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Temporal and spatial gene expression, together with the concentra-
tion of proteins and metabolites, is tightly controlled in the cell. This
is possible thanks to complex regulatory networks between these differ-
ent elements. The identification of these networks would be extremely
valuable. We developed a novel algorithm to identify a large genetic
network, as a set of linear differential equations, starting from mea-
surements of gene expression at steady state following transcriptional
perturbations. Experimentally, it is possible to overexpress each of the
genes in the network using an episomal expression plasmid and measure
the change in mRNA concentration of all the genes, following the per-
turbation. Computationally, we reduced the identification problem to a
multiple linear regression, assuming that the network is sparse. We im-
plemented a heuristic search method in order to apply the algorithm to
large networks. The algorithm can correctly identify the network, even
in the presence of large noise in the data, and can be used to predict
the genes that directly mediate the action of a compound. Our novel
approach is experimentally feasible and it is readily applicable to large
genetic networks.

1 Introduction

Temporal and spatial gene expression, together with the concentration of pro-
teins and metabolites, is tightly controlled in the cell. This is possible thanks
to complex regulatory networks between these different elements. The identifi-
cation of these networks would be extremely valuable. Different experimental
and computational methods have been proposed to tackle the network iden-
tification problem 123456 Although implemented with some success, they
are data intensive and the description of the network they provide is limited.
A variety of mathematical models may be used to describe genetic networks
789 “including Boolean logic !%!!, Bayesian networks '2, graph theory '3, and



ordinary differential equations. We concentrated our efforts on this last model,
because it offers a description of the network as a continuous time dynamical
system that can be used to infer the genes with the major regulatory function
in the network. In addition, it can be applied to the RNA expression measure-
ments obtained from pharmacological perturbations to identify the genes that
directly mediate a compound’s bio-activity in the cell. We already developed
and tested in vitro an algorithm to identify a genetic network of nine genes,
as a set of linear differential equations, starting from measurements of gene
expression at steady state following transcriptional perturbations'#. In what
follows we describe a modification of the algorithm to tackle the problem of
reverse-engineering large genetic networks.

2 Methods

2.1 Network model description

A network can be described by a set of ordinary differential equations 7 de-
scribing the time evolution of the mRNA concentration of the genes in the
network®:

&= f(z,u) (1)

where z represents the mRNA concentrations of the genes in the network,
and u is a set of transcriptional perturbations. Assuming that the cell under
investigation is at equilibrium near a stable steady-state point, we can apply
a small perturbation to each of its genes. A perturbation is small if it does
not drive the network out of the basin of attraction of its stable steady-state
point and if the stable manifold in the neighborhood of the steady-state point
is approximately linear. With these assumptions, we can linearize the set of
nonlinear rate equations near its stable state-steady point 6. Thus, for each
gene, 1, in a network of N genes we can write the following equation:

N
a:'il:Zaija:jl+uilzglr-gl+uil, i=1...N,l=1...M, (2)
Jj=1

where z;; is the mRNA concentration of gene i following the perturbation
in experiment [; a;; represents the influence of gene j on gene i; u; is an

(from now on we will use the following notation: z represents a column vector, zT is a

row vector, z is a scalar and A is a matrix)



external perturbation to the expression of gene i in experiment [. For all N
genes, Egs. 2 can be rewritten in more compact form using matrix notation:

L =A z +uy, l=1...M, (3)

where z; is an N x 1 vector of mRNA concentrations of the N genes in
experiment [, A is an N x N connectivity matrix, composed of elements a;;,
and u; is an NV x 1 vector of the perturbations applied to each of the NV genes
in experiment [.

2.2 Network Identification

To identify the network, using the model described above, means to retrieve
matrix A. This is possible if we measure mRNA concentration of all the N
genes at steady state (i.e., &; = 0) in M experiments and then solve the system
of equations:

AX=-U (4)

where X is an N x M matrix composed of columns z;; U is an N x M
with each column, u;. Equation 4 can be solved only if M > N. However, the
recovered weights, A, will be extremely sensitive to noise both in the data, X,
and in the perturbations, U, and thus unreliable unless we overdetermine the
system of Eqs. 4. This can be accomplished either by increasing the number
of experiments (M > N), or, by assuming the maximum number of regulators
acting on each gene, k, is less than M (i.e., the network is not fully connected
15.6) " thus reducing the number of weights a;; to be recovered.

2.3 Ezperimental approach

To identify the network we need to perform transcriptional perturbations for
each of the genes in the network and to measure the changes at steady state
following the perturbation of the mRNA concentrations for each of the genes
in the network. In each perturbation experiment, it is possible to overexpress
a different one of the genes in the network using an episomal expression plas-
mid. Then we let the cells grow under constant physiological conditions to
their steady state after the perturbation and measure the change in mRNA
concentration compared to cells under the same physiological conditions but
unperturbed. This can be achieved using microarrays or real time quantitative
PCR.



2.4 Algorithm.

A genetic network can be described by the system of linear differential equa-
tions, Eqgs. 2. For each gene i at steady state (&;; = 0) in experiment [, we can
therefore write:

—uy =a! -z (5)

where u; is the transcriptional perturbation applied to gene i in exper-
iment [, al is a row of A, and z; (N x 1) are the mRNA concentrations at
steady state following the perturbation in experiment [. The algorithm as-
sumes that only k£ out of the N weights in a; for gene i are different from zero.
For each possible combination of k£ out of N weights, the algorithm computes
the solution to the following linear regression model:

ya =b; -z +eq (6)

where y;; = —uy is the perturbation applied to gene ¢ in experiment ; b,
is a k x 1 vector representing one of k’(NLLk)’ possible combinations of weights
for gene i; €; is a scalar stochastic normal variable with zero mean and vari-
ance, var(e; ), representing measurement noise on the perturbation of gene i
in experiment [; z; is a k x 1 vector of mRNA concentrations following the per-
turbation in experiment /, with added uncorrelated Gaussian noise (y,) with
zero means and variances Ua?“(ll). Equation 6 represents a multiple linear

. . . T . .
regression model with noise 7y = b; -, + €l with zero mean and variance:

k
var(ng) = Z b?jvar(’yjl) + var(ey) (7)

=1

(if €7 and 7, are uncorrelated).
If we collect data in M different experiments, then we can write Eq. 6 for
each experiment and obtain the system of equations:

y ' =bl - Z+¢f (8)

where Y, is an M x 1 vector of measurements of the perturbation y; to
gene ¢ in the M experiments; Z is a K x M matrix, where each column is the
vector z; for one of the M experiments; ¢; is an M x 1 vector of noise in the

M experiments. From Eqgs. 8, it follows that a predictor for y, given the data
matrix Z is:

gt =b - Z (9)



We chose to minimize the following cost function to find the k weights, b;,
for gene i:

M M
Cl =3y —ga)* =3 _(va —bi - z)’ (10)
=1 =1

The solution can be obtained by computing the pseudo inverse '8 of
Z:

b= (2-2")7" 7y, (11)

Note that the solution, Ei, in Eq. 11 is not the maximum likelihood estimate

for the parameters b, when the regressors Z are stochastic variables!”, but it

nevertheless is a good estimate. We select as the best approximation of the

weights in Eqs. 2 for gene i, the one with the smallest least-squares error, C¥,
among the (N choose k) possible solutions b;.

2.5 Estimation of the variance of the parameters.

We now turn to the estimation of the variance on the estimated parameters
b, and the calculation of the goodness of fit. If, in each experiment, the noise
is uncorrelated and Gaussian with zero mean and known variance, then the

covariance matrix of the estimated parameters b; is':

Cov(b;)) = (Z-Z%) ' -Z-%,-2T -(Z-27)! (12)

where ¥, is an M x M diagonal matrix with diagonal elements equal to
the noise variance for gene ¢ in the M experiments, var(n;1) - ..var(nm, ). We
assume that we can estimate var(n; ) in each experiment using the parameters

b; estimated with Eq. 11 and substituting in Eq. 7:

k
var(ni) = Z b?jvar(yjl) + var(ei) (13)
j=1
We can now compute the variances of the parameters using Eq. 12, where
X, is computed using Eq. 13. The quantities var(vy;;) and var(e;;) are supposed
to have been estimated experimentally. We can also compute a goodness of fit
test using the Chi-squared statistic:

T

M 7 2
X2 = Z Wit = b ~z)" (14)

— var(ni)



2.6 Modification of the algorithm for large networks.

For a network of N genes, with k& < IV connection for each gene, we need to
n!

solve Eq. 6 for all the possible Fn=R)! combinations of k£ genes and then select
the one that fits the data best. For large networks, this exhaustive approach is
unfeasible since there are too many combinations to test. We used a heuristic
search method (Forw-TopD-reest-K ') to reduce the number of solutions to
test. We first compute all the possible solutions with single connections (k=1)
as described in sec. 2.4. We then select the best D solutions (the ones with
the smallest least squared error), and only for these intermediate solutions,
we compute all the possible solutions with an additional connection. Then we
again select the best D solutions, and so on until the number of connections

found for each gene is k. We implemented this approach using a value of D = 5.

2.7 Target prediction.

It is possible to use the recovered network A to deconvolve the results of an
experiment, i.e., to recover the unknown perturbations u, in an experiment,
given the measurements of the response to that perturbation, z,. The pre-
dicted perturbations &, can be computed from:

Uy = -A “Zo- (15)

The variance on the estimated perturbation of gene 7 can be computed as
19,

k
var(io,) = zg - (Z-Z%) - Z-%, - ZT (Z - ZT)7' -z + Zg?jvar(xoj) (16)
j=1

Using the variance of the estimated perturbation, we perform a t test to
test the hypothesis that the predicted perturbations are significantly different
from zero.

2.8 Simulated data

To test the algorithm on a realistic data set, we generated 10 random networks
of N =100 genes with an average of k = 10 connections for each gene. Each
network was represented by a full rank sparse matrix A (N xN), as described in
sec.2.2. We made sure that all the eigenvalues of these random sparse matrices
had a real part less than 0 to ensure that the dynamical systems described by



them were stable. The data set X (N x M) was obtained by inverting eq.4 to
obtain:

X=-A"1.U (17)

where U, (N x M), were the perturbations in M = 100 experiments. We
chose U to be a diagonal identity matrix. This is equivalent to say that in
each experiment only 1 out of the 100 genes was perturbed by increasing its
transcription rate by 1. The data the algorithm needs to identify the network
A are the gene expression data matrix X and the perturbation matrix U. We
added white gaussian noise to each data matrix. For the perturbation matrix
U, the standard deviation of the noise was fixed to o, = 0.3 (i.e. 30% of the
magnitude of the perturbation), while for the gene expression data matrix it
varied from o, = 0.1 ¥ X to 0, = 0.5 * X where X represents the average of
the absolute values of the elements in X. The performance of the algorithm
was tested using these data with the different noise levels in order to iden-
tify the network A. We used two measures of performance: coverage (correct
connections in the recovered network model / total connections in the true
network) and false positives (incorrect connections in the recovered model /
total number of recovered connections).

In order to test the ability of the identified network to predict unknown
perturbations given the gene expression data, for each random network, we
generated 10 additional experiments in which 3 genes, randomly chosen out of
100 genes, were perturbed simultaneously. We computed the ability of the re-
covered network to predict which genes had been perturbed, using the method
described in 2.7.

The algorithm described in this section was fully implemented in MATLAB
environment. For a network of 100 genes, the algorithm took 50s to run on a
Pentium IIT with a clock speed of 1.2 Ghz.

3 Results

3.1 Identification of networks

Figure 1 shows the average performance of the algorithm across the 10 random
networks described in sec. 2.8 for noise levels ranging from 10% to 50%. Since
the algorithm reports also the variance of the identified elements in matrix
A, it is possible to compute a p value for each of its elements a;;. We used
a Student ¢ distribution to test the hypothesis that the element a;; identified



by the algorithm is significantly different from 0. This is equivalent to test
whether gene i is significantly regulated by gene j. Figure 1 reports also the
coverage and false positives in the case we consider significantly different from
0 only those elements with a p-value < 0.05 (dashed lines).

3.2  Target prediction

Figure 2 shows the coverage (genes correctly identified as perturbed by the
network model / total number of perturbed genes) and the percentage of false
positives (genes wrongly identified as perturbed by the network model / total
number of genes identified as perturbed by the network model) for noise levels
ranging from 10% to 50% averaged across the 10 random networks and across
10 perturbation experiments, as described in sec.2.8.

In Figure 2, open bars show coverage and false positives considering the
predicted perturbations correct only if they have a p-value < 0.01, black bars
show the same quantities for a p-value < 0.1.

4 Discussion

The algorithm we propose requires only measurements of mRNA concentra-
tions at steady state following transcriptional perturbations. Therefore, the
experimental time and costs involved in the procedure are affordable. This is a
very useful feature of our approach. Another essential feature is its robustness
to measurement noise. Measurements of mRNA concentration using microar-
rays are noisy, and therefore an algorithm to identify networks is useful only
if it is robust to such noise. We showed that the recovered network can be
used for target prediction, this can be very useful for drug discovery. Using
measurements of mRNA concentration changes at steady state following the
application of a compound to a cell population, we can predict which are the
direct targets of that drug in a large gene network using the recovered network
model.

The recovered network model, A, is a linear representation of a nonlinear
system. Nonlinear behaviours that are sometimes exhibited by gene, protein,
and metabolite networks, including bifurcations, thresholds, and multistability,
cannot be described by A. Nevertheless, the linear approximation is topologi-
cally equivalent to the nonlinear system near a steady-state point. Therefore,
to apply our algorithm, it is necessary to remain near a single steady state
during the course of all experiments. From a practical perspective, this means
that cells must be maintained under consistent and constant environmental



and physiological conditions, and the applied perturbations must be relatively
small. If these conditions are not met, the recovered model may contain a
certain degree of nonlinear error, or, in the extreme, it may not be possible to
adequately fit a linear model.

In practice, it is generally straightforward to keep the cells in a constant en-
vironmental and physiological state, but due to the presence of measurement
noise, it can be challenging to meet the condition of small perturbations. For
errors due to noise, we can improve the signal-to-noise ratio (S/N) by boosting
the size of the perturbations. However, larger perturbations can lead to larger
nonlinear errors. Thus, the experimenter must identify an acceptable balance
between noise and nonlinear error.

The network should be sparse for the method to work. Our algorithm
can be successfully applied as long as the real connectivity of the network (i.e.
number of connections per gene) is less that the number of perturbation ex-
periments. An exact threshold for the maximum number of connections that
can be recovered correctly with this algorithm cannot be computed because
this will depend on the noise level of the data. For noise-free data, the max-
imum connectivity will be equal to the number of perturbations experiments
performed.

Our approach to inferring genetic networks has been shown to work in vivo
for small networks !4, The computer simulations here described suggest that
a modified version of the algorithm will work also for large genetic networks.
We showed that even with considerable noise, it is still possible to recover 60%
of the real network with less than 10% of wrongly identified connections. This
is important in biological research because it can provide a first draft of the
map of interaction among hundreds of genes whose function or regulation is
partly or completely unknown. Also the network recovered with the algorithm
can predict the direct targets of an unknown perturbation with a specificity
of approx. 80%, even in the presence of large noise. This would greatly help
in the identification of the real targets of a novel molecule in a large network,
by greatly reducing the targets to be tested experimentally. In addition, the
experiments required to generate the data needed by the algorithm are feasible
and economically affordable also for large networks.
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Figure 1: Model recovery performance for simulations. Perturbations of magnitude u; = 1
(arbitrary units) were applied to ten randomly connected networks of one hundred genes with
an average of ten regulatory inputs per gene. For each perturbation to each random net-
work, the mRNA concentrations at steady state were calculated, and normally-distributed,
uncorrelated noise was added both to the mRNA concentrations and to the perturbations to
represent measurement error. The noise (noise = Sz /pz, where Sy is the standard deviation
of the mean of , 1) on the perturbations was set to 30%. The noise on the mRNA concen-
trations was varied from 10% to 50%. The average coverage, top panel, (correct connections
in the recovered network model / total connections in the true network) and average false
positives, bottom panel, (incorrect connections in the recovered model / total number of
recovered connections) were calculated across all the models recovered. Filled circles: All
the recovered connections were included in the computation of coverage and false positives.
Filled squares: Only the recovered connections with a p-value < 0.05 were included in the

computation.
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Figure 2: Perturbation prediction performance for simulations.

Three genes were randomly and simultaneously perturbed. Using the steady state measure-
ments following the perturbation, the network model was used to predict which genes had
been perturbed. This experiment was repeated ten times for each one of ten different random
networks of one hundred genes with an average of ten regulators per gene.

Coverage (genes correctly identified as perturbed by the network model / total number of
perturbed genes) and the percentage of false positives (genes wrongly identified as perturbed
by the network model / total number of genes identified as perturbed by the network model)
for noise levels ranging from 10% to 50% averaged across the ten random networks and
the ten perturbation experiments. Open bars: Coverage (tall) and false positives (short)
considering correct only predictions with a p-value < 0.01. Filled bars: Coverage (tall) and
false positives (short) considering correct only predictions with a p-value < 0.1.





