Protein Threading by Linear Programming
J. Xu, M. Li, G. Lin, D. Kim, Y. Xu

Pacific Symposium on Biocomputing 8:264-275(2003)

PROTEIN THREADING BY LINEAR PROGRAMMING

JINBO XU, MING LI
Department of Computer Science, University of Waterloo,
Waterloo, Ont. N2L 3G1, Canada, {j3tu,mli} @math.uwaterloo.ca

GUOHUI LIN
Department of Computer Science, University of Alberta
Edmonton, Alberta, T6G 2E8, Canada, ghlin@cs.ualberta.ca

DONGSUP KIM, YING XU
Protein Informatics Group, Life Science Division and Computer Sciences and
Mathematics Division,

Oak Ridge National Lab, Oak Ridge, TN 37831, USA, {afg,xyn} @ornl.gov

Protein three-dimensional structure prediction through threading approach has
been extensively studied and various models and algorithms have been proposed.
In order to further explore ways to improve accuracy and efficiency of the threading
process, this paper investigates the effectiveness of a new method: protein thread-
ing via linear programming. Based on the contact map model of protein 3D struc-
ture, we formulate the protein threading problem as a large scale integer program-
ming problem, then relax to a linear programming problem, and finally solve the
integer program by a branch-and-bound method. The final solution is optimal with
respect to energy functions incorporating pairwise interaction and allowing variable
gaps. The algorithm has been implemented as software package RAPTOR — RApid
Protein Threading predictOR. Experimental results for fold recognition show that
RAPTOR significantly outperforms other programs at the fold similarity level. The
RAPTOR webserver is at http://www.cs.uwaterloo.ca/ j3xu/RAPTOR form.htm

1 Introduction

The Human Genome Project has led to the identification of over 30 thousand
genes in the human genome, which might encode, by some estimation, 100,000
proteins as a result of alternative splicing. To fully understand the biological
functions and functional mechanisms of these proteins, the knowledge of their
3-D structures is required. The ambitious Structural Genomics Initiatives,
launched by NIH in 1999, intends to solve these protein structures within
the next ten years, through the development and application of significantly
improved experimental and computational technologies.

A protein structure is typically solved using z-ray crystallography or nu-
clear magnetic resonance spectroscopy (NMR), which are costly and very time-
consuming (ranging from months to years per structure) and is quite difficult
for high-throughput production. The overall strategy of the NIH Structural

Genomics Initiatives is to solve protein structures using experimental tech-
niques like x-ray crystallography or NMR only for a small fraction of all the
proteins and to employ computational techniques to model the structures for
the rest of the proteins. The basic premise used here is that though there could
be millions of proteins in nature, the number of unique structural folds is prob-
ably 2-3 (or even more) orders of magnitude smaller. Hence by strategically
selecting the proteins with unique structural folds for experimental solutions,
we can put the vast majority of other proteins “within the modeling distance”
of these proteins. Model-based structure prediction techniques could play a
significant role in helping to achieve the goal of the Structural Genomics Initia-
tives. Protein threading represents one of the most promising such techniques.

Protein threading can be used for both structure prediction and protein
fold recognition, i.e., detection of homologous proteins. Numerous computer
algorithms have been proposed for protein structure prediction, based on the
threading approach. Based on the energy function models and computational
methods, they can be grouped into three classes:

(1)The energy function does not include the pairwise interaction prefer-
ences explicitly. For this kind of model, a simple dynamic programming is
employed to optimize the energy function. GenTHREADER! is a typical ex-
ample. The prediction speed is fast, but theoretically, the prediction accuracy
is worse than those incorporating pairwise interactions.

(2)The energy function includes the pairwise interaction preferences. How-
ever, it has been proved that this problem is NP-hard when variable gaps and
pairwise interactions are considered simultaneously 2. Some kinds of approx-
imation algorithms are used to optimize the energy function. These meth-
ods include double dynamic programming?, frozen approximation®, and Monte
Carlo sampling algorithm®. Unfortunately, T. Akutsu have proved that this
problem is MAX-SNP-hard®, which means that it cannot be approximated to
arbitrary accuracy in polynomial time.

(3)The energy function includes the pairwise interaction preferences and
an exact algorithm is designed to optimize the energy function. Xu et al.
have proposed a divide-and-conquer method” which runs fast on simple protein
template (interaction) topology but could take a long time for proteins with
dense residue-residue interactions. In addition, this approach does not treat
the following two special features explicitly: (i) interaction significance could
be different from residues to residues; and (ii) interaction potentials could be
heavily correlated with other non-pairwise scores such as mutation scores and
fitness scores.

Our main focus in this paper is on the development of a globally optimal
and practically efficient threading algorithm based on the alignment model

incorporating the pairwise interaction preferences explicitly and allowing vari-
able gaps by using the integer programming approach. Integer programming
formulation can fully exploit the abovementioned two special features of the
pairwise interaction preferences. It allows us to use the existing powerful lin-
ear programming packages together with some branch and bound algorithm
to rapidly arrive at the optimal alignment. To our knowledge, this is the first
time that integer programming is applied to protein threading.

2 Alignment Model

We represent the amino acid sequence, of length m, of a protein template by
tity ...ty and the query sequence, of length n, by sis2...s,. In formulat-
ing the protein threading problem, we follow a few basic assumptions widely
adopted by the protein threading community ”. We assume that:

(1) Each template consists of a linear series of cores with the connecting
loops between the adjacent cores. Each core is a conserved segment of an a-
helix or f-sheet secondary structure among the protein’s homologs. Although
the secondary structure is often conserved, insertion or deletion may occur
within a secondary structure. So we only keep the most conserved part. Let
¢; = core(head;,tail;) denote all cores of one template, where i = 1,2,..., M
with M being the number of the cores, and 1 < head; < tail; < heady <
taily < ... < headpyr < tailpr < m. The region between tail; and head;y; is a
loop. The length of ¢; is len; = tail; — head; + 1. Let loc; denote the sum of
the length of all cores before ¢;, i.e., loc; = E;_:ll len;.

(2) When aligning a query protein sequence with a template, alignment
gaps are confined to loops, i.e., the regions between cores or the two ends of
the template. The biological justification is that cores are conserved so that
the chance of insertion or deletion within them is very little.

(3) We consider only interactions between core residues. It is generally
believed that interactions involving loop residues can be ignored as their con-
tribution to fold recognition is relatively insignificant. We say that an interac-
tion exists between two residues if the spatial distance between their C', atoms
is within 7TA and they are at least 4 positions apart in the template sequence.
We say that an interaction exists between two cores if there exists at least one
residue-residue interaction between the two cores.

Our threading energy function consists of environment fitness score Fj,
mutation score FE,,, secondary structure compatibility score F;s, gap penalty
E, and pairwise interaction score FE,. The overall energy function E has the
following form:

E =Wy Ep + W,E, + W, E, + WyE, + W, E,,,

where W,,, W, W, W,, W, are weight factors to be determined by training.

Global alignment and global-local alignment methods are employed to
align one template to one sequence. For the detailed description, please refer
to Fischer’s pape®. In the case that the template size is larger than the query
sequence size, it is possible that some cores at the two ends of the template
cannot be aligned to the sequence. But we can always extend the sequence by
adding some “artificial” amino acids to the two ends of the sequence to make
all cores are aligned to the (extended) sequence. All scores involving those
extended positions are set to be 0.

3 Formulation

Definition 3.1 We use an undirected graph CMG = (V, E) to denote the
contact map graph of a protein template structure. Here, V. = {c1,¢a,...,cpr}
where ¢; represents i'" core, and E = {(c;, cj)|there is an interaction between
¢; and c;, or |i — j| = 1}.

For simplicity, when we say that core ¢; is aligned to position s;, we always
mean that core ¢; = (head;, tail;) is aligned to segment (s;,5;4ien;—1). In order
to speed up the search, RAPTOR employs some knowledge-based filtering
process proposed in PROSPECT that indicates certain alignments as invalid.
Definition 3.2 Let B denote the alignment bipartite graph of one threading
pair. FEach core of the template corresponds to one vertex in B, labeled as
ci(i = 1,2,..., M), each residue in the query sequence corresponds to one
vertez in B, labeled as sj(j = 1,2,...,n). The edges of B consist of all valid
alignments (after initial filtering) between each core and each sequence position.
The edges of B are also called the alignment edges.

Definition 3.3 For any two different edges e1 = (c;,,5;,) and ex = (¢, 55,)
in an alignment bipartite graph B, if (loc;, —loc;,) x (s, +loc;, —loc;, —s;,) < 0,
then we say e1 and ey are in conflict.

The proof of the following three lemmas is omitted due to space limit.
Lemma 3.1 For any three different edges e, = (ci.,s;.), ¥ = 1,2,3 and
loc;, < loc;, < loci,, if e1 conflicts with ea and ey conflicts with es, then
e1 conflicts with eg.

Lemma 3.2 For any three different edges e, = (ci.,s;,.), ¥ = 1,2,3 and
loc;, < loci, < loci,, if ex does not conflict with ez and ey does not conflict
with ez, then ey does not conflict with eg.

Lemma 3.3 For any three different edges e, = (ci.,s;.), ¥ = 1,2,3 and
loc;; < loci, < loci,, if e1 conflicts with es, then ey conflicts with ez or ey
conflicts with e;.

Definition 3.4 An alignment is called a valid alignment if: (1) each core of
the template is aligned to some position of the (extended) sequencé; (2)For
any two different cores ¢1 and ca, their two alignment edges do not conflict in
the alignment graph.

Let z;; be a boolean variable such that z;; = 1 if and only if core ¢; is
aligned to position s;. Similarly, for any (c;,, ¢i,) € E(CMG), let yi, 1), (iz.02)
indicate the pairwise interactions between z;,;, and z;,;, if the two edges
(¢iys81,), (Cigy 51,) do not conflict. y, 1,),(i5.1,) = 1 if and only if z;,;, =1 and
Tiyt, = 1. We say y(i, 1,),(i2,12) 15 generated by z;, ;, and z;, 4,

The z variables are called the alignment variables and y variables are called
the interaction variables. Let DI[i] denote all valid query sequence positions
that ¢; could be aligned to. Let R[i, j,[] denote all valid alignment positions
of ¢; given ¢; is aligned to s;.

Now the objective function of the protein threading problem can be for-
mulated as follows:

min Wi, By + Wi Es + Wy Ep + Wy Eg + Wi B, (1)
M len;—1
E, = Z E (i1 % Z Mutation(head; + r,l + r)], (2)
i=11eD[4] r=0
M len;—1
= E Z Zi g X E Fitness(head; + r,j+ r)], (3)
i=11eD[i] r=0
M len;—1
=> Z [0 % Y SS(thead.+r, 5i4r)], (4)
i=11eD[i r=0

Ep: Z Z Z zl]k)P(ajalvk) (5)

1<i<j<M, (ci,c5) €E(CMG) L€ D[i] ke R[i,j,1]

len;—1len;—1

(,j,l, k Z Z 6 thead +uathead +1/)Palr(l + u, k + U) (6)

u=0 v=0

“As mentioned before, global and global-local alignment are employed.

M
Ey=) Y, (i+1,8) G0 1 k), (7)
i=11leD[i] keR[i,i+1,]]

where d(ty,1,) = 1 if there is an interaction between residues at position
u and v in the template, otherwise 0. G(i,[, k) is the gap potential between ¢;
and c;4+1 when they are aligned to query sequence position [and k respectively.
G(i,1, k) could be computed by dynamic programming in advance given ,/, k.
The constraint set is as follows:

EafiJ:l,i:laQa"'?M; (8)

jeD[i]
S ma+ > Ziy1x <1,lo€ D[], i=1,2,...,M—1; (9)
1>lo,l€DJi] k€D[i+1]-R[i,i+1,lo]
> Yk <z VL€ D[] i =1,2,..., M; (10)
keR[i,j,1]
> Y6k < Tk Yk € DI = 1,2, M; (11)
lER[],i,k]

Do VinGR 2t Y wik— LIE DI j=1,2,.. M; (12)
k€R[i,j,0] keR[i,j,0]

Yo Uik >zt D wa—Lk€D[lij=12....M; (13)
le R[j,i,k] le R[j,i,k]

2i;>0,j€Dli],i=1,2,..., M; (14)
Y(i,) (5,k) Z 07VZ € D[Z]ak € D[J]alaj = 1727 .- -7M' (15)

Constraint 8 says that one core can be aligned to a unique sequence posi-
tion. Constraint 9 forbids the conflicts between the adjacent two cores. There-
fore, based on lemma 3.2, this constraint can guarantee that there are no
conflicts between any two cores if variable z and y are integral. Constraints
10 and 11 say that at most one interaction variable can be 1 between any two
cores that have interactions between each other. Constraints 12 and 13 enforce
that if two cores have their alignments to the sequence respectively and also
have interactions between them, then at least one interaction variable should
be 1. Constraints 8,14 and 15 guarantee z and y to be between 0 and 1 when
this problem is relaxed to linear program.

There is another set of more obvious constraints which can replace Con-
straints 9-13. They are:

16
17
18

Tig+ i1k < I,Vk € D[Z + 1] — R[Z, 1+ 1,1];
Y G.k) < Tigy k € R[4, 5,1, (ciy ¢) € E(CMG);
Y0 (.k) < gk L € R[jy 1, k], (cise5) € E(CMG);

(
(
(
(19

)
)
)
Y0 (k) > i+ 25k — 1, (ci,¢5) € E(CMG);)

Constraint 16 forbids the conflict between two neighboring cores and Con-
straints 17-19 guarantee that one interaction variable is 1 if and only if its two
generating z variables are 1. Constraints 16-19 can be inferred from Constrains
9-13. Conversely, it is not true. Therefore, Constraints 16-19 are weaker than
Constraints 9-13.

In order to improve running time, we found yet another set of Constraints
20 and 21 from which both 9-13 and 16-19 can be inferred (proofs omitted due
to space limitation).

E Y G.k) = Tis (¢, ¢j) € E(CMG); (20)
keR[i,j,l]

> YanGe) = Tk (¢ir¢j) € B(CMG); (21)
le R[j,i,k]

Constraints 20 and 21 imply that one z variable is 1 is equivalent to that
one of the y variables generated by it is 1 . These two are the strongest
constraints. Experimental results show that our algorithm with Constraints
20 and 21 (combining with Constraints 8,14 and 15) runs significantly faster.
Our program RAPTOR uses 20 and 21 by default.

4 RAPTOR - Implementation

4.1 Scoring System

We calculated the averaged energy over a set of homologous sequences, as
demonstrated in PROSPECT-IP. Given a query sequence of length n, an n x 20
frequency matrix PSFM is calculated by using PSI-BLAST'® with maximum
iteration number being set to 5. Each column of this matrix describes the
occurring frequency of 20 amino acids at this position. Assume a template
position 7 is aligned to the sequence position j. Then the mutation score and
fitness score are calculated as follows.

Mutation(i Z pj.aM(t;, a)

Fitness(i ZPJ oF (env;, a)

where p; , represents the occurring frequency of amino acid a at sequence
position j, M (a, b) represents the mutation potential between two amino acid
a and b which is taken from PAM250 matrix!!, F(env,a) denote the fitness
potential when amino acid «a is placed into environment enwv.

The 9 combinations of three secondary structure types (a-helix, g-strand
and coil) and three solvent accessibility levels are used to define the local
environments of a position in the template. The boundaries between thre
solvent accessibility levels are at 7% and 37%. Secondary structure and solvent
accessibility assignments are all taken from FSSP database'?.

The gap penalty function is assumed to be an affine function, i.e., a gap
open penalty plus a length-dependent gap extension penalty. Gap open penalty
is set at 10.6 and gap elongation penalty is 0.8 per single gap'®. We use
PSIPRED * to predict the secondary structure of the query sequence.

If the two ends of an interaction are aligned to ji* and j4* positions of the
query sequence respectively, then the pair score for this interaction is given by:

Pair(ji, j2) ZPJI, ZPth (a,b)

where P(a,b) denotes the pairwise interaction potential between two amino

acids a and b. F, P are taken from PROSPECT-IP.

4.2 Branch-and-Bound Method

We use a branch-and-bound algorithm to solve the above integer programming
problem. First we relax the above integer program by allowing all z and y
to be real between 0 and 1 and solve the resulting linear program. If the
solution (z*,y*) of the linear program is integral, then we get the optimal
solution. Otherwise, we select one non-integral variable according to some
criterion, and generate two subproblems by setting it to 0 and 1 respectively.
These two subproblems are solved recursively. More details on solving integer
programming problem can be found in'5. IBM OSL(Optimization and Solution
Library) package is used to implement this process.

4.3 Weight Training

The weight factors W, W,, Wy, W,, W, are chosen through optimizing the
overall alignment accuracy. The optimal alignment accuracy does not nec-
essarily imply the best fold recognition capability though. In the following
subsection, an SVM (Support Vector Machine) method is used to carry out
fold recognition. A set of 95 structurally-aligned protein pairs are chosen from
Holm’s test set!® as the training samples, each of which only has fold-level simi-
larity. The alignments generated by RAPTOR is compared with the structural
alignments generated by SARF!7. An alignment for a residue is regarded as
correct if it is within 4 residue shift away from the correct structure-structure
alignment by SARF. The overall alignment accuracy is defined as the ratio be-
tween the number of the correctly-aligned positions of all threading pairs and
the number of the maximum alignable positions. Our objective is to maximize
the overall alignment accuracy. A genetic algorithm plus a local pattern search
method implemented in DAKOTA!® is used to search for the optimal weight
factors. We attained 56% alignment accuracy over this set of training pairs. A
set of 1100 protein pairs which are in the fold-level similarity is also generated
from Holm’s test set'® to test the weight factors and 50% alignment accuracy
is attained. We have also selected 95 structurally-aligned protein pairs from
Holm’s test set, each of which is in superfamily-level or family-level similarity,
80% alignment accuracy is achieved when the same set of weight factors is
used.

4.4 z-score and Fold Recognition

After threading one pair of sequence and template, z-score is calculated ac-
cording to the method proposed in paper'® to cancel out the composition bias.
Let 2,4, denote this kind of z-score. However, since the accurate z,4,, is expen-
sive to compute, we just approximate it by (i) fixing the alignment positions;
(ii) shuffling the query sequence randomly; and (iii) calculating the alignment
scores based on the existing alignment rather than doing optimal alignments
again and again. The free software SVM light?® with RBF kernel is employed
to adjust the approximate z-score. Due to space limit, we refer the reader o
Vapnik’s boold! for a comprehensive tutorial of SVM. A set of 60000 train-
ing pairs formed by all-against-all threading between 300 templates (randomly
chosen from the FSSP database) and 200 sequences (randomly chosen from
Holm’s test set '6) is used as the training samples of our SVM model. The
relationship between two proteins is judged based on SCOP database??. If one
pair is in at least fold-level similarity, then it is treated as a positive example,
otherwise a negative example. Each of training samples consists of the fol-

lowing features: (1)zyqu; (2) the sequence size; (3) the template size; (4) the
number of cores in the template; (5) the sum of the core size in the template;
(6) the number of aligned cores; (7) the number of aligned positions; (8) the
number of identical residues; (9) the number of contacts with both ends on
the aligned cores; (10) the number of cut contacts with one end on the aligned
cores and the other on the unaligned cores; (11) the total score; (12) mutation
score; (13) singleton fitness score; (14) gap score; (15) secondary score; (16)
pair score. Given one threading result, SVM outputs a real value. The value
greater than 0 means this threading pair is in at least fold-level similarity. We
do not use this directly due the abundance of the false negatives. We calculate
the final z-score for each query sequence. For all threading pairs of one given
sequence, let 01,02, ...,04 denote the outputs from SVM model. The final z-

o;i—u(0)
std(o)

the standard deviation of 0;. Daniel Fischer’s benchmark® is used to fix the
parameters of the model.

score is calculate by , where u(0) is the mean value of o; and std(o) is

5 Preliminary Experimental Results

Fischer’s benchmark consists of 68 target sequences and 301 templates. RAP-
TOR ranks 56 pairs out of 68 pairs as top 1, achieving 82% prediction rate,
while the previous best was 76.5%.

The fold recognition performance of RAPTOR was further tested on Lin-
dahl’s benchmark set consisting of 976 protein sequences 23. By threading
them all against all, there are totally 976 x 975 pairs. We measure RAPTOR’s
performance in three different similarity levels: fold, superfamily and family.
The results are shown in Table 1. The results of other methods are taken from
Shi et al’s paper**.

As shown in Table 1, the performance of RAPTOR at the fold level is much
better than the others. At the superfamily level, RAPTOR performs a little
bit worse than FUGUE 24, the best method (for superfamily and family level)
listed in this table. However, at the family level, RAPTOR, performs better
than only THREADER, which means that RAPTOR is superior in recognizing
fold-level similarity but bad in doing homology detection. RAPTOR-np is
a variant of RAPTOR without considering pairwise interactions when doing
optimal alignment, but the pairwise score is still calculated based on the non-
pairwise alignment. The corresponding weight factors and SVM model are
optimized separately using the same sets of training samples. Compared with
RAPTOR-np, RAPTOR is better in fold level and superfamily level and same
in family level. Thus, we may conclude that a strict treatment of the pairwise
interactions is necessary for fold level recognition or even superfamily level.

Family Superfamily Fold

method Top1l Topd5 | Top1l Topbd | Top1l Top5b
RAPTOR 75.2 77.8 | 39.3 50.0 | 25.4 45.1
RAPTOR-np 68.9 T72.8 | 34.0 49.7 | 19.0 36.6
FUGUE 82.2 85.8 41.9 53.2 12.5 26.8
PSI-BLAST 71.2 72.3 27.4 27.9 4.0 4.7

HMMER-PSIBLAST | 67.7 73.5 20.7 31.3 4.4 14.6
SAMTI8-PSIBLAST | 70.1 75.4 28.3 38.9 3.4 18.7

BLASTLINK 74.6 78.9 29.3 40.6 6.9 16.5
SSEARCH 68.6 5.7 20.7 32.5 5.6 15.6
THREADER 49.2 58.9 10.8 24.7 14.6 37.7

Table 1: The performance of RAPTOR at three different similarity levels

6 Computing Efficiency Issues

An outstanding advantage of our algorithm is that the memory requirement is
just about O(M?n?) and, at most of time, the computing time does not increase
exponentially with respect to the sequence size. Figure 1 shows the CPU time
of threading 100 sequences (chosen randomly from Lindahl’s benchmark) with
size ranging from 25 to 572 to a typical template 1191 of length 162 (with
topological complexity’ 3 and 12 cores). According to Xu et al.’s paper, the
computing time of PROSPECT is O(Mn?) and its memory usage is O(Mn*).
The observed memory usage of RAPTOR is 100 ~ 200M for most of threading
pairs. Figure 1 shows that the computing time of our algorithm increases very
slowly with respect to the sequence size. In fact, we found out that our relaxed
linear programming gave the integral solutions most of time or generated only
a few branch nodes when the solution was not integral.

References

D.T. Jones. J. Mol. Biol., 287:797-815, 1999.

R.H. Lathrop. Protein Engineering, 7:1059-1068, 1994.

D.T. Jones, W.R. Taylor, and J.M. Thornton. Nature, 358:86-98, 1992.
A.Godzik, A.Kolinski, and J.Skolnick. J. Mol. Biol., 227:227-238, 1992.
S. Bryant. Proteins: Struct. Funct. Genet., 26:172-185, 1996.

T. Akutsu and S. Miyano. Theoretical Computer Science, 210:261-275,
1999.

. Y. Xu et al. Journal of Computational Biology, 5(3):597-614, 1998.

. D. Fischer et al. pages 300-318. PSB96, 1996.

SO =

o0 =1

2500

2000 o 4
— o
2 1500 ° 5 o o g
]
£ &
j=2)
£
S 1000 o 0o 000 © i
o o
o
oo o
o
@ o
o o]
500 o O o i
o @o oO
o
o° &> o
(e)d®)
° R & ° ¢
o~ O
OM < ‘ ‘ ‘ ‘
0 100 200 300 400 500 600

sequence suze

Figure 1: computing time of threading 100 sequences to template 119l.

9. D. Kim, D. Xu, J. Guo, K. Ellrott, and Y. Xu. 2002. Manuscript.

10. S.F. Altschul et al. Nucleic Acids Research, 25:3389-3402, 1997.

11. R.M. Schwartz and M.O. Dayhoff. pages 3563-358. Natl. Biomed. Res.
Found., 1978.

12. L. Holm and C. Sander. Science, 273:595-602, 1996.

13. G.H. Gonnet et al. Science, 256:1443-1445, 1992.

14. D.T. Jones. J. Mol. Biol., 292:195-202, 1999.

15. Laurenece A. Wolsey. John Wiley and Sons, Inc., 1998.

16. L. Holm and C. Sander. ISMB, 5:140-146, 1997.

17. N.N. Alexandrov. Protein Engineering, 9:727-732, 1996.

18. M.S. Eldred et al. Technical Report SAND2001-3796, Sandia, 2002.

19. S.H. Bryant and S.F. Altschul. Curr. Opin. Struct. Biol., 5:236-244,
1995.

20. T. Joachims. MIT Press, 1999.

21. V.N. Vapnik. Springer, 1995.

22. A.G. Muzrin et al. J. Mol. Biol., 247:536-540, 1995.

23. E. Lindahl and A. Elofsson. J. Mol. Biol., 295:613-625, 2000.

24. J. Shi, L. B. Tom, and M. Kenji. J. Mol. Biol., 310:243-257, 2001.

