the example proteins and are
likely candidates for the relevant functional region of the protein.

The input to our framework is a set of examples of the proteins and the
output is a joint text sequence classifier for predicting other examples of that
protein and predictions for regions in the original proteins which correspond
to the common function of the example set of proteins.



2.2  Extending the Seed Dataset

A significant problem in machine learning is the scarcity of training data. Insuf-
ficient training data often prevents machine learning techniques from achieving
acceptable accuracy. In this section we present an application of text classifi-
cation that allows us to automatically construct a comprehensive training set
by starting with the initial smaller seed set of labeled sequences. Combining
labeled and unlabeled examples is a topic that has been thoroughly studied in
the machine learning community (e.g., Blum and Mitchell, 1998 1° and Tsuda
et. al. ,'' and the references therein for a starting point). The simple approach
that we describe below was sufficient for our task, and we plan to explore more
sophisticated approaches in our future work.

To extend the training set, we exploit the large amount of textual informa-
tion often associated with a sequence. For example, SWISS-PROT 2 provides
rich textual annotations for each entry in the database. Unfortunately, these
annotations are difficult to compile and maintain, and as a result important
information is often missing for many entries (e.g., the localization informa-
tion). However, we can sometimes deduce this missing information from the
textual annotations that happen to be present for a database entry. This
general approach was presented in Nair and Rost 8.

The predictions for the unknown sequences rely on some form of classifying
the textual annotations. After training over a number of labeled training
examples, text classifiers can successfully predict the correct class of unlabeled
texts. We represent the text using a bag of words model where each text
annotation is mapped to a vector containing the frequency of each word. As
the actual classifier, we use RIPPER '3, a state of the art text classification
system. RIPPER operates by learning rules to describe the text in the training
examples, and then applies these rules to predict the appropriate classification
of new, unlabeled texts.

2.8 Training a Joint Sequence Text Classifier

Each protein record consists of the sequence and the text from its functional
annotation. We construct a classifier to predict members of the class of proteins
corresponding to the example proteins by learning from both the text and the
sequences. In order to learn from the text and sequences jointly we use a kernel
framework. Both sequences and text are mapped to points in a feature space
which is a high dimensional vector space. A kernel for both sequences and text
allows us to efficiently compute inner products between points in the space.
Using this kernel, we apply the SVM algorithm to train.

The kernel, described below, is constructed in such a way to take into



account interactions between the text and sequences during the learning, which
results in a true joint sequence text classifier.

Text Kernel

The feature space for the text portion of a protein record uses the bag of
words representation described above. The feature space corresponding to the
kernel is a very high dimensional space where each dimension corresponds to
a specific word. Each word w corresponds to a vector in the space, ¢r(w)
where the value of the vector 1 for the word’s dimension and 0 for all other
dimensions. A text string z is mapped to a vector which is the sum of the
vectors corresponding to the words in the text, ¢r(z) = )_, o, ¢7(w).
Although the dimension of the feature space is very large, the vectors
corresponding to the text strings are very sparse. We can take advantage
of this to compute inner products between points in the feature space very
efficiently. For two text annotations = and y, we denote the text kernel to be

Kr(z,y) = ¢r(x) - ¢1(y).

Sequence Kernel

Sequences are also represented as points in a high dimensional feature space.
Sequences are represented as a collection of their substrings of a fixed length k
(or k-mers) obtained by sliding a window of length k across the length of the
sequence. The simplest sequence feature space contains a dimension for each
possible k-mer for a total dimension of 20*. For a k-mer a, the image of the
k-mer in the sequence feature space, ¢s(a), has the value 1 for the k-mer a and
the value 0 for the other dimensions. The image of a sequence z is the sum of
the images of its k-mers, ¢s(x) = >, #s(a). This sequence representation
is equivalent to the k-spectrum kerneP. An advantage of this representation is
that we can compute kernels or inner products of points in the feature space
very efficiently using a trie data structure.

In practice, because of mutations in the sequences, exact matching k-mers
between sequences are very rare. In order to more effectively model biological
sequences, we use the sparse kernel sequence representation that allows for
approximate matching. The sparse kernel is similar in flavor to the mismatch
kernel and is fully described elsewhere'*15.

Consider two sequences of length k, a and b. Each sequence consists of
a single substring. The sparse kernel defines a mapping into a feature space
which has the following property

¢(a) - $(b) = (@b (1)



where dg(a,b) is the Hamming distance between substrings a and b and 0 <
a < 1is a parameter in the construction of the mapping. If the two substrings
are identical, than the Hamming distance is zero and the substrings contribute
1 to the inner product of the sequences, exactly as in the spectrum kernel.
However, if the Hamming distance is greater than zero, the similarity is reduced
by a factor of a for every mismatch. Details of the sparse kernel implementation
are described elsewhere*1?,

Combining Text and Sequences

We can use the framework of kernels to define a feature space which allows for
interactions between sequences and text annotations. In our approach, we use
a very simple method for combining the text and sequence classifiers. There
exists a vast literature in machine learning on alternative techniques for this
problem.

We now define our combined kernel Ko (z,y) = Kr(z,y) + Ks(z,y) +
(Kr(z,y) + Ks(z,y))?. The first two terms effectively include the two feature
spaces of text and sequences. The third term is a degree two polynomial kernel
over the sum of the two kernels. If we explicitly determine the feature map
for the combined kernel, the third term would include features for all pairs of
sequences and words. Since the classifier trains over this space, it effectively
learns from both sequence and text and the interactions between them.

Support Vector Machines

Support Vector Machines (SVMs) are a type of supervised learning algorithms
first introduced by by Vapnik !¢, Given a set of labeled training vectors (posi-
tive and negative input examples), SVMs learn a linear decision boundary to
discriminate between the two classes. The result is a linear classification rule
that can be used to classify new test examples.

Suppose our training set consists of labeled input vectors (xi,yi), ¢ =
1...m, where x; € R™ and y; € {£1}. We can specify a linear classification
rule f by a pair (w,b), where w € R and b € R, via

f(x)=w-x+b, (2)

where a point x is classified as positive (negative) if f(x) > 0 (f(x) < 0).
Such a classification rule corresponds to a linear (hyperplane) decision bound-
ary between positive and negative points. The SVM algorithm computes a
hyperplane that satisfies a trade-off between maximizing the geometric margin
which is the distance between positive and negative labeled points and training



errors. A key feature of any SVM optimization problem is that it is equivalent
to solving a dual quadratic programming problem that depends only on the
inner products x; - x; of the training vectors which allows for the application of
kernel techniques. For example, by replacing x; - xj by K¢(z;, z;) in the dual
problem, we can use SVMs in our combined text sequence feature space.

2.4 Predicting Relevant Functional Regions

Once a SVM is trained over a set of data, the classifier is represented in its

dual form as a set of support vector weights s;, one for each training example
x;. The form of the SVM classifier is

f@) =3 siK(@z) =} sid(a) - d(x:) (3)

(3

which can be represented in the primal form as

f@) =¢(@) - Y siplas) = d(x) - w (4)

(3

where w = ), s;¢(x;) is the SVM hyperplane.

By explicitly computing ¢(z;) we can compute w directly. In the case of
sequences, this can be efficiently implemented using the same data structures
used for computing kernels between sequences'*'>. We are interested in the
sequence only portion of the feature space. For the sequence portion, w has
a weight for every possible k-mer. The score can be interpreted as a measure
of how discriminative the k-mer is with respect to the classifier. High positive
scores correspond to k-mers that tend to occur in the example set and not in
other proteins. We define the score for a region on the protein as the sum of
the k-mer scores contained in the region. If a region score is above a threshold,
we predict that the region is a potential functional region associated with the
example proteins.

3 Results for Protein Localization

We evaluate our framework in three ways. First we measure the accuracy
of extending the set of labeled examples. Second, we evaluate the joint text
sequence classifier over 20% of the annotated localization data. This data
was held out of the training in all steps of the framework. We evaluate the
accuracy of predicting localization from the functional class over this data. We
also evaluate the joint sequence text classifier over this data and compare it
to a text only and sequence only classifier. Finally, we perform a preliminary
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Figure 2: (a): Explicitly Annotated localization, and localization predicted based on tex-
tual information for SWISS-PROT4.0., (b): Precision vs. recall of the text classifier using
keywords only, vs. field-specific text annotations, vs. all available text annotations

analysis of the predictions of the relevant regions in the proteins to localization.
We specifically examine nuclear localization signals since many of these are well
known and there are readily available databases which we can use to verify our
predictions.

3.1 Data Description

We use SWISS-PROT4.0'2, a large database of sequences and associated tex-
tual annotations. In this proof of concept application, we focus on the spe-
cific task of inferring sub-cellular localization. A fraction of the sequences
in SWISS-PROT have associated annotations that explicitly state their sub-
cellular localization. We report the number of sequences with explicitly anno-
tated localization of each type in Table 2.

As we can see, out of more than 100,000 entries in SWISS-PROT, less
than 15% have explicit localization information.

3.2 Increasing the Set of Localization Annotated Sequences

We can increase the amount of information available to a learner by augment-
ing the explicitly labeled examples with unlabeled data. Useful information
relevant to localization is often contained within unlabeled text annotations.
By learning to recognize the textual annotations associated with localizations,
we can assign localization labels to the unlabeled text annotated sequences.
This general approach for predicting localization of unlabeled, but an-
notated, sequences is presented in Nair and Rost . In their approach, the
training focuses on detecting a set of discriminating keywords. If such a key-
word is present, the sequence is predicted to belong to the appropriate class. In



this work we used RIPPER '3, a rule-based classifier, to learn rules to predict
localization of an SWISS-PROT entry based on textual annotations. The clas-
sifier was trained over the 14,454 explicitly annotated sequences. The derived
rules were then used to predict the localization of the remaining (unlabeled)
SWISS-PROT entries.

The approach described in Nair and Rost, 20028 focuses on carefully se-
lected and assigned keyword annotations, and does not consider the unstruc-
tured annotations that are often available for the sequences. Text classification
systems such as RIPPER implement sophisticated feature selection algorithms,
and can be trained over the noisy, but potentially informative unstructured
data. To evaluate this hypothesis, we varied the types of textual annotations
available to the classifier. We compared the quality of prediction based only
on the keywords information, as used in Nair and Rost ®, to the prediction
accuracy achieved by considering other text fields, such as descriptions, and
finally with using all of the available textual annotations for the sequence.

The experimental results for varying the type of textual annotation are
reported in Figure 2(b). While the specific evaluation setup and methodol-
ogy that we used is slightly different from the evaluation of Nair and Rost 8
for the same task, the overall results for keywords-based classification appear
comparable. As we can see in Figure 2(b), considering all of the available
textual annotations significantly increases both the recall and the precision of
predicting the localization of unknown sequences. For example, at the preci-
sion level of 80%, using all of the text annotations allows RIPPER to achieve
significantly higher recall. Therefore, for the remainder of this paper our text
classifier considers all of the textual annotations that are available for each
SWISS-PROT entry.

The counts of the automatically predicted SWISS-PROT entries are re-
ported in Figure 2(a). We also report the precision and recall of the classifier,
evaluated over the hold-out data using cross-validation. These accuracy fig-
ures serve as an estimate of the accuracy, or the “quality” of the resulting
extended training set. Note that the while the text classifier introduces some
noise into the training set, the extended training set at over 62,000 examples is
significantly larger than the original training set. This extended automatically
labeled training set can now be used to train a better join text and sequence
classifier.

3.3 Evaluation the Joint Text Sequence Classifier

Over the extended data described in Section 3.2, we performed experiments to
measure the improvement of the classifier when considering text and sequences



Localization Text Sequence Joint
Category Classifier | Classifier | Classifier
cytoplasm 0.91 0.86 0.93
nuclear 0.94 0.91 0.97
mitoch 0.96 0.91 0.99
chloroplast 0.96 0.96 0.96
extracel 0.92 0.93 0.95
endoplas 0.89 0.94 0.96
perox 0.93 0.88 0.95
golgi 0.91 0.83 0.93
lyso 0.93 0.99 0.99
vacuolar 0.94 0.94 0.94

Table 1: Comparison of text only classifier, sequence only classifier and joint classifier for
each localization category. Each classifier is evaluated by computing the ROCjsq score.

together. We ran three experiments by leaving out 20% of the original anno-
tated sequence data as a test set and using the remaining data as a training set.
We trained three models on the training set: a text only classifier, a sequence
only classifier and a joint sequence text classifier. For all three classifiers, we
used the SVM algorithm with the only difference being the choice of kernel.
The text classifier uses the text kernel Ky (z,y), the sequence classifier uses the
sequence kernel Kg(z,y) and the combined classifier use the K¢ (z,y) kernel.
For each class, we used all of the members of the class as positive examples
and a sampling of the remaining classes as negative examples. For each of the
classes of localization data we report the results of the classifiers performance
over the test data in Table 2(b).

We use ROCj5¢ scores to compare the performance of different homology
detection between methods. The ROC5g score is the area under the receiver
operating characteristic curve — the plot of true positives as a function of false
positives — up to the first 50 false positives 7. A score of 1 indicates perfect
separation of positives from negatives, whereas a score of 0 indicates that none
of the top 50 sequences (or text annotations) selected by the algorithm were
positives.

3.4 Identifying Regions Relevant to Localization

We made predictions for regions correlated to localization using the method
described in Section 2.4. Since of all the localization signals, nuclear local-
ization signals are the most characterized and have a searchable database of
signals, the NLS database 18, we restricted our evaluation to these signals. We
examined the 20 highest non-overlapping regions and compared them to the
NLS database and found 8 common signals. Table 2 shows the eight predicted
regions and the corresponding entries from the NLS database.



Predicted NLS
Region Signal Origin Reference
KKKKKKK KKKKKx3,6KK predicted —
RKRKK RKRKK experimental (A)
KKEKKEKKDKKEKKEKKEKKDKKEKKEKKEKK | KKEKKKSKK experimental (B)
GGGTGGTGTGTGGG RGGRGRGRG predicted -
QRFTQRGGGAVGKNRRGGRGGNRGGRNNNSTR | GGGxxxKNRRxxxxxxRGGRN | experimental (©)
EVLKVQKRRIYD [PL]JKxxKRR predicted -
LSGGTPKRCLDLSNLS T[PLV]KRC predicted -

Table 2: Eight predicted regions corresponding to nuclear localization and the corresponding

entries from the NLS database. The signal entry is a signal that is close to the predicted

signal. The origin describes whether the signal was experimentally verified or predicted

according to the database and the reference is the corresponding reference for the predicted

signals. References: (A) Bouvier, D., Badacci, G., Mol, Biol. Cell,1995,6,1697-705 (B)

Youssoufian, H. et al., Blood Cells Mol. Dis.,1999,25,305-9. (C) Truant, R., Cullen, B.R.,
Mol. Cell. Biol., 1998,18,1449-1458.

4 Discussion

We have presented a framework for combining textual annotations and se-
quence data for determining the relevant functional regions from a set of ex-
ample proteins. Since a large enough set of examples to perform this kind of
analysis is often difficult to obtain, we use a general approach of extending
the original training set by exploiting textual annotations. This results in a
significantly larger set of labeled examples. We can then train a joint text and
sequence classifier over the extended training set, and subsequently project the
classifier onto the original sequences to identify the relevant regions. We have
shown how we can recover nuclear localization signals using this analysis. The
framework takes advantage of recent sequence classification models which are
based on analysis of subsequences of the protein and for each position in the
sequence, can determine how relevant that position is to predict the class.

We have applied the framework to sub-cellular localization of proteins.
We plan to explore alternative ways for combining textual and sequence in-
formation using our general approach as well a more thorough analysis of the
localization predictions. We also plan to apply our framework to determine
relevant regions for other properties of proteins.
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