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In this paper, an optimization based modeling and solution framework for inferring gene 
regulatory networks while accounting for time delay is described. The proposed framework 
uses the basic linear model of gene regulation. Boolean variables are used to capture the 
existence of discrete time delays between the various regulatory relationships. Subsequently, 
the time delay that best fits the expression profiles is inferred by minimizing the error between 
the predicted and experimental expression values. Computational experiments are conducted 
for both in numero and real expression data sets. The former reveal that if time delay is 
neglected in a system a priori known to be characterized with time delay then a significantly 
larger number of parameters are needed to describe the system dynamics. The real microarray 
data example reveals a considerable number of time delayed interactions suggesting that time 
delay is ubiquitous in gene regulation. Incorporation of time delay leads to inferred networks 
that are sparser. Analysis of the amount of variance in the data explained by the model and 
comparison with randomized data reveals that accounting for time delay explains more 
variance in real rather than randomized data.  

1 Introduction 

The advent of microarray technology has made it possible to gather genome-wide 
expression data. In addition to experimentally quantifying system-wide responses of 
biological systems, these technologies have provided a major impetus for 
developing computational approaches for deciphering gene regulatory networks that 
control the response of these systems to cellular and environmental stimuli.  A 
complete understanding of the organization and dynamics of gene regulatory 
networks is  an essential first step towards realizing this goal [1, 2]. To date, many 
computational/algorithmic frameworks have been proposed for inferring regulatory 
relationships from microarray data. Initial efforts primarily relied on the clustering 
of genes based on similarity in their expression profiles [3]. This was motivated by 
the hypothesis that genes with similar expression profiles are likely to be co-
regulated. Hwang et.al [4] and Stephanopoulos et.al [5]  extended these clustering 
approaches to classify distinct physiological states. However, clustering approaches 



 

 

alone cannot extract any causal relationship among the genes. Many researchers 
have attempted to explain the regulatory network structure by modeling them as 
Boolean networks [6, 7]. These networks model the state of the gene as either ON 
or OFF and the input-output relationships are postulated as logical functions. 
Measures of transcript levels, however, vary in a continuous manner implying that 
the idealizations underlying the Boolean networks may not be  appropriate and more 
general models are required [8]. 
 
Recently, there have been many attempts to develop approaches that can uncover 
the extent and directionality of the interactions among the genes, rather than simply 
grouping genes based on the expression profiles. These approaches include the 
modeling of genetic expression using differential equations [9-11], Bayesian 
networks [12]  and neural networks [13]. Even though a lot of progress has been 
made, key biological features such as time delay have been left largely unaddressed 
in the context of inferring regulatory networks. Experimentally measured time delay 
in gene expression has been widely reported in literature [14-16]. However, on the 
computational front, the fact that gene expression regulation might be asynchronous 
in nature (i.e., the expression profile of all the genes in the system may not be 
regulated simultaneously), has largely been left unexplored.  
 
From a biological viewpoint, time delay in gene regulation arises from the delays 
characterizing the various underlying processes such as transcription, translation 
and transport processes. For example, time delay in regulation may result due to the 
time taken for the transport of a regulatory protein to its site of action. 
Consequently, accounting for this key attribute of the regulatory structure is 
essential to ensure that the proposed inference model accurately captures the 
dynamics of the system.  Prominent among the initial efforts made to incorporate 
time delay is the framework developed by Yildirim  and Mackey [17].  The authors 
examined the effect of time delay in a previously developed mechanistic model of  
gene expression, in the Lac operon [18]. Chen et. al [9] proposed a general 
mathematical framework to incorporate time delay but did not apply it to any gene 
expression data to produce verifiable results. While interesting, these methods are 
not scalable to large expression data sets where the mechanistic details are often 
absent. Quin et. al [19] have proposed a time-shifted correlation based approach to 
infer time delay using dynamic programming. Since this approach relies on pair-
wise comparisons, it fails to recognize the potential existence of multiple regulatory 
inputs with different time delays.  
 
In this paper, we propose an optimization based modeling and solution framework 
for inferring gene regulatory relationships while accounting for time delays in these 
interactions using mixed-integer linear programming (MILP). We compare the 
proposed model, both in terms of its capability to uncover a target network that 
exhibits time delays for a test example, as well as computational requirements with 



 

 

a model that does not account for time delay. The rest of the paper is organized as 
follows. In the following section, a detailed description of the proposed model 
formulation is provided. Subsequently, the performance of the proposed model is 
evaluated on two data sets (one in numero, one real). Finally, concluding remarks 
are provided and the work is summarized. 

2 Method 

Here, an inference method is described for extracting the regulatory inputs for each 
gene in a genetic regulatory network, while accounting for time delays in the 
system. To this end, the linear model of network inference [20-22]  is adopted as a 
benchmark and modified to account for time delay as shown in Eq 1. 
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In Eq 1, )(tZ i is the expression level of gene i  at time point t  and τω ji   is the 

regulatory coefficient that captures the regulatory effect of gene j on gene i . The 
index τ indicates that this regulation has a time delay of τ associated with it while 
the integer parameter maxτ denotes the longest time delay accounted for. Note that 
the frequency at which gene expression is sampled through the microarray 
experiment determines the maximum amount of biologically relevant time delay 
that can be inferred. For example, if the time points are separated by 
seconds/minutes then a higher value of maxτ  can be used. Subsequently, if τω ji  >0 

then gene j activates gene i with a time delay τ ,while if τω ji  <0 then it inhibits the 

expression of gene i . If τω ji = 0 for some τ,, ji , then no regulatory connection is 
implied between the genes j  and i  with a time delay τ . 
 
In a typical microarray time course expression data set, the expression levels for N  
genes are measured at T  time points where TN >> .  In order to uniquely determine 
all regulatory coefficients, )1( max2 +τN equations are needed. However, only 
NT equations are available implying that the system is typically underdetermined 
and consequently there exists a family of solutions that fit the microarray data 
equally well. To reduce the dimensionality of the solution space we assume a single 
time delay τ for every regulatory interaction. Furthermore, we limit the maximum 
number of regulatory inputs to each gene. In order to impose both these constraints, 
boolean variables τjiY are defined as follows.  
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Subsequently, the network inference model with time delay is formulated as the 
following mixed integer linear programming (MILP) model. 
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The objective function (Eq 2) minimizes the total (over all genes and time points) 
absolute error E between the predicted and the experimental expression values. The 
absolute value of the error is determined from Eq 3 through the positive and 
negative error variables ( )te i

+  and ( )te i
−  respectively. For a given gene i and time 

point t, only one of these variables can be non-zero. Specifically, if the error is 
positive then ( )te i

+  is non-zero while if the error is negative then ( )te i
−  is non-

zero. This property arises from the fact that when the constraints of the model are 
placed in matrix form, the columns associated with these two variables are linearly 
dependent. Consequently, the linear programming (LP) theory principle that states 
that the columns of the basic variables (variables that are non-zero at the optimal 
solution) are linearly independent ensures the above property. Eq 4 ensures that the 
coefficients for all regulatory relationships not present in the network are forced to 
zero. In this constraint, maxmin  and jiji ΩΩ  are the lower and upper bounds respectively 
on the values of regulatory coefficients. Eq 5 imposes the constraint that each 
regulatory interaction, if it exists, may assume only a single value of time delay 
associated with it while Eq 6 limits iN , the maximum number of regulatory inputs 
to gene i.  
 



 

 

The proposed framework has a number of key advantages. The basic linear model 
with no time delay is a special case of the proposed model. It can be recovered by 
including the following constraints.  

0,,...,2,1,  0 >=∀= ττ NjiY ji      (9)  
Additional environmental stimuli may be incorporated by introducing an additional 
node that describes the influence of the stimulus into the network. Furthermore, 
various biologically relevant hypotheses can be tested by translating them into 
either additional/alternative constraints or objective functions. For example, one of 
the hypotheses recently proposed, concerns the robustness of gene regulatory 
networks, defined as the ability of these networks to effectively tolerate random 
fluctuations in gene expression levels [23, 24]. Within the context of the linear 
model, this translates into having small values of the regulatory coefficients τω ji  so 
that small variations in the expression levels of gene j have a small impact on the 
rate of change of expression of gene i.  

 
 From a statistical perspective, the proposed framework can be used to capture the 
trade-off between degree of model fit and the number of model parameters. By 
systematically varying the number of maximum regulatory inputs to a particular 
gene and computing the resulting minimum error, a trade-off curve between 
accuracy and model complexity can be generated. This curve provides an 
appropriate means for determining the critical number of regulatory inputs above 
which the model is tending towards over-fitting of data. 

 
In a system with N genes, there will be )1( max2 +τN  binary variables implying a 

total of )1( max2
2 +τN  possible alternatives for the network connectivity. Even for a 

relatively small network inference setting it is computationally expensive to conduct 
an exhaustive search through these alternatives. The computational requirements 
can be reduced, to a certain extent, by exploiting the decomposable structure of the 
proposed model. This is achieved by recognizing that the model can be solved for 
each gene i separately without any loss of generality. Note, however, that this model 
structure is lost if an overall maximum connectivity constraint is imposed in the 
same spirit as the individual gene maximum connectivity constraint (Eq 6). In 
addition to improved computational performance, another key advantage of the 
decomposable property is that it limits the amount of computational resources that 
need to be expended if only a sub-network involving a sub-set of the genes is to be 
inferred. 
 
The key parameters that determine the computational complexity of the proposed 
model are the bounds maxmin , jiji ΩΩ imposed on the regulatory coefficients in Eq 4. 
While in certain special application settings, there are pre-specified upper and lower 



 

 

bounds that are part of the model, in contrast, in our proposed model, these bounds 
are not known a priori. For such cases, typically the “Big-M” approach is utilized 
whereby arbitrarily large/small bounds are imposed [25]. Such a simplistic approach 
circumvents the need to determine tight valid bounds, although, at the expense of 
much higher computational requirements. On the other hand, if tight invalid bounds 
are specified, the computational gains realized will be off-set by the inability to 
attain the global optimal solution. In light of this trade-off between computational 
requirements and quality of optimal solution, a sequential bound relaxation 
procedure is developed and described next. As a starting point for this procedure, 
for a given gene *i , both the upper and lower bounds are fixed such that 

||  || maxmin
** ijij ΩΩ = = 0

*ij
Ω . The initial value of the bound is selected based on the 

scaling of the expression values. Specifically, for gene j, this initial bound value is 
determined as a value proportional to the ratio of the order of magnitude of the 
derivative values and that of the expression values. Subsequently, given these 
bounds, the inference model is solved to obtain the optimal values of the regulatory 
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followed by re-optimization of the model with these updated bounds. Since the 
relaxation of bounds leads to a larger feasible solution, it is guaranteed 
that )()( 01

****
ijij ii EE ΩΩ ≤ . These two steps of bound relaxation and optimization 

are repeated until the total absolute error for gene *i reduces to/below the desired 
tolerance level. This procedure is then repeated for all the genes in the network until 
the entire (or a sub-set) network topology has been inferred.   

3 Results and Discussion 

To highlight and test the inference capabilities of the proposed model, it is applied 
to two different data-sets. Data set 1 (40 genes, 8 time points) is generated in 
numero by assuming known time delay in the system dynamics. The ability of the 
inference procedure to uncover an a priori known target network as well as the 
computational performance of the model is studied by employing this data set. 
Subsequently, a real microarray data-subset (24 genes, 9 time points) is analyzed to 
highlight the applicability of the inference procedure to data derived from real 
biological systems. 



 

 

3.1 Data set 1 

The expression data for the 40 gene network is generated by assuming that 6 genes 
have 3 regulatory inputs, 10 genes have 2 regulatory inputs, while the remaining 
genes have a single regulatory input. 33 interactions are designed to have a time 
delay of zero, 21 have a time delay of one and 9 have a time delay of two time 
points. Given this topology of the regulatory network, gene expression values are 
computed for each one of the 40 genes at 8 time points. The derivatives are 
computed by employing forward difference. The starting value for the bound for 
each gene is set to 1.0 and a bound increment value 0.1=iδ  is employed for 
computation. The assumed network constituted 63 interactions with known 
regulatory weights and time delays associated with these interactions.  

 
The original network, in terms of all 63 regulatory interactions and the associated 
regulatory weights and time delays, is perfectly recovered by solving the proposed 
model with time delay. The optimization model is solved using the CPLEX solver 
accessed via the GAMS modeling environment. The CPU time needed to recover 
the original regulatory inputs for each gene is shown in Figure 1(a) while the 
distribution of total number of sequential bound relaxation iterations required is 
shown in Figure 1(b).  
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Figure 1: Comparison of computational performance for the model with and without time delay. (a) 
Total CPU time required for each of the 40 genes in the network (b) Distribution of the total number of 

sequential bound relaxation procedure iterations.  
 
Specifically, 9,505 CPU seconds (on an IBM RISC 6000 machine) are required for 
the 86 iterations. In addition to the model with time delay, network inference is also 
carried out by neglecting time delay. This is achieved by including Eq 9 in the 
inference model Eq 2-8. The model without time delay provides the appropriate 
benchmark for systematically highlighting the gains, if any, that are realized by 
accounting for time delay. The computational results for the two models are 
contrasted in Figures 1(a) and 1(b). For the model without time delay, a total of 
4696 CPU seconds are expended for the 227 iterations that are needed to infer a 



 

 

network with zero error. However, even though the model without time delay is 
able to fit the data perfectly with relatively lesser computational resources, it is 
unable to identify the assumed target network in terms of the network topology and 
regulatory parameters. In addition, as expected, the number of parameters required 
increases significantly for the model without time delay. In particular, 121 
regulatory relationships are inferred by the model without time delay, implying an 
almost two-fold increase in the number of parameters needed over the model with 
time delay.  

3.2 Data Set 2 

The second microarray data set analyzed consisted of time course expression 
profiles of 24 genes of Bacillus subtilis subjected to an amino-acid pulse in minimal 
media. Gene expression is measured using Affymetrix GeneChip arrays at 0, 8, 
13, 18, 28, 38, 68, 118 and 178 minutes. The amino-acid pulse is introduced for 8 
minutes at the start of the experiment. Subsequently, cubic splines are used to 
interpolate the expression data and the derivatives are computed by employing a 
local finite difference approximation at each of the time points. The model with 
time delay is used to infer the regulatory network. The trade-off curve between error 
and the maximum number of parents is shown in Figures 2(a) and 2(b) for both the 
model with and without time delay. Note that the maximum number of parents 
determines the number of parameters available for fitting. In accordance with the 
results obtained for data set 1, Figure 2 highlights the fact that for any imposed 
threshold error tolerance value, the model with time delay infers a network which is 
sparser.  
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                                                 (a)                                         (b) 
Figure2: Trade-off between number of model parameters and quality of fit (a) Model with time delay (b) 

Model without time delay.  
 

The inferred regulatory relationships are shown in Figures 3 and 4. The proposed 
model is able to identify a number of regulatory relationships that have been 
previously reported in literature. Jin et.al [26] have hypothesized the existence of 
regulatory relationship between citH and genes involved in aspartate production 
(nadB and purA). The inferred regulatory network identifies a potential indirect 



 

 

mechanism for these regulations mediated by pycA and odhB (Figure 3). Miller et.al 
[27] have reported that genes sdhA and citG might share a common regulatory 
mechanism. The inferred network indicates that genes involved in glycine, serine 
and threonine (yqhIJ) metabolism regulate both citG and sdhC, which is a part of 
the sdhCAB operon. These results highlight the capability of the proposed inference 
framework to capture biologically plausible regulatory interactions. 
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Figure 3: Regulatory network inferred by the model with time delay for the selected 24 genes of Bacillus 

subtilis (green: activation; red: inhibition; Threshold Error Tolerance of 10.0%) 
 

 
Figure 4: Time delays associated with the inferred regulatory relationships (black: τ = 0, pink: τ = 

1, blue: τ = 2) 
 



 

 

Figure 5 shows the additional variance explained for data-set 2 as the number of 
parents is varied. In addition to the real data set, the additional variance explained 
for random data is also shown in Figure 5. Specifically, the randomized data is 
obtained by permuting the rows and columns of the expression matrix such that any 

underlying structure of the data is 
lost while the scaling of the data is 
retained. The results of Figure 5 
indicate that the model with time 
delay is able to discriminate 
between real and randomized data 
only when the maximum number 
of inputs allowed is either 4 or 5. 
For relatively small number of 
inputs (1,2 and 3), the model is 
unable to capture the underlying 
structure of the real data due to 

lack of sufficient number of parameters. Similarly, at the other extreme, when too 
many parameters are made available (6 and 7), the model starts tending towards 
over-fitting leading to the overlap between real and randomized data. A clear 
separation between the two data sets is realized only in the intermediate range of 
inputs (4 and 5). These results highlight the capabilities of the proposed modeling 
and solution framework in not only accounting for key system dynamics such as 
time delay but also gaining deeper insights into the topological features of 
regulatory networks.  

4 Summary and Conclusions 

In this work, an optimization based modeling and solution framework, for 
incorporating time delay in transcriptional regulations was proposed. The proposed 
model used the existing linear model as a benchmark and employed boolean 
variables to incorporate discrete time delay into the interactions. Since, the system 
of equations describing the interactions is underdetermined and consequently has a 
family of solutions that fit the data equally well, various properties of biological 
networks such as sparseness, and uniqueness of time delay were employed to search 
through the solution space. A number of key advantages of the model in terms of 
examining the impact of alternative objective functions, incorporating known 
biological interactions and including environmental stimuli were discussed. On the 
computational front, however, the proposed model formulation was NP-hard 
implying that the computational requirements increase exponentially with the model 
size. To alleviate this problem, a sequential bound relaxation procedure was 
proposed. The inferential potential of the proposed methodology was determined by 
applying it to an in numero data set and a real expression data set. Results for the in 
numero data set confirmed the fact that neglecting time delay in a system a priori 

Figure 5: Additional variance explained 
by including time delay for real and 

randomized data.
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known to be characterized with it results in a significant increase in the number of 
parameters needed to describe the system dynamics. Subsequently, application of 
the model to real microarray data uncovered numerous regulatory relationships with 
time delay suggesting that time delay is ubiquitous in gene regulation. In the spirit 
of the results obtained for the first data set, inclusion of time delay resulted in 
inferred networks that were sparser. In addition, analysis of the amount of variance 
in the data explained by the model revealed that the proposed methodology 
explained more variance in real data as compared to randomized data.  
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