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For determining the structure class and fold class of Protein Structure, computer-
based techniques have became essential considering the large volume of the data.
Several techniques based on sequence similarity, Neural Networks, SVMs, etc have
been applied. This paper presents a framework using the Tree-Augmented Net-
works (TAN) based on the theory of learning Bayesian networks but with less
restrictive assumptions than the näıve Bayesian networks. In order to enhance
TAN’s performance, pre-processing of data is done by feature discretization and
post-processing is done by using Mean Probability Voting (MPV) scheme.
The advantage of using Bayesian approach over other learning methods is that
the network structure is intuitive. In addition, one can read off the TAN struc-
ture probabilities to determine the significance of each feature (say, Hydropho-
bicity) for each class, which help to further understand the mystery of pro-
tein structure. Experimental results and comparison with other works over two
databases show the effectiveness of our TAN based framework. The idea is im-
plemented as the BAYESPROT web server and it is available at http://www-
appn.comp.nus.edu.sg/∼bioinfo/bayesprot/Default.htm.

1 Introduction

In proteomics, finding the structure and the fold of a protein is very important
since it helps to understand the functions, the catalytic and the structural
roles of proteins. Protein structure can be determined experimentally by X-
ray diffraction and NMR techniques. These methods are expensive, tedious,
labor intensive and have their own limitations. This leads to the research in
predicting the protein folding pattern, given only its primary structure 6. This
computational way of protein structure prediction can be classified into two
general types 9.



1. Homology methods:
a) Sequence Similarity Methods: These methods are based on the ob-
servation that two proteins have very similar structure if their sequences
have high homology 3.
b) Threading Methods: These methods predict the structure of a protein
sequence by aligning with a known structure. 12.

2. Discriminative Methods: These methods extract some general “rules”
from the known protein structures and applies the “rules” to a new pro-
tein sequence to make the prediction 16.

Sequence similarity has its limitation as it can apply only to those se-
quences which are similar in term of both sequences and structures 3. Several
discriminative methods based on statistical techniques, neural networks and
SVMs have been applied in the past. The main difficulty in applying learn-
ing(discriminative) methods is, the folding prediction becomes less accurate
with increasing number of classes. This study hopes to solve this issues using
the Bayesian classifier framework.

Bayesian classifier theoretically is the best classifier provided the under-
lying distribution functions are well estimated 7. However, Bayesian classi-
fier requires a prior knowledge of many probabilities. This paper designs a
framework called BAYESPROT with discretization of feature space and Tree-
Augmented Network (TAN) Bayesian classifier as foundation to address the
problem of structure and fold classification from database. In addition, Mean
Probability Voting (MPV) method is employed to improve the performance.

For the prediction in this paper,we use the protein classification type in
SCOP 22 database, that is, proteins are classified in hierarchical order of
structures, folds, super families and families. Since finding the structural and
the fold class is more significant, in this paper we applied our classification
system to classify a protein into different structural and fold classes.

2 Review

Recently, machine learning tools have been largely used in the classification
based on tertiary super classes. These methods are denoted as discriminative
methods or data mining approaches. Since no direct relationship between se-
quence and structure are derived, much attention paid on statistical or machine
learning techniques to classify the proteins using feature vector representations
of available knowledge. Dubchak et al 1995, 1999 5,6 conducted the classifica-
tion studies based on neural networks. Ding and Dubchak I (2001) 4 classified
the proteins into 27 fold classes using SVMs and neural networks based on three



multi-classification methods (OvO, uOvO, AvA) and concluded that SVM’s
performance is better than Neural networks. Their study introduces SVM to
the protein classification problem. The accuracy measurement in their method
assumes that the prediction is partially correct when ties exist(for ours, we as-
sume the prediction fail). Also their method uses large number of classifiers.
Cai et al.(2001) 19 used SVMs to classify the proteins into four major protein
classes and compared the results with component coupled with neural network.
Edler et al. (2001) 8 conducted a statistical study based on logistic regres-
sion, additive models, and projection pursuit on protein fold prediction with a
dataset containing 268 proteins. Markowetz et al.(2003) 9 used Gaussian and
various polynomial kernels based on SVMs and showed that their approach
performed better than the work in 8. From all these studies it is evident that
among all the prediction methods, SVM performs better.

Though most works recently showed that SVMs have good generalization
property and outperforms statistically than Neural network methods for the
protein fold prediction, SVM methods are reported to result in high number of
‘false positives’4. Besides, the number of binary classifiers is numerous and the
computational time for the SVM training is high when the number of classes
is large. It has also been shown that SVMs performances vary with change
in dimensions of the feature vector and SVM methods might require feature
selection 1. Therefore, alternative method of learning are sought which might
not have some of these defaults.

3 Overview of BAYESPROT

Figure 1 shows the overview of the BAYESPROT system. Given a database
of several millions of protein sequences, their attributes are extracted and
transformed into features, namely, composition (20), secondary structure (21),
hydrophobicity (21), polarity (21), polarizability (21), and Van Der Waals
Volume (21).

After the feature vector extraction, the values of features were discretized
to four discrete states by frequency discretization method. Three separate
TAN Bayesian classifiers were constructed using all concatenated feature vec-
tors (126), composition feature vectors (20), and secondary structure feature
vectors (21) respectively. The previous research and our experiments suggest
that, amongst all the attributes, composition and secondary structure features
are the most important for the protein structure prediction. Hence, we con-
struct the TAN classifiers for composition and secondary structure separately
and chose only these two to reduce the complexity. Next MPV is employed to
predict the structural class. A similar procedure is required to classify the fold
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Figure 1: Architecture of BAYESPROT

class as shown in the Figure 1.

4 Dataset and feature vector representation

We used the datasets referred in two prominent recent works: Ding and
Dubchak (2001) 4 and Markowetz et al.(2003) 9. Summary of the two datasets
(Dataset I and Dataset II) is tabulated in Table 2.

4.1 Dataset I

Dataset I used in our study was originally built for the study of 5 and later
used by 4. Both studies confirm that the dataset is reasonable as it is based
on the PDB select sets where two proteins have no more than 35% of the
sequence identity for sequences longer than 80 residues. Dataset I is available
at http://www.nersc.gov/∼cding/protein/.

4.2 Dataset II

Dataset II was built from the Database for expected Fold-Classes (DEF) for
the statistical study 20. Markowetzet et al.(2003) 9 used this dataset and
concluded that SVM was better than previous statistical studies. Dataset II
is available at http://www.dkfz.de/biostatistics/protein/gsme97.html.



4.3 Feature Vectors or Global Descriptors of Amino Acid Sequence

To apply machine learning algorithm, we have to turn the amino acid sequence
of heterogeneous length into feature vector of homogeneous length. This fea-
ture vector construction is based on physical and stereo chemical properties of
amino acids. This method was used and explained in 5 and 6. Each protein
sequence is represented by a set of six attribute feature vectors. Composition
feature vector of length 20, which lists out the proportion of the 20 amino
acids, is constructed in a straightforward manner. Apart from composition,
the other attributes used are predicted secondary structure, polarity, polariz-
ability, hydrophobicity and Van der Waals volume.

Except composition, feature vectors for the above five attributes are con-
structed in two steps.

Step1: For each attribute, twenty amino acids are divided into three groups,(see
Table 1). For each protein sequence, every amino acid was replaced
by the index 1, 2, or 3 depending on its grouping. For example pro-
tein sequence KLLSHCLLVTLAAHLPAEFTPAV will be replaced by
13322333323222322132232 based on the attribute hydrophobicity divi-
sion of amino acids(see Table 1).

Step 2: For each converted sequences calculated in step1 three descriptors
“composition” (C), “transition” (T), and “distribution”(D), are calcu-
lated based on the definition given below.

Composition: Composition is calculated for each group based on the
simple formula, Ci =((ni)/L)∗100; where Ci represents the percent
composition of each groupi, where ni represents total number of
groupi residues in the sequences, and L represents the length of the
sequence.

Transition: Transition (Tij) is represented by the percent frequency
with which groupi is followed by groupj or groupj followed by
groupi where i, j takes the values 1, 2 and 3.

Distribution: Distribution descriptor D consists of the five numbers for
each of the three groups: the fractions of the entire sequence, where
the first residue of a given group is located, and where 25%, 50%,
75%, and 100% of those are contained.

Each attribute the feature vector contains 21 features: 3 composition fea-
tures, 3 transition features and 5* 3 distribution features. Feature vector is of
length 126 which is constructed by concatenating 21 all 5 attribute vectors of



Table 1: Amino acid attributes and corresponding groups.

Attribute Group 1 Group 2 Group 3

secondary structure Helix Strand Coil

Hydrophobicity Polar Neutral Hydrophobic
R,K,E,D,Q,N G,A,S,T,P,H,Y C,V,L,I,M,F,W

Polarizability (0-2.78) (2.95-4.0) (4.43-8.08)
G,A,S,C,T,P,D N,V,E,Q,I,L M,H,K,F,R,Y,W

Polarity (4.9-6.2) (8.0-9.2) (10.4-13.0)
L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D

Van der Waals volume (0-0.108) (0.128-0.186) (0.219-0.409)
G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

length 105 (5*21=105), amino acid composition vector of length 20 and the
sequence length of length 1.

5 Our Framework

5.1 Discretization

In our dataset, the feature vectors are of continuous nature. Though the
Bayesian classifier supports both continuous and discrete probability distribu-
tions 11, it was experimentally found that the continuous probability distribu-
tion was not suitable for these datasets. Therefore, we pre-processed data by
converting the continuous attribute data to discrete attribute data. One pop-
ular and simple discretization approach is range discretization. However, in
range discretization, some of the discretized partitions become over-populated
while others remain empty leaving to poor discretization. In order to avoid
this problem, we employ frequency-based discretization which partitions the
attributes into intervals each containing almost same number of instances.
Several frequency based discretization methods were employed with ‘3’ inter-
vals, ‘4’ intervals, ‘5’ intervals, ‘7’ intervals and ‘10’ intervals. By experiment,
method with ’4’ intervals yielded better classification performance than other
methods and it was chosen.

5.2 TAN Bayesian Classifier

Bayesian Networks are directed acyclic graphs which combine both statistical
and graph theory for representing conditional independencies 10. A directed
edge A −→ B indicates the causal relationship (A causes B) and thus Bayesian



networks are quite intuitive. Optimal classifications can be achieved by reason-
ing about these probabilities along with observed data 14. The classification
is done by applying Bayes rules to compute the probability of a class C given
the particular instance of attributes A1, . . . , An and then predicting the class
with the highest probability.

Structural relationship among the attributes is important for the Bayesian
network classifier to construct the relationship amongst various nodes. How-
ever, no clear structural relationship is known at present due to the nature of
problem. Structural learning is not possible with present database. Therefore,
we chose TAN Bayesian classifier 13,15 rather than Bayesian network classifier
as it is more relevant to the problem considering the feature vector properties
and relations.

TAN Bayesian Classifier is an extension of näıve Bayesian classifier. Sim-
ilar to näıve Bayesian classifier, TAN consists of a class node connecting to
all child nodes each representing a feature. Moreover, each child node can has
at most one other feature node as parent. Attractive property of the TAN
Bayesian classifier is that it learns the probabilities from the data in polyno-
mial time. For our case, we create a TAN Bayesian classifier which has a class
node representing the protein structure/fold classes and connected to 126 child
nodes for 126 feature vectors. In addition, it is assumed that composition node
Ci has structural relationship with Ci+1 , each attribute percent composition
and each distribution vector has structural relationship. Three TAN Bayes
classifiers have been constructed for the concatenated feature vectors of length
126, composition feature vectors of length 20 and secondary structure feature
vectors of length 21 respectively. TAN Bayes classifier has been defined in the
given equation where α is normalization constant.

P (Class|A1, . . . , An) = α · P (Class) ·Πn
i=1P (Ai|parents(Ai)) (1)

5.3 Mean Probability Voting

Let Pi , PCi and PSi for i = 1, 2, . . . , k be the marginal probabilities from the
TAN Bayesian classifiers which uses length 126 concatenated feature vectors,
length 20 composition feature vectors and length 21 secondary structure feature
vectors , respectively where ’k’ represents the number of classes. Then mean
probability MPi, for i = 1, 2, . . . , k is calculated by taking average of Pi , PCi

and PSi. The prediction of structural/fold class was done by selecting the
class which has the highest mean probability (MP). It is accepted from the
previous studies that composition 9 and secondary structure 6 are important
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Figure 2: TAN Bayesian Classifier

Table 2: Structural and Fold Classification Results of BAYESPROT.

Dataset Number No. of Proteins No. of Proteins Test Data Cross Validation
of Classes in Train Data in Test data Accuracy(%) Accuracy (%)

Structural Classes
Dataset I 5 313 385 80.52 83.09
Dataset II 4 143 125 77.6 79.85

Fold Classes
Dataset I 27 313 385 58.18 59.77
Dataset II 42 143 125 74.40 75.75

in deciding the protein structures. And in our experiment, voting increased
the accuracy by around 4%.

6 Experimental Results

6.1 Results

Both structural and fold classifications have been done using BAYESPROT
with dataset I and dataset II. Table 2 summarizes the results of both dataset.
Evaluation of classifier is done by testing with independent test dataset and
10-fold cross validation. In Dataset I, 27 fold classes used are from the struc-
tural classes α, β, α/β, α +β, small and in Dataset II, 42 fold classes used are
from the structural classes α, β, α/β,and α + β.

For dataset I structural classes, the confusion matrix is shown in Table 3
while the sensitivity and the specificity for five structural classes are shown in
Table 4. Except α + β super class, all other super classes are predicted with
sensitivity greater than 70%.

From confusion matrix for structural classifier it is evident that a signifi-
cant number of proteins of ‘α + β’ class are misclassified in ‘α’ and ‘β’ classes.
Similarly, some ‘β’ class proteins are misclassified in ‘α/β’. Specificity of each



Table 3: Confusion Matrix for Super Classifier (Dataset I)

Predicted α β α/β α + β Small
Actual

α 49 6 2 4 0
β 6 91 16 4 0

α/β 4 5 132 4 0
α + β 8 8 4 14 1
Small 0 5 0 1 24

Table 4: Sensitivity and Specificity for each class (Dataset I)

Class Sensitivity (%) Specificity (%)

Structural α 80.33 94.44
β 77.78 92.16

Classes α/β 91.03 90.83
α + β 40.00 96.29
Small 88.89 99.72

Fold Average of 50.89 61.76
Classes 27 classes

structural class is very high compared to sensitivity. Confusion matrix and
individual accuracy tables for Database II structural classes are available in
the webpage http://www.comp.nus.edu.sg/∼bioinfo/bayesprot/results.htm.

From the experiment, it can be concluded that BAYESPROT classified six
fold classes with accuracy greater than 60% and predicted 15 fold classes with
accuracy greater than 50% in dataset I. Average specificity of 27 fold classes
is 61.76% which is higher than average sensitivity 50.89%. Confusion matrix
and detailed results for 27 fold classes and 42 fold classes are available in the
webpage http://www.comp.nus.edu.sg/∼bioinfo/bayesprot/results.htm.

7 Analysis and Discussions

7.1 Dataset I: Comparison with Ding and Dubchak(2001)

In Ding and Dubchak 4 study, they used One-Versus-Others(OvO), Unique-
One-Versus-Others(uOvO) or All-Versus-All(AvA) methods for multi classifi-
cation which used binary SVM or Neural networks as building blocks.

Table 5 summarizes the result of 27 fold classes by BAYESPROT and
SVM 4. In 10-fold cross-validation study accuracy of 59.77% is achieved by
BAYESPROT which is 31.57% higher than SVM AvA method. The number



Table 5: Comparative Results of BAYESPROT and SVM with Dataset I

Test Dataset Cross Validation

Methods BAYES SVM SVM SVM BAYES SVM
PROT OvO uOvO AvA PROT AvA

Accuracy (%) 58.8 41.8 45.2 56.0 59.77 45.4

No. of 3 TAN 168 2457 2106 30 TAN 84,240
Clfrs. Bayes Binary Binary Binary BAYES Binary
Used Clfrs. SVM SVM SVM Clfrs. SVM

Clfrs. Clfrs. Clfrs. Clfrs.

of classifiers used for this cross-validation study is 10*3 (=30) TAN Bayesian
Classifier, which is substantially less than the number of classifiers in SVM
AvA where 84,240 binary SVM classifiers were employed.

It is important to note that the accuracy measurement used in our study
and 4 are different by the way of calculating the number of proteins correctly
classified by the classifier. In the method by 4, if the output for the three top
classes C1, C2 and C3 are 2, 2 and 1 respectively by voting results and the
correct class is C2, then the number of correctly predicted protein is counted
as 0.5 in their work. However, our work considers such a case to be a misclas-
sification and we do not increment the number of true positives. Thus, the
superiority of BAYESPROT method over SVM can be observed.

Another thing to be considered is that the number of classifiers used in
SVM and Neural networks is much higher than BAYESPROT. Learning com-
plexity of SVM depends on the number of iterations and in many cases the
learning complexity is quite high. But in BAYESPROT, since the dataset is
complete and structure is known, the time required to learn the parameters is
very less. In addition, the number of classifiers used in Bayesian network is
substantially less than SVM as can be seen in Table 5.

7.2 Dataset II: Comparison with Markowetz et al.(2003)

Dataset II consists of 42 fold classes, 143 training proteins and 125 test proteins.
In 9 study OvO SVM multi classification method was employed and achieved
a high accuracy of 76.8% among various kernel for the test dataset and 70.9%
for cross-validation.

Table 6 summarizes the BAYESPROT and SVM results. Distribution of
number of proteins in all classes is quite less in dataset II which is not the
case with dataset I. Out of 42 fold classes, 36 classes have proteins less than
or equal to 4 in training dataset.



Table 6: Comparative Results of BAYESPROT and SVM with Dataset II

Test Dataset Cross Validation
Methods BAYES SVM SVM SVM BAYES SVM SVM SVM

PROT RBF Poly1 Poly2 PROT AvA Poly1 Poly2
kernel kernel kernel kernel kernel kernel

Accuracy 74.40 76.8 71.2 68 75.75 69.8 70.9 65
(%)

No. of 3 TAN 42 42 42 30 TAN 420 420 420
Clfrs. Bayes Binary Binary Binary BAYES Binary Binary Binary
Used Clfrs. SVM SVM SVM Clfrs. SVM SVM SVM

Clfrs. Clfrs. Clfrs. Clfrs. Clfrs. Clfrs.

7.3 Effects of Large number of Training Samples

Cross validation is a method to estimate the generalization error of a given
model. We conducted 10 fold cross validation study to estimate the general-
ization error and to compare with previous SVM methods. From Table 5 and
Table 6, it is clear evident that after performing cross validation over dataset
I and dataset II, accuracy in BAYESPROT increases while the accuracy in
SVM method decreases.

7.4 Interpreting the Classification Results

Analyzing the classification results is very important for solving biological prob-
lems. The biologists need to know the confident level of the resultant classes
outputted by the classifiers for further analysis. Understanding the marginal
differences between top predicted classes is also important in further confirm-
ing the structural class of the protein. Our classification approach supports
this type of interpretations, as it gives the probability for each class.

This kind of interpretation is not possible in neural networks and difficult
in SVM. Neural networks contain many hidden nodes and final output is based
on threshold value. In SVM, as the number of classifiers is high, reading the
distances between hyper plane and the classes are very difficult.

8 Conclusions and future work

In this paper, we presented a framework based on TAN and voting method
that is shown to perform better than SVM on most cases. Since the network
structure and the probabilities are well understood, the BAYESPROT frame-
work also has several theoretical advantages relevant to biology researchers
and thus it is a better tool for analyzing protein sequences. Further research
is being carried out for incorporating better network structure than TAN to
improve the performance.
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