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Figure 1. Performance retention on permuted MNIST. Shown is
the test accuracy on an initial permutation (Task A) over the course
of training on the remaining set of tasks (Tasks B-E).

A. Retention of task performance for EWC
and online EWC

The difference between EWC and online-EWC is in their
weighting of the past experiences, with EWC putting more
weight on the initial tasks and online-EWC favouring the
most recent past. For an optimal setting, where the optimisa-
tion converges and all penalty terms can be satisfied (Huszár,
2017), online-EWC is often a better choice. However, it
is likely that in difficult problems, the network (an agent)
doesn’t get enough time/training data to arrive at the optimal
solution.

We investigated this hypothesis in a series of experiments
with a sequential learning of permuted-MNIST images, sim-
ilar to the experiments shown in (Kirkpatrick et al., 2017).
In order to emulate learning difficult problems, we have
not optimised the hyper-parameters, nor used any dropout
or early stopping. Instead, we used a small MLP (layers
consisting of 30-30-10 neurons, and Relu nonlinearities
between the first two).

Figure 1 demonstrates the retainment of the skill for the
initial task (Task A) by EWC, online-EWC and pure SGD
training (with no additional penalties), over the course of
learning on a total of 5 permutations (Tasks A-E). As ex-
pected, EWC keeps higher accuracy for Task A.

In Fig. 2, we plot the final accuracy for each of the tasks
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Figure 2. Comparison of EWC, online-EWC and Finetuning
We ran the three training methods on 5 permuted-MNIST
tasks ((Kirkpatrick et al., 2017)). The accuracy at the end
of training is shown for each task with the fainter colours
relating to the older tasks. The number of training steps on
the x-axis relates to the number of minibatches of each task
used for the training. In this regime (see text for details),
EWC appears to be a better choice for a small number of
training steps.

(colour saturating from the faintest one representing Task A
to the fully saturated for Task E), as a function of the number
of training steps spent on each task. Here, we run 10 training
sessions per fixed amount of training steps, generating new
permutations for each training, but feeding exactly the same
data to all methods (dot represents the mean and bars: 1
standard deviation (bar)).

For a small number of training steps (500 and 1000, training
over minibatches of size 32), the network benefits from
holding on to the memories of the earlier tasks (the accuracy
of EWC, i.e. all blue dots in the plot are higher than for the
online EWC, the red dots). With more data (10,000 training
steps), holding on to the initial parameters makes it more
difficult to retain the most recent tasks (compare the dark
blue dots of n=10,000 with n=500). In this example (with
a relatively high learning rate η = 0.1), the online EWC
doesn’t seem to find a good balance between the loss and
penalties and the performance on older tasks is not well
retained (faint red dots), although it’s still better than using
no penalty at all (grey dots).

B. Faster learning on Omniglot
While the experiments on Omniglot in the main text show
that all considered methods fail to obtain a higher accu-
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Figure 3. Faster learning on Omniglot with Progress & Compress.
Results averaged over 10 alphabets.

racy through sequential learning in the Omniglot case,
improved data efficiency can indeed be observed for
Progress&Compress (P&C).

In order to test this in isolation, we trained P&C (with
online-EWC) on 10 unique Omniglot alphabets, after having
learned up to 4 different tasks. We show both the averaged
learning curves as well as the area under those learning
curves in Figure 3. The results suggest that pre-training on
a small number of tasks can greatly improve data efficiency,
with this effect plateauing for more than 4 tasks.

C. Experiment details
C.1. Omniglot

In the Omniglot experiments, we used a convolutional net-
work similar to the one introduced by Vinyals et al. (2016),
ensuring each method has sufficient capacity to learn all
tasks. Namely, the network consists of 4 blocks of 3 × 3
convolutions with 64 filters followed by a ReLU nonlinear-
ity, and 2× 2 max-pooling before predicting class probabil-
ities. In the case of P&C and Progressive Nets, all network
columns follow this architecture. As suggested in (Rusu
et al., 2016), non-linear adapters for convolutional networks
are implemented by replacing each linear layer by a 1× 1

convolutions using an identical number of filters.

Similar to the setup proposed in (Koch et al., 2015) we used
a 60/20/20% split to obtain train-/valid- and test-sets. In
addition, we rescaled all images to 28× 28 and augment the
dataset by including 20 random permutations (rotations and
shifting) for each image. Note that since we are not treating
Omniglot in the usual few-shot learning fashion, we do not
distinguish between train and test alphabets.

For all considered models, we used a batch size of 32 and
perform 2500 training updates with Stochastic Gradient
Descent and a fixed learning rate of 0.1 (0.05 during dis-
tillation), which we found sufficient to learn each alphabet
separately from scratch.

For EWC, online EWC and P&C, we chose the regulari-
sation strength λ and forgetting coefficient γ by running a
grid search for λ=[10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0]
and γ=[0.7, 0.8, 0.9, 0.95, 0.99]. For Learning Without
Forgetting (LwF) we tried λ=[0.05, 0.1, 0.15, 0.2, 0.25, 0.3].
For distillation within P&C and LwF, we found a softmax
temperature τ = 2.0 to work best. All hyperparmeters were
tuned by maximising the averaged performance over all
tasks using aforementioned validation set.

Note that we use the same network and optimisation settings
throughout all experiments. This is with the exception of
results showing positive transfer and forgetting in isolation,
in which case we fix λ for all EWC methods to provide a
fair comparison.

C.2. Atari & Navigation tasks

For both Atari&Navigation tasks we use the same network
as in (Mnih et al., 2013), adopting it to actor-critic algo-
rithms by estimating both value and policy through linear
layers connected to the final output of a shared network. Dur-
ing optimisation, we use a batchsize of 20, unroll length of
20 and update the model parameters with RMSProp (using
ε = 0.1), linearly annealing the learning rate to 0 over the
course of training. For navigation mazes, we used an initial
learning rate of α = 0.004 and entropy cost β = 0.003. For
Atari games, we used α = 0.0006 and β = 0.01. In both
cases, we receive RGB environment frames as 84× 84× 3
tensors. As is common, we apply each action 4 times to the
environment.

Furthermore, we use clip rewards so that the maximum
absolute reward is 1.0. We also use a baseline cost of 0.5 in
the policy gradient loss. The discounting factor was set to
0.99.

EWC was separately tuned choosing λ from [500, 1000,
1500, 2000, 2500, 3000]. As the scale of the losses differ,
we selected λ for online EWC as applied in P&C among
[25, 75, 125, 175]. We use 100 minibatches of equal size to
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estimate the diagonal Fisher.
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