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The analysis of large amounts of data, produced as (numerical) traces of in vivo, in
vitro and in silico experiments, has become a central activity for many biologists
and biochemists. Recent advances in the mathematical modeling and computation
of biochemical systems have moreover increased the prominence of in silico ex-
periments; such experiments typically involve the simulation of sets of Differential
Algebraic Equations (DAE), e.g., Generalized Mass Action systems (GMA) and
S-systems 1>2:3. In this paper we reason about the necessary theoretical and prag-
matic foundations for a query and simulation system capable of analyzing large
amounts of such trace data. To this end, we propose to combine in a novel way
several well-known tools from numerical analysis (approximation theory), tempo-
ral logic and verification, and visualization. The result is a preliminary prototype
system: simpathica/xssys. When dealing with simulation data simpathica/xssys ex-
ploits the special structure of the underlying DAE, and reduces the search space
in an efficient way so as to facilitate any queries about the traces. The proposed
system is designed to give the user possibility to systematically analyze and simul-
taneously query different possible timed evolutions of the modeled system.

1 Introduction

The emerging fields of system biology, and its sister field of bioinformatics,
focuses on creating a finely detailed and “mechanistic” picture of biology at
the cellular level by combining the part-lists (genes, regulatory sequences,
other objects from an annotated genome, and known metabolic pathways),
with observations of both transcriptional states of a cell (using micro-arrays)
and translational states of the cell (using proteomics tools).

After more than a decade of progress, it has become evident that the
mathematical foundation of these systems needs to be explored accurately, and
that their computational models should be implemented in software packages



faithfully while exploiting the potential trade-offs among usability, accuracy,
and scalability dealing with large amounts of data. The work described in this
paper is part of a much larger project still in progress, and thus only provides
a partial and evolving picture of a new paradigm for computational biology.

We assume the following scenario. Imagine a biologist seeking to test some
hypotheses against a corpus of data produced by several in vitro, in vivo, and
in silico experiments regarding the behavior of a given biological system, e.g.,
a regulated metabolic pathway in a given organism. A (graphical) metabolic
map of the biochemical system under study, together with a specific associated
S-system, is assumed available, and that the number or quantities recorded is
large. The biologist can access one or both of the following items:

e Raw data stored somewhere about the temporal evolution of the biolog-
ical system. This data may have been previously collected by observing
an in vivo or an in vitro system, or by simulating the system in silico.

e Some mathematical model of the biological system?.

The biologist will want to formulate queries about the evolution encoded in the
data sets. For example, the biologist may ask: will the system reach a “steady
state”?, or will a temporary increase in the level of a certain protein repress
the transcription of another? Clearly the set of numerical traces of very
complex systems rapidly becomes unwieldy to wade through for increasingly
larger numbers of variables.

We first discuss what are the building blocks needed to construct a com-
prehensive and well-founded system capable of answering such queries. We
implemented a prototype system called simpathica/xssys that builds on this
foundation. The proposed computational tool derives its expressiveness, flex-
ibility and power by integrating in a novel manner many commonly available
tools from numerical analysis, symbolic computation, temporal logic, model-
checking, and visualization.

Finally we show how we applied our system to a sizable example: the
purine metabolism pathway as described in 3*:5.

2 Related Works

The modeling and qualitative simulation of complex genetic regulatory net-
works of large dimension has received considerable attention in the literature,

®We note that simulating a system in silico actually requires a mathematical model. How-
ever, we want to consider the case when such mathematical model is unavailable to both
the biologist and the software system.



(see, e.g., ® and the references cited therein). Most of these works treat sit-
uations in which the lack of quantitative information forces simulation in a
qualitative way. These qualitative methods differ markedly from the types
of qualitative modeling we propose, which are formulated in a functional
approzimation setting; the survey by DeVore 7 in the context of numerical
analysis is particularly illuminating. Our approach also differs from systems
such as Cellerator, 8 a Mathematica package for biological modeling. While
this package bears many similarities with our approach, our focus is on a
single collection of biochemical reactions rather than a hierarchy. Moreover
the temporal ingredient introduced by our integration with a temporal lan-
guage enhances the reasoning abilities of our proposed tool. Our temporal
logic query language also differs from that of ® (which can be viewed as an
extension of the Qualitative Reasoning approach of c¢f. %) by relying on a full
numerical simulation trace or a (sampled) trace of a physical experiment.

The kind of formalization and tools we are proposing in this paper could,
in general, be used to study in a more systematic way hypotheses on prop-
erties of complex systems of biochemical reactions. The research by Bhalla
et al. in !, for example, aims at proving that a sort of “learned behavior” of
biological systems is in fact stored within the mechanisms regulating intracel-
lular biochemical reactions constituting signaling pathways. For this kind of
studies, following 2, both qualitative and quantitative features of the system
under study should be taken into account.

Finally, the recent control theory literature contains several relevant works
on, e.g., the general problem of constructing an automaton from a differen-
tial equation models (Brockett '3), hybrid systems models for biochemical
reactions (Alur et al. '*). With respect to the former, our approach takes ad-
vantage of the specific mathematical models (S-systems) under consideration,
and relates the numerical integration of the S-system with the construction
of the automaton. With respect to the latter, the idea of using the discrete
part of the (hybrid) automaton to switch from one mode to another when,
for example, the number of molecules grows over a certain threshold, can be
replicated in our framework by “gluing” different simulations (corresponding
to different sets of parameters) in a bottom-up fashion.

3 Mathematical and Computational Models

3.1 Canonical Forms of Biological Systems Models

1,23 (from which we will

Central to our discussions

In the following we build on ideas introduced in
borrow also most of the notation) and, e.g., 15.



will be the notion of S-system (or of a GMA system). The basic ingredients
of an S-system are n dependent variables to be denoted Xi,...,X,, m in-
dependent variables X, 11, ..., X, each of which has domain D1,..., Dy,
respectively. We augment the S-system form with a set of algebraic constraints
that serve to characterize the conditions under which a given set of equations
is derived from a set of maps. The justification for this construction is be-
yond the scope of this paper and it appears elsewhere. The basic differential
equations constituting the system then take the following power law form:

. n—+m n+m h
Xi = Q; H X;-}” — ﬂz H Xj o (].)
j=1 j=1

n+m
Ci(Xi(t), - Xm(D) = (vj 11 X,ffk) =0 (2)

k=1

where the «;’s and §;’s are called rate constants and govern the positive or
negative contributions to a given substance (represented by X; as a function of
time) with other variables entering in the differential equation with exponents
to be denoted as g;;’s and h;;’s. The ; are called rate constraints acting
concurrently with the exponents fj; to delimit the evolution of the system
over a specified manifold embedded in the n + m-dimensional surface. Note
that we have o; > 0 and 3; > 0 for all i’s. S-systems can be integrated
numerically, and symbolically in certain special cases (we address the symbolic
case in a much more general way in a future work—see ' for a preliminary
treatment of the topic). The particular S-system “canonical” form allows for
very efficient computations of both the function flows X; and their derivative
fields X; 17.

3.2  XS-Systems: S-Systems FExtended with Automata

The following properties of biochemical metabolic systems and corresponding
S-systems serve as our starting point:

e The value of the dependent and independent variables uniquely charac-
terize the state of the system when normalized with respect to time (and
possibly other values);

e The transitions from one state to another are not necessarily encoded in
the metabolic map of the system, and are instead parametric with respect
to the value of constants in the S-system;



e There exists an exogenous set of “functions” that represent special per-
turbations of the system that the user may decide to include in the trace
generation, e.g., ramps, impulses, and oscillations (possibly with para-
metric amplitude and frequency).

We start with snapshots of the system variables’ values constituting the
possible states of the automaton. Transitions will be inferred from traces of
the system variables’ values evolution.

Definition 1 Given an S-system S, the S-system automaton Ags associated
to S is 4-tuple As = (S, A, Sy, F), where S C Dy X -+ X Dy is a (finite
or infinite) set of states, A C S x S is the transition relation, and So, F C S
are the initial and final states, respectively.

Definition 2 A trace of an S-system automaton As is a (finite or infinite)
Sequence So,S1,.-.,Sn,- .., such that so € Sp, A(s;,si+1) for i > 0. Equiva-
lently, a trace can be defined as:

trace(As) = ((X1(t) ... X, (t)) | t € {to + kstep : k € N}).

Notice that, for fixed values of the independent variables, a unique trace
is obtained when a simulation is performed. Moreover, while studying a trace
of a system, it can be useful to focus on one or more specific variables, which
justifies the following definition:

Definition 3 Given any set of variables U C {X1,..., Xstm}, the sequence:
trace(As|y) = ((X;(t) | X; € U) : t € {to+ kstep : ke N},

is called the trace of U. If U consists of a single variable X; the trace is called
the trace of Xj;.

Multiple traces arise as we start varying the values in the primary pa-
rameter sets. Collection of such traces, in general, allows one to study the
different instances of the simulated metabolic pathway evolution. Such a col-
lection will give rise to an automaton with corresponding transitions once a
suitable equivalence relation on states has been defined.

3.8 Construction of a Collapsed Automaton

Given a trace trace(As) we want to construct an automata that can be used
in conjunction with a TL based query system. The construction we present in
the following corresponds to finding a partition of the real line (time) into a
set I of non-overlapping intervals where the functions X;(¢) are approximated
in a piecewise-linear fashion. This is a very simple case of approximation as
defined in much greater detail in 7. Here we show a very simple automa-
ton construction method that essentially is an adaptive approzimation for the



given X (t); more sophisticated construction algorithms can be constructed
based on, e.g., adaptive step-size integration methods for ordinary differential
equations, and other types of segmentation algorithms. We will describe an
idea about how to improve the construction of such collapsed automata when
there is more information available about the kind of in silico simulation ex-
periment. Essentially we will use a “dictionary” of base functions to guide the
collapsing method in a more adaptive way. We will present a fully developed
treatment of this approach in a subsequent paper.

A linear automaton can be constructed simply by associating a different
state to each tuple (Xi(¢)...X,(t)) as time is incremented according to a
given fixed time step. To illustrate, consider the function X;(t) at times
ti,tit1,-.-ti+s as depicted in Figure 1. In this case we have step =t;11 —t;
as a result of (fixed) sampling or numerical integration. We associate the
automata Ag to the trace of X; simply by taking into account each time step.

X(t)
S system trace
for variable X/

>
t
A, automata

i by lys

Figure 1. Simple one-to-one construction of the “trace” automata Ags for a S-system S.

We now suggest a simple method for collapsing the states of a linear au-
tomaton into piecewise-linear equivalence classes. Given a numerical solution
for our S-system, two states X;(¢ + kstep) and X;(t + (k + j)step), j > 0,
are said to be equivalent under the relation R; s, if

| X;(t + kstep) — X;(t + (k — 1)step) | < d;.

The above construction is easily extended to the full collection of variables
(see the following definition) and allows us to consider equivalent two states
if the difference between the rate of growth of the corresponding variables is
sufficiently small (with respect to the parameter ;).

Definition 4 The relation Rj holds between two states sy = X(t + kstep)

and spi; = )?(t + (k + j)step)) with j > 0, if and only if, for each i €



{1,...,n+m},
|Xi(t + kstep) — X;(t + (k + j)step)| < 4;.

The collection {5; | 1< i< n+m} is denoted by é.

The above relation turns out to be an equivalence relation collapsing
states whose variables’ values are sufficiently similar, if computed over the
numerical approximation of the solution. The (simple) idea is to choose as
representative in each equivalence class, the element corresponding to the
minimum time in the class. It is easy to build an iterative algorithm based of
the above relation that determines the knot points in the state space that can
be used as state set representatives in the collapsed automata. The algorithm
is presented in '® and has O(hk) time complexity, where h is the size of the
trace and k is the number of variables in the system.

In the following, given a collection of linear automata (traces), we will
propose to “glue” them together in a unique automaton capable of modeling
various possible behaviors of the system.

Example 5 Consider again the function X;(t) depicted in Figure 1. In Fig-
ure 2 the effects of applying the collapsing algorithm are shown. With respect
to X;(t) we obtain an automata As; which has the reduced number of states

StateS(ASi) = < .- (ti> Xj (ti)v Xj (ti))) (ti+27 Xj (ti+2)> Xj (ti+2))7
(tigs, X;(tiys), Xj(tiys)), - )

Now suppose we have a different function X (t). We associate to Xj(t) the
collapsed automata Agy,, such that

states(Asy) = (.. (ti, Xe(ts), Xe(t:)), (tira, Xu(tipa), Xe(tiva)), )

t.e. the “landmark” times are t; and t;14 in this case. In order to construct a
useful automata for the analysis tool we construct the merged automata As jj,
such that

states(Asy) = (.. (tl,X( ),XJ(t,)),

( z+2: ( 2)7XJ( z+2))
( l+4vXk( l+4)7X ( l+4))7
(tirs Xj(tigs), Xj(tigs)),---)

i.e. automata Asjy is an ordered merge of the two automata As;, Asy,.

3.3.1 Normalization and Projection

In order to capture the notion of state-equivalence modulo normalization we
begin with the following definition:
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Figure 2. The effects of the collapsing construction of the “trace” automata Ag for a S-
system S.

Definition 6 Given a subset V' of the set {X1,...,Xn+m} of variables, we
define the set of states normalized with respect to V' as the following set of

tuples:
. X;(to + k step) )
S\V_{<l/i(V,to+kstep) PkeNp,

with the v;’s are normalizing functions.

More complex forms of normalization can be obtained when other vari-
able contribute into play. Moreover, notice that when we normalize with a
collection of normalizing functions defined as follows:

. X X, ¢0,
vi(U,t) = {1 otherwise,

then the normalization corresponds to projecting with respect to the set of
variables U.

3.3.2  Adaptive Collapsing by Dictionary Functions

Suppose we know that the user is trying to see what is the response of a
simulated system to an impulse (c¢f. the example in Section 4.1). This is a
piece of information that we can use to build a collapsed automaton more
effectively. We assume that our tool comes equipped with a dictionary D
of predefined basic functions: ramps, impulses, sigmoids, etc. Suppose that
the user specifies that the simulation will include an impulse I(¢;7) at time
7. The collapsing algorithm will then use this information to compute the
partition from time 7 to 7 + A7 using the function I(¢;7) as a component of
the approximation of the solution.



This is just a special form of an approximation scheme. The computa-
tional complexity will vary according to the set of functions in D, e.g. it is
known that when using wavelets as components, finding an optimal approxi-
mation to a function using a dictionary of wave-forms is an NP-hard problem
19 We conjecture that, since we are willing to loose information in the col-
lapsing operation, we will be able to use a greedy adaptive approach as well
that will keep the computational complexity low. A full treatment of this
topic will appear in a forthcoming paper.

4 Pathways Simulation Query language

In this section we briefly outline a language that can be used to inspect and
formulate queries on the simulation results of XS-systems.

Our aim is to provide the biologists with a tool to formulate various queries
against a repository of simulation traces and a set of known pathways speci-
fications. We propose a Temporal Logic language (cf. 2°) with a specialized
set, of predicate variables whose aim is to make it easy to formulate queries on
numerical quantities. For instance, all our discussions can be carried out in
the standard CTL, Computation Tree Logic: a branching-time propositional
temporal logic.

We can also augment the standard CTL language with a set of domain
dependent queries. Such queries may be implemented in a more efficient way
and express typical questions of interest to biologists.

4.1 An Ezample: Purine Metabolism

We now revisit in detail the example of purine metabolism described in 3
Chapter 10 and fully analyzed in +°. The pathway for purine metabolism is
presented in Figure 3. A brief description of the key reactions follows, and
the reader is invited to examine the more detailed summaries contained in the
literature referenced in 345.

The main metabolite in purine biosynthesis is 5-phosphoribosyl-a-1-
pyrophosphate (PRPP). A linear cascade of reactions converts PRPP into
inosine monophosphate (IMP). IMP is the central branch point of the purine
metabolism pathway. IMP is transformed into AMP and GMP. Guanosine,
adenosine and their derivatives are recycled (unless used elsewhere) into hy-
pozanthine (HX) and zanthine (XA). XA is finally oxidized into wric acid
(UA). In addition to these processes, there appear to be two “salvage” path-
ways that serve to maintain IMP level and thus of adenosine and guanosine
levels as well. In these pathways, adenine phosphoribosyltransferase (APRT)



Figure 3. The metabolic scheme of purine metabolism in human. (Reprinted from 5, where
a full description and further references may be found.)

and hypozanthine-guanine phosphoribosyltransferase (HGPRT) combine with
PRPP to form ribonucleotides.

The consequences of a malfunctioning purine metabolism pathway are se-
vere and can lead to death. The entire pathway is quite complex and contains
several feedback loops, cross-activations and reversible reactions, and thus an
ideal candidate for reasoning with the computational tools we have developed.

In 2, a sequence of models for purine metabolism is presented alongside
an analysis of how to identify discrepancies with physically observed data,
and how to amend the current model in order to explain these discrepancies.

We show how to formulate queries over the simulation traces to express
various desirable properties (or absence of undesirable ones) that the model
should possess. Should any of these queries “fail,” the model will be marked
for further examination, experimentation and correction.

As an example consider the “Final” model for purine metabolism pre-
sented in 3. The in silico experiment shows that when an initial level of PRPP
is increased by 50-fold, the steady state concentration is quickly absorbed by
the system. The level of PRPP returns rather quickly to the expected steady
state values. IMP concentration level also rises and HX level falls before
returning to predicted steady state values.



Suppose that we wanted to ask the system how it will respond to a tem-
porary (instantaneous) increase in the level of PRPP. Such request can be
formulated as follows:

always (PRPP > 50 * PRPP1
implies
(steady_state()
and eventually(IMP > IMP1)
and eventually(HX < HX1)
and eventually(always(IMP == IMP1))
and eventually(always(HX == HX1))

an (instantaneous) increase in the level of PRPP will not make the system
stray from the predicted steady state, even if temporary variations of IMP
and HX are allowed. A detailed discussion in the full paper shows how xssys
responds to the query and helps the biologist to acquire the needed intuition.

5 Concluding Remarks

We have presented a novel framework under which we bring together well
known tools from numerical analysis (approximation theory), temporal logic
and verification, and visualization. This is a work in progress whose final aim
is to construct an effective tool to aid biologists analyze experimental results
and design new ones’.

There are several open questions in our work that we need to address.
We are now considering how to extend our automata construction by using
notions from approzimation theory that will allow us to take into consideration
time and frequency domain aspects of a trace. Of course more theoretical
treatments of the subject are possible as well (cf. 13).
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