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Recognition of regulatory sites in unaligned DNA sequences is an old and well-
studied problem in computational molecular biology. Recently, large-scale expres-
sion studies and comparative genomics brought this problem into a spotlight by
generating a large number of samples with unknown regulatory signals. Here we
develop algorithms for recognition of signals in corrupted samples (where only a
fraction of sequences contain sites) with biased nucleotide composition. We fur-
ther benchmark these and other algorithms on several bacterial and archaeal sites
in a setting specifically designed to imitate the situations arising in comparative
genomics studies.

1 Introduction

Large-scale expression analysis and comparative genomics recently generated
numerous samples of potentially co-regulated genes whose upstream regions are
likely to contain regulatory sites. These samples are often corrupted (with only
a fraction of sequences in the sample containing a site) and the corresponding
signals may be relatively weak. In difference from previous “gene-by-gene”
research efforts, the possibilities of experimental localization of site positions
(i.e., via reduction in the length of sequences in the samples by footprinting
experiments) in postgenomic era are limited. As a result, computer predictions
are often the only realistic way to find regulatory signals in these regions.

The first attempts to find regulatory sites appeared in the early eighties (for
reviews, see Gelfand®, Frech et al.2, or Brazma et al.?). Current approaches
can be roughly subdivided into pattern-driven techniques*®>%7 and profile-
based optimization algorithms (greedy search®, simulated annealing®, Gibbs
sampler'?, and expectation-maximization'!). Most pattern finding algorithms
were developed and tested in a situation when all or most sequences in the
analyzed sample contain regulatory sites (mostly single site). This is no longer
a valid assumption. Comparative genomics produce samples of genes that are
likely to be co-regulated, but there is no guarantee that some (or maybe even
a majority) of the genes are expressed constitutively or regulated by the same
mechanism. Similarly, expression studies often result in the identification of
co-expressed genes in response to certain environmental stimuli, but usually
do not resolve regulatory cascades and other complex interactions'2.
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Several papers reported benchmarking results of signal recognition algo-
rithms. Fickett and Hatzigeorgiou'® evaluated algorithms for finding eukary-
otic promoters. Roulet et al.'* compared predicted affinities of an eukaryotic
transcription factor to synthetic oligonucleotides from SELEX data. Frech et
al.2 benchmarked programs for finding signals on several prokaryotic and eu-
karyotic samples. Pevzner and Sze® compared several pattern finding algo-
rithms on simulated sequences with implanted signals. Although these results
allow one to assess the current state of affairs in controlled situations, they do
not provide insight to the behavior of existing programs in real life situations.

Here we are primarily interested in benchmarking with corrupted samples
where the signal is present only in a fraction of sequences. This is almost
always the case in biological samples. This study models a common situation
when it is unclear how to set up the size of the upstream regions and the search
parameters (i.e. the length and stringency of the motif). A failure to choose
the right parameters may lead to missing the signals. We investigate the effect
of using different lengths of upstream sequences and study how the corruption
of the sample sequences influences the quality of recognition. We are also
interested in how the addition of sequences with a different signal (possibly of
different length) to a sample affects recognition. We investigate “how weak” a
weak signal should be to become undetectable.

The algorithms WINNOWER and SP-STAR from Pevzner and Sze® have
been modified to take into account specifics of real biological samples. We
compare these programs with a few of the best currently available approaches,
including CONSENSUS!3, GibbsDNA!®, and MEME'6. The choice of the pro-
grams is somehow subjective and is limited to those that are the most popular
among biologists. We will identify the shortcomings of these approaches and
gain insight into what problems future approaches should address.

2 Test Samples

The algorithms were tested on three samples from the E.coli genome. Each
sample consists of sequences in a [—1500, 500] window with respect to the trans-
lational start site annotated with known sites from the Robison et al.!” compi-
lation. The sequences were extracted from GenBank using GenomeExplorer'®.
In our experiments, subsamples within a smaller window of these samples are
considered, so that the actual lengths of the sequences used will be smaller.
The first (ARG) sample contains 9 sequences (genes regulated by the argi-
nine repressor ArgR). Each sequence contains a two-part site with the length
of each part being 18 nt and separated by 3 nt in all but one sequence where
the separation is 2 nt. One of the sequences also has an extra one-part site
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of length 18 nt. The second (PUR) sample contains 19 sequences with sites
of length 16 nt (genes regulated by the purine repressor PurR). Among them,
17 sequences contain 1 site and 2 sequences contain 2 sites. The third CRP
sample contains 33 sequences with CRP repressor binding sites of length 22
nt. Among them, 17 sequences contain 1 site, 10 sequences contain 2 sites, 1
sequence contains 3 sites, 1 sequence contains 4 sites, and 4 sequences contain
no sites. The sites in the CRP sample are mostly weak. Most sites are found
within 200 nt upstream of the translational start site, although a few sites are
found up to 400 nt upstream or downstream of the start site.

Define the majority string for a collection of strings W = {W1y,...,W;}
as the string W' whose ith letter is the most frequent ith letter in W. We
estimate the mutation rate of the signal in each sample by finding the majority
string from the set of annotated patterns and computing the average number of
substitutions to convert the majority string to each of the annotated patterns.
We use the notation of a (I,d)-sample to denote a sample with signals of
length [ and probability of mutation p = d/I (see Pevzner and Sze®, the VM
mode). The ARG sample contains two-part sites. When only the two-part
sites separated by 3 nt are considered with each two-part site treated as one
site, the sample corresponds roughly to a (39,11)-sample (i.e., 11 mutations
per 39 positions or 28% mismatches on average) and only 8 out of 9 sequences
contain a site. When each part is considered a site by itself, the sample is
roughly a (18,5.6)-sample (31% mismatches on average) and most sequences
contain two sites. The PUR sample corresponds roughly to a (16,3.4)-sample
(21% mismatches on average) and most sequences contain one site. The CRP
sample corresponds roughly to a (22,9.1)-sample (41% mismatches on average)
and most sequences contain one or two sites.

We also study two samples with unknown regulatory sites. The IRON-
FACTOR sample contains 12 sequences each of length 250 nt. These sequences
are the upstream regions of operons from various gamma-proteobacteria likely
to be involved in iron utilization and regulated by homologous repressors other
than FUR (E. Panina, personal communication). The PYRO-PURINES sam-
ple contains 13 sequences each of length 300 nt (upstream regions of genes in-
volved in the purine metabolism in Pyrococus horikoshii). Recently, Gelfand et
al.'® made (still unconfirmed) prediction of regulatory sites in this sample.

3 Results

Following Pevzner and SzeS, we use the performance coefficient |[KNP|/|K UP|
to evaluate the performance of signal finding algorithms, where K is the set of
known signal positions in a sample and P is the set of predicted positions.
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3.1 Samples with a Single Site per Sequence

Most motif finding programs have a performance tradeoff when using a more
general model versus a more restricted model. To compare the performance of
various approaches fairly, we first assume that the signal length is known as
the annotated length and at most one site appears in a sequence. Although
the second assumption does not hold for our samples, we assume it here for
simplicity and expect that the programs to only be able to pick up the strongest
site in a sequence with more than one site. In particular, for the ARG sample,
we treat the two-part signal as one signal of length 39 nt and change the
annotation to remove the extra one-part site and the exceptional two-part site
with separation distance 2 nt. The 3 nt in the separation portion of the two-
part signal is considered to be annotated. For the PUR sample, we remove the
weaker site from the annotation in each of the two sequences where there are
two annotated sites. Since a lot of the sequences in the CRP sample have more
than one site, we postpone its test to the later sections when more complicated
models are considered. Since there is no convenient way to test GibbsDNA or
WINNOWER under the current model (both programs can return more than
one site per sequence), we postpone their tests.

We investigate the effect of using different lengths of upstream sequences
from 200 nt to 1500 nt. Since all the sites are found upstream of the transla-
tional start site, we fix the right end of the sequences to be the position just
before the start site and vary the left end. All the programs performed simi-
larly (data not shown). In most cases, the performance was 0.89 on the ARG
sample and 0.95 on the PUR sample, independent of the length chosen.

We are interested in how the addition of random sequences to each of the
ARG and PUR samples influences the signal recognition. Since most sites
can be found within 200 nt upstream of the start site, we fix the upstream
sequence length under investigation to be 200 nt. A sample of 666 random
fragments of length 200 nt is also given. These sequences contain intergenic
regions between convergently transcribed genes which are not expected to con-
tain binding sites for any regulator. An increasing number of these random
sequences are added to each sample. Table 1 compares the performance of the
various algorithms. We allow each program to return suboptimal solutions in
addition to the optimal one and the top-ranked non-overlapping suboptimal so-
lutions are considered. MEME was the best in returning a strong signal as the
optimal solution, but sometimes with performance tradeoff since CONSENSUS
performed very well in returning an excellent quality result among the top few
non-overlapping suboptimal solutions. SP-STAR sometimes performed better
than CONSENSUS or MEME but gave inferior results in general.
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Table 1: Comparison of the performance of the various algorithms by adding random se-
quences to the ARG and PUR samples with upstream sequences of length 200 nt under the
restricted model where all the programs return at most one site per sequence. Annotations
of the samples have been changed to suit the restricted model. For CONSENSUS, the stop-
ping condition is that each sequence has contributed exactly one word to the saved matrices
and we consider all the top matrices from each cycle. MEME is run in zoops mode, not
allowed to shorten motifs, and is instructed to find three different motifs. SP-STAR is run
with local improvements on the top 10% initial signals. The known signal length is 39 nt
for the ARG sample and 16 nt for the PUR sample, which is used as an input parameter to
all the programs. The top three non-overlapping suboptimal solutions among these results
are considered, where each one does not overlap with any of the higher-scored ones, and the
one with the highest performance among these non-overlapping solutions is reported along
with its suboptimal position in parentheses. Note that sometimes less than three suboptimal
solutions are returned from a program.

number of random sequences added
sample| program 0 20 40 60 80 100 120 140 160
ARG|CONSENSUS[0.81(1)  1(1) 1(1) 1(1) 1(1) 1I(1) 1(2) 1(2)0.29(3)
MEME|0.89(1) 0.90(1) 0.90(1) 0.89(1) 0.73(1) 0.34(1) 0.72(2) 0.89(1)  1(1)
SP-STAR| 1(1) 0.81(1) 1(1)  1(1) 0.53(1) 0.53(1) 0.53(2) 0.42(2) 0.53(2)
PUR|CONSENSUS|0.94(1) 1(1)  1(1) 0.94(1) 0.88(1) 0.88(1) 0.88(1) 0.58(1) 0.58(2)
MEME|0.94(1)  1(1) 0.94(1) 0.94(1) 0.60(1) 0.60(1) 0.60(1) 0.52(1) 0.63(1)
SP-STAR[0.94(1)  1(1) 1(1) 1(1) 1(1) 1(1) 0.53(1) 0.53(1) 0.53(2)

3.2 Samples with Multiple Sites per Sequence

All the programs in this study can predict multiple sites per sequence. For
CONSENSUS, MEME and SP-STAR, the total number of sites in a predic-
tion is restricted to mt, where m is an input parameter to be determined,
and t is the number of sequences in a sample. For GibbsDNA, mt is used as
the expected number of sites supplied as a parameter to the program. For
WINNOWER, all solutions with the total number of sites greater than mt
are discarded. Of course, the “mt-restriction” has different implications for
different programs, but they represent the closest possible models that these
programs offer so that the performances are approximately comparable. We
want to set m appropriately so as to obtain the best sensitivity for each pro-
gram, which means that we have to set m to be as small as possible but should
still allow the programs to include most or all sites in a prediction. For the
ARG sample, when the signal is considered to be a single (two-part) signal (we
do not change the annotation, so there are definitely misses of sites), we can
set m to 1. When the signal is considered to be one-part, there are 19 sites in
9 sequences. We can set m to be either 2 or 3. We choose to use m = 2 in
our experiments since some of the sites will be excluded when smaller window
subsamples are considered, which allows a maximum of 18 sites to be predicted
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with better sensitivity. For the PUR sample, there are 21 sites in 19 sequences,
we set m to 1 for similar reasons. For the CRP sample, there are 45 sites in
33 sequences (with two of them overlapping), so we set m to 2. All programs
are instructed to return predictions with non-overlapping sites.

The first experiment investigates the effect of the length of upstream se-
quences. Since almost all the sites are found upstream of the start site, we fix
the right end to be the position just before the start site and vary the left end.
Table 2 compares the performance of the various algorithms. While CONSEN-
SUS and MEME had good performance in general, GibbsDNA and SP-STAR
started to break in some cases when very long upstream sequences are used.
WINNOWER only had good performance when short upstream sequences are
used (partly due to the fact that we use clique size k = 2 instead of k = 3 to
save computational resources).

The second experiment investigates how the addition of an increasing num-
ber of random sequences to the ARG, PUR and CRP samples with upstream
sequences of length 200 nt influences the signal recognition. Table 3 compares
the performance of the various algorithms, employing the same treatment to
allow suboptimal solutions as in Table 1 (excluding GibbsDNA and WIN-
NOWER since the versions we have are not designed for this type of problems).
For the ARG samples looking for two-part signals, performance of CONSEN-
SUS and SP-STAR were not bad while MEME returned a good prediction as
the top result through a wider range. For the ARG sample (one-part signals)
or the CRP sample, SP-STAR had the best performance in returning good so-
lutions among the top results even when a lot of random sequences are added.
For the PUR sample, CONSENSUS was the best to return the closest signal
as more and more random sequences are added, but it also failed earlier.

In the third experiment we are interested in how the various algorithms
perform on samples containing natural but weak sites. We remove sequences
successively from the CRP sample (with upstream sequences of length 200 nt)
in decreasing order of the strength of the strongest site in a sequence (stronger
ones removed first) and investigate when the algorithms break. We compute
site strength by the following procedure. Compute the majority string of all
the sites and the sum-of-pairs (SP) similarity score of each column of aligned
sites. We ignore all positions in the majority string with negative SP col-
umn scores and take this string to be the consensus pattern. For the CRP
sample, the consensus pattern is found to be a--tgtga------ tcaca-tt. The
site strength is defined to be the similarity score between the site and the
consensus pattern computed over retained positions. Table 4 compares the
performance of the various algorithms. When not too many CRP sequences
are removed, performances of all the programs were comparable except that
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Table 2: Comparison of the performance of the various algorithms by using upstream se-
quences of different lengths from the ARG, PUR and CRP samples allowing multiple sites
per sequence. For CONSENSUS, the stopping condition is that the saved matrices contain
a maximum of mt words, where m is a parameter and ¢ is the number of sequences, and the
first matrix among the list of matrices from each cycle is returned. GibbsDNA is run with
the expected number of sites being mt, set to disregard fragmentation and the result with
the highest NetMAP score over 100 runs is returned. MEME is run in tcm mode, with the
maximum number of sites restricted to mt and not allowed to shorten motifs. WINNOWER
is run with clique size £k = 2 (not tested on the PUR and CRP samples since extensive
computation time and resources are needed). SP-STAR is run with local improvements on
the top 10% initial signals with the maximum number of sites in a prediction being mt. The
known signal length is 39 nt for the ARG sample (2-part) with m = 1, 18 nt for the ARG
sample (1-part) with m = 2, 16 nt for the PUR sample with m = 1, and 22 nt for the CRP
sample with m = 2. All programs return predictions with non-overlapping sites.

length of upstream sequences
sample| program 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
ARG|CONSENSUS|0.81 0.79 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
(2-part) GibbsDNA|0.81 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
MEME|0.73 0.79 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.71 0.71 0.71 0.65
WINNOWER|0.62 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
SP-STAR|0.81 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.00
ARG|CONSENSUS|0.71 0.62 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.62 0.62 0.62
(1-part)| GibbsDNA0.69 0.68 0.63 0.63 0.63 0.64 0.64 0.67 0.67 0.67 0.67 0.60 0.54 0.58
MEME|0.48 0.62 0.62 0.80 0.71 0.76 0.80 0.80 0.62 0.62 0.85 0.56 0.85 0.56
WINNOWER|0.37 0.40 0.36 0.40 0.31 0.36 0.40 0.40 0.40 0.40 0.40 0.14 0.14 0.14
SP-STAR|0.54 0.83 0.83 0.83 0.55 0.55 0.55 0.55 0.52 0.48 0.48 0.48 0.48 0.48
PUR|CONSENSUS|0.94 0.95 0.95 0.90 0.81 0.85 0.85 0.85 0.85 0.85 0.85 0.76 0.76 0.76
GibbsDNA|0.89 0.95 0.95 0.90 0.69 0.69 0.55 0.79 0.86 0.86 0.86 0.82 0.82 0.78
MEME|0.94 0.95 0.95 0.90 0.81 0.81 0.68 0.81 0.81 0.81 0.90 0.81 0.81 0.85
SP-STAR|0.94 0.94 0.95 0.89 0.95 0.95 0.85 0.85 0.80 0.80 0.80 0.90 0.80 0.48
CRP|CONSENSUS|0.35 0.38 0.44 0.39 0.38 0.37 0.37 0.37 0.32 0.39 0.32 0.31 0.23 0.23
GibbsDNA|0.47 0.39 0.35 0.35 0.29 0.26 0.33 0.32 0.34 0.25 0.30 0.26 0.00 0.00
MEME|0.38 0.36 0.45 0.44 0.44 0.44 0.44 0.43 0.43 0.45 0.43 0.41 0.40 0.38
SP-STAR|0.43 0.32 0.33 0.38 0.33 0.35 0.37 0.25 0.24 0.24 0.24 0.24 0.32 0.32

WINNOWER gave slightly worse results. Since this sample is a very good
representative of samples with weak sites, we further investigate in detail the
effect of both varying the length of the upstream sequences and the number
of sequences removed. We start from the sample with upstream sequences
of length 1500 nt and remove sequences in decreasing order of the strength
of the strongest site as before. Samples of shorter lengths are obtained by
varying the left end. The consensus pattern computed from this larger sample
is aa-tgtga-——--- tcaca-tt, slightly different than before. Table 5 compares
the performance of CONSENSUS, MEME and SP-STAR. While CONSENSUS
and MEME had a better performance when the upstream sequence length is
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Table 3: Comparison of the performance of the various algorithms by adding random se-
quences to the ARG, PUR and CRP samples with upstream sequences of length 200 nt

allowing multiple sites per sequence.

Settings are the same as in Table 2. The treatment

of suboptimal solutions and the notations used are the same as in Table 1. When the top
three solutions all have performance less than 0.05, we put 0.00 in the entry to emphasize

that the run fails completely.

number of random sequences added
sample program 0 20 40 60 80 100 120 140 160
ARG|CONSENSUS|0.81(1) 0.81(1) 0.81(1) 0.81(2) 0.81(2) 0.81(2) 0.81(2) 0.81(2) 0.28(3)
(2-part) MEME|0.73(1) 0.73(1) 0.73(1) 0.56(1) 0.73(1) 0.73(1) 0.73(1) 0.81(1) 0.41(2)
SP-STAR|0.81(1) 0.66(1) 0.81(1) 0.66(1) 0.66(1) 0.46(1) 0.49(2) 0.46(2) 0.46(3)
ARG|CONSENSUS|0.71(1) 0.54(1) 0.64(1) 0.46(1) 0.48(3) 0.45(2) 0.00  0.00 _ 0.00
(1-part) MEME|0.48(1) 0.46(1) 0.47(1) 0.43(1) 0.37(1) 0.39(2) 0.00  0.00  0.00
SP-STAR|0.54(1) 0.56(1) 0.56(1) 0.47(1) 0.43(1) 0.42(1) 0.45(3) 0.12(3) 0.44(3)
PUR|CONSENSUS|0.94(1) 0.94(1) 0.89(1) 0.83(1) 0.83(1) 0.83(1) 0.55(2) 0.55(2) 0.00
MEME|0.94(1) 0.94(1) 0.89(1) 0.89(1) 0.57(1) 0.52(1) 0.50(1) 0.45(1) 0.50(2)
SP-STAR|0.94(1) 0.94(1) 0.94(1) 0.94(1) 0.94(2) 0.50(2) 0.50(2) 0.50(2) 0.50(2)
CRP|CONSENSUSJ[0.35(1) 0.37(1) 0.36(1) 0.31(3) 0.00  0.00 0.00 0.00 0.00
MEME|0.38(1) 0.40(1) 0.35(1) 0.33(2) 0.27(3) 0.28(3) 0.00  0.25(2) 0.00
SP-STAR|0.43(1) 0.42(1) 0.35(1) 0.41(1) 0.36(2) 0.37(2) 0.36(3) 0.00  0.00

Table 4: Comparison of the performance of the various algorithms by removing sequences
from the CRP sample with upstream sequences of length 200 nt in decreasing order of a
sequence’s strongest site strength. Settings are the same as in Table 2.

CRP number of CRP sequences removed
sample 0 3 6 9 12 15 18 21 24
CONSENSUS | 0.35 0.39 0.20 0.20 0.10 0.08 0.15 0.09 0.00
GibbsDNA | 0.38 0.41 0.36 0.30 0.32 0.16 0.18 0.11 0.00
MEME | 0.38 0.42 0.27 0.18 0.12 0.20 0.14 0.15 0.00
WINNOWER | 0.19 0.09 0.10 0.13 0.00 0.09 0.00 0.00 0.00
SP-STAR | 0.52 0.42 0.34 0.27 0.22 0.23 0.25 0.14 0.00

not too long, SP-STAR was more successful in the difficult cases. The maxi-
mum performance achieved was only about 50%, mostly due to the variability
of the signal: if we consider the 14 non-degenerate positions in the consensus
pattern, about half of the instances are at least 4 mismatches away, which is
beyond the limit of the algorithms.

In the fourth experiment we are interested in how the addition of se-
quences from another sample influences the signal recognition. Similar to be-
fore, only upstream sequences of length 200 nt are considered. An increasing
number of sequences from the CRP samples sorted in decreasing order of a
sequence’s strongest site strength are added to each of the ARG and PUR
samples (stronger ones added first). Table 6 compares the performance of the
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Table 5: Comparison of the performance of the various algorithms by varying both the
lengths of the upstream sequences and the number of sequences that are removed from the
CRP sample. Settings are the same as in Table 2.

CRP CRP sample
seqs. length of upstream sequences
removed| program 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0|{CONSENSUS|0.35 0.38 0.44 0.39 0.38 0.37 0.34 0.37 0.32 0.39 0.32 0.31 0.23 0.23
MEME|0.38 0.40 0.47 0.44 0.44 0.42 0.43 0.43 0.43 0.45 0.43 0.41 0.40 0.38
SP-STAR|0.41 0.31 0.35 0.34 0.33 0.37 0.30 0.30 0.21 0.21 0.20 0.22 0.25 0.19
3|{CONSENSUS|0.39 0.40 0.45 0.43 0.42 0.40 0.38 0.38 0.32 0.29 0.28 0.30 0.00 0.00
MEME(0.38 0.44 0.45 0.44 0.43 0.44 0.44 0.45 0.44 0.45 0.43 0.31 0.40 0.37
SP-STAR|0.33 0.30 0.39 0.35 0.34 0.30 0.30 0.31 0.23 0.27 0.26 0.23 0.20 0.22
6/CONSENSUS|0.40 0.43 0.39 0.40 0.37 0.37 0.36 0.36 0.34 0.34 0.00 0.37 0.25 0.00
MEME/0.52 0.44 0.46 0.42 0.43 0.47 0.46 0.43 0.39 0.38 0.39 0.39 0.37 0.00
SP-STAR|0.33 0.34 0.33 0.30 0.25 0.25 0.30 0.29 0.29 0.31 0.29 0.29 0.22 0.29
9|CONSENSUS|0.41 0.44 0.41 0.41 0.39 0.39 0.39 0.39 0.37 0.37 0.37 0.39 0.41 0.27
MEME|0.44 0.47 0.46 0.41 0.41 0.46 0.46 0.42 0.44 0.43 0.40 0.40 0.36 0.00
SP-STAR|0.35 0.38 0.33 0.30 0.28 0.35 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31
12|CONSENSUS|0.28 0.41 0.38 0.37 0.35 0.35 0.36 0.27 0.21 0.21 0.21 0.22 0.22 0.00
MEME/0.38 0.43 0.38 0.36 0.38 0.38 0.35 0.37 0.34 0.31 0.26 0.35 0.31 0.00
SP-STAR|0.33 0.41 0.40 0.32 0.34 0.31 0.40 0.27 0.27 0.27 0.27 0.27 0.27 0.27
15|CONSENSUS|0.24 0.16 0.35 0.34 0.34 0.34 0.31 0.32 0.02 0.02 0.01 0.18 0.00 0.00
MEME0.39 0.34 0.43 0.27 0.39 0.36 0.33 0.37 0.29 0.01 0.27 0.26 0.00 0.26
SP-STAR|0.29 0.40 0.31 0.29 0.29 0.29 0.33 0.33 0.24 0.24 0.24 0.24 0.24 0.24
18|CONSENSUS|0.12 0.08 0.09 0.09 0.09 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
MEME/0.05 0.27 0.26 0.25 0.14 0.16 0.14 0.03 0.00 0.00 0.00 0.00 0.00 0.00
SP-STAR|0.29 0.32 0.29 0.28 0.28 0.28 0.28 0.28 0.29 0.22 0.26 0.03 0.00 0.00
21|CONSENSUS|0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01
MEME(0.10 0.00 0.05 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.00 0.00
SP-STAR|0.14 0.35 0.23 0.32 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24|CONSENSUS|0.00 0.16 0.04 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00
MEME(0.11 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SP-STAR|0.11 0.29 0.29 0.29 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

various algorithms. Overall, SP-STAR was least affected by the addition of
CRP sequences. GibbsDNA and WINNOWER did not have good performance
when a lot of CRP sequences are added. For the ARG sample (one-part sig-
nals), CONSENSUS and MEME were not very stable when a moderate amount
of CRP sequences are added. In fact, excellent solutions were returned as the
second (non-overlapping) suboptimal solution in all these cases.

3.8 Samples with Unknown Signals

Table 7(a) shows the results of running SP-STAR on the IRON-FACTOR
sample. The consensus shows that the best signal found is highly palindromic
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Table 6: Comparison of the performance of the various algorithms by adding CRP sequences
in decreasing order of a sequence’s strongest site strength to the ARG and PUR samples
with upstream sequences of length 200 nt. Settings are the same as in Table 2.

number of CRP sequences added

sample program 0 3 6 9 12 15 18 21 24
ARG | CONSENSUS | 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
(2-part) GibbsDNA | 0.81 0.81 0.81 0.81 0.81 0.81 0.73 040 0.38

MEME | 0.73 081 0.51 0.81 0.66 0.66 0.73 0.81 0.81
WINNOWER | 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
SP-STAR | 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
ARG | CONSENSUS | 0.71 0.67 0.61 0.61 0.50 0.46 0.00 0.00 0.55
(1-part) GibbsDNA | 0.69 0.63 0.61 0.53 0.47 0.28 0.13 0.25 0.09
MEME | 0.48 0.48 0.50 0.51 0.53 0.39 0.00 0.51 0.51
WINNOWER | 0.37 0.37 0.37 0.37 0.37 0.00 0.19 0.19 0.19
SP-STAR | 0.54 0.61 0.61 0.61 061 061 0.61 0.61 0.61
PUR | CONSENSUS | 0.94 094 0.94 0.89 0.89 0.89 0.85 0.85 0.85
GibbsDNA | 0.89 0.89 0.89 0.85 0.85 0.85 0.74 0.68 0.71
MEME | 094 094 0.89 0.85 0.85 0.81 0.74 0.74 0.74
WINNOWER | 0.94 0.81 0.89 0.84 0.84 0.84 0.71 0.71 0.71
SP-STAR | 0.94 1 1 089 0.89 0.89 085 0.85 0.8

which reinforces our belief that it is very likely to be a biological signal. Table
7(b) shows the results of running SP-STAR on the PYRO-PURINES sample.
Gelfand et al.'® made a prediction on this sample and we found that our
results agree very well with their prediction. We have also run CONSENSUS
(using signal lengths found in Table 7 as input parameter) and MEME on
the two samples and found that these programs give similar results. If the
predictions are assumed to be correct, the IRON-FACTOR sample corresponds
to a (29,8.4)-sample (29% mismatches on average), while the PYRO-PURINES
sample corresponds to a (22,5.6)-sample (25% mismatches on average).

4 Discussion

We have tested and compared the performance of five programs CONSEN-
SUS, GibbsDNA, MEME, WINNOWER and SP-STAR on several biological
samples. All programs perform well on non-corrupted samples when all se-
quences contain relevant binding sites. This condition is very difficult to sat-
isfy in practice. Indeed, many methods used for sample generation, including
clustering of genes with similar expression profiles, analysis of reconstructed
metabolic maps, and locating orthologous genes from known regulons in a re-
lated species, are very likely to create sequences not belonging to the analyzed
regulon. Thus, an important part of the analysis presented here is benchmark-
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Table 7: Results on the (a) IRON-FACTOR and (b) PYRO-PURINES samples. Shown is

the best solution given by SP-STAR while looking for signals up to 40 nt in length with

the maximum total number of sites in a prediction restricted to 2¢, where ¢ is the number

of sequences in the sample. The last string shown is the majority string, showing only the
positions with positive SP column score.

(a)

name pos pattern

(b)

name pos pattern

b_alcA 38 gagaatagaagtcataattattctcattaa
b_alcR 166 ataaaagcgaatgaattgcattatcattaa
s_forA 189 ctaaagggtaataattcttatttacaataa
v-OM 159 atatatgcgaatcgttatcatttgtatttt
v_reg 189 aaaaatacaaatgataacgattcgcatata
y-ybtA 103 attaatgtgaataataaccattatcaataa
y_ybtP 150 gttattgataatggttattattcacattaa

PH(239 189 cttttgccagatatatgtctaaaaaa
PH0239 231 atttttacataaacatggtgaaatta
PH0240 190 atttcaccatgtttatgtaaaaatca
PH(0240 232 ttttagacatatatctggcaaaagat
PH0318 187 atttaaacatatttatgttaaaaagg
PH(318 229 attttaacatttatacgtcaattagg
PH0320 150 cgattagcacatatatgtagaaatat

ataaatg--aat-atta--att--cattaa|PH(0323 186 ttgttaacacgtttatgtaaacaaaa
PH0323 229 attttgacttaaatatggtgatataa
PH(0438 186 ctattaacatagccctgtcaaaaggg
PH(0852 177 agatttctacaaatatgtcaaaaaca
PH0852 220 attttaccgtgaaaatggtgatataa
PH1955 166 tgattgacatttctttgtcaaaataa
PH1955 208 atttttacatttttctggcaaataag

atttt-acatatatatgtcaaaa--a

ing of the programs on corrupted samples. This was modeled in three ways:
adding sequences with no sites, removing the strongest sites from a sample,
and adding sequences with sites of a different origin to a sample.

In the experiment on addition of random sequences with no sites, MEME
outperformed CONSENSUS and SP-STAR on both analyzed samples when at
most one site are allowed per sequence. When multiple sites are allowed, SP-
STAR performed slightly better than the other programs in the most difficult
cases. In the experiment on removal of strong sites, the leaders were MEME
and SP-STAR, with GibbsDNA demonstrating comparable or even slightly
superior results when not too many sites are removed. In the experiment on
addition of sequences from a different sample, GibbsDNA and WINNOWER
clearly trailed, with CONSENSUS and SP-STAR being the leaders.

It does not seem possible to recommend a single program for use in all
situations. However, this study allows us to make a few practical suggestions.
The first one is simple: use all available programs. It seems that the programs
are not affected much by varying fragment lengths. As the sites may occur at
varying distances from the start site, it is safer to err to the side of using longer
fragments. Also, it looks like that asking for at most one site per sequence im-
proves the performance. In this case, additional sites can be found by standard
search methods using consensus or positional weight matrix representation.
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