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Abstract
We introduce SCAL, an algorithm designed to per-
form efficient exploration-exploitation in any un-
known weakly-communicating Markov decision
process (MDP) for which an upper bound c on the
span of the optimal bias function is known. For
an MDP with S states, A actions and Γ ≤ S
possible next states, we prove a regret bound
of Õ(c

√
ΓSAT ), which significantly improves

over existing algorithms (e.g., UCRL and PSRL),
whose regret scales linearly with the MDP diam-
eter D. In fact, the optimal bias span is finite
and often much smaller than D (e.g., D =∞ in
non-communicating MDPs). A similar result was
originally derived by Bartlett and Tewari (2009)
for REGAL.C, for which no tractable algorithm is
available. In this paper, we relax the optimiza-
tion problem at the core of REGAL.C, we carefully
analyze its properties, and we provide the first
computationally efficient algorithm to solve it. Fi-
nally, we report numerical simulations supporting
our theoretical findings and showing how SCAL
significantly outperforms UCRL in MDPs with
large diameter and small span.

1. Introduction
While learning in an unknown environment, a reinforcement
learning (RL) agent must trade off the exploration needed
to collect information about the dynamics and reward, and
the exploitation of the experience gathered so far to gain
as much reward as possible. In this paper, we focus on
the regret framework (Jaksch et al., 2010), which evaluates
the exploration-exploitation performance by comparing the
rewards accumulated by the agent and an optimal policy. A
common approach to the exploration-exploitation dilemma
is the optimism in face of uncertainty (OFU) principle: the
agent maintains optimistic estimates of the value function
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and, at each step, it executes the policy with highest opti-
mistic value (e.g., Brafman and Tennenholtz, 2002; Jaksch
et al., 2010; Bartlett and Tewari, 2009). An alternative
approach is posterior sampling (Thompson, 1933), which
maintains a Bayesian distribution over MDPs (i.e., dynam-
ics and expected reward) and, at each step, samples an MDP
and executes the corresponding optimal policy (e.g., Osband
et al., 2013; Abbasi-Yadkori and Szepesvári, 2015; Osband
and Roy, 2017; Ouyang et al., 2017; Agrawal and Jia, 2017).

Given a finite MDP with S states,A actions, and diameterD
(i.e., the time needed to connect any two states), Jaksch et al.
(2010) proved that no algorithm can achieve regret smaller
than Ω(

√
DSAT ). While recent work successfully closed

the gap between upper and lower bounds w.r.t. the depen-
dency on the number of states (e.g., Agrawal and Jia, 2017;
Azar et al., 2017), relatively little attention has been devoted
to the dependency on D. While the diameter quantifies the
number of steps needed to “recover” from a bad state in the
worst case, the actual regret incurred while “recovering” is
related to the difference in potential reward between “bad”
and “good” states, which is accurately measured by the span
(i.e., the range) sp {h∗} of the optimal bias function h∗.
While the diameter is an upper bound on the bias span,
it could be arbitrarily larger (e.g., weakly-communicating
MDPs may have finite span and infinite diameter) thus sug-
gesting that algorithms whose regret scales with the span
may perform significantly better.1 Building on the idea that
the OFU principle should be mitigated by the bias span of
the optimistic solution, Bartlett and Tewari (2009) proposed
three different algorithms (referred to as REGAL) achieving
regret scaling with sp {h∗} instead ofD. The first algorithm
defines a span regularized problem, where the regulariza-
tion constant needs to be carefully tuned depending on the
state-action pairs visited in the future, which makes it unfea-
sible in practice. Alternatively, they propose a constrained
variant, called REGAL.C, where the regularized problem is
replaced by a constraint on the span. Assuming that an
upper-bound c on the bias span of the optimal policy is

1The proof of the lower bound relies on the construction of an
MDP whose diameter actually coincides with the bias span (up to a
multiplicative numerical constant), thus leaving the open question
whether the “actual” lower bound depends on D or the bias span.
See (Osband and Roy, 2016) for a more thorough discussion.
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known (i.e., sp {h∗} ≤ c), REGAL.C achieves regret upper-
bounded by Õ(min{D, c}S

√
AT ). Unfortunately, they do

not propose any computationally tractable algorithm solving
the constrained optimization problem, which may even be
ill-posed in some cases. Finally, REGAL.D avoids the need
of knowing the future visits by using a doubling trick, but
still requires solving a regularized problem, for which no
computationally tractable algorithm is known.

In this paper, we build on REGAL.C and propose a con-
strained optimization problem for which we derive a com-
putationally efficient algorithm, called SCOPT. We identify
conditions under which SCOPT converges to the optimal
solution and propose a suitable stopping criterion to achieve
an ε-optimal policy. Finally, we show that using a slightly
modified optimistic argument, the convergence conditions
are always satisfied and the learning algorithm obtained by
integrating SCOPT into a UCRL-like scheme (resulting into
SCAL) achieves regret scaling as Õ(min{D, c}

√
ΓSAT )

when an upper-bound c on the optimal bias span is available,
thus providing the first computationally tractable algorithm
that can solve weakly-communicating MDPs.

2. Preliminaries
We consider a finite weakly-communicating Markov deci-
sion process (Puterman, 1994, Sec. 8.3) M = 〈S,A, r, p〉
with a set of states S and a set of actions A =

⋃
s∈S As.

Each state-action pair (s, a) ∈ S × As is characterized
by a reward distribution with mean r(s, a) and support
in [0, rmax] as well as a transition probability distribution
p(·|s, a) over next states. We denote by S = |S| and
A = maxs∈S |As| the number of states and actions, and
by Γ the maximum support of all transition probabilities.
A Markov randomized decision rule d : S → P(A) maps
states to distributions over actions. The corresponding set is
denoted by DMR, while the subset of Markov deterministic
decision rules is DMD. A stationary policy π = (d, d, . . .)
=: d∞ repeatedly applies the same decision rule d over
time. The set of stationary policies defined by Markov ran-
domized (resp. deterministic) decision rules is denoted by
ΠSR(M) (resp. ΠSD(M)). The long-term average reward
(or gain) of a policy π ∈ ΠSR(M) starting from s ∈ S is

gπM (s) := lim
T→+∞

EQ

[
1

T

T∑
t=1

r(st, at)

]
,

where Q := P (·|at ∼ π(st); s0 = s;M). Any stationary
policy π ∈ ΠSR has an associated bias function defined as

hπM (s) := C- lim
T→+∞

EQ

[
T∑
t=1

(
r(st, at)− gπM (st)

)]
,

that measures the expected total difference between the
reward and the stationary reward in Cesaro-limit2 (de-

2For policies with an aperiodic chain, the standard limit exists.

noted C- lim). Accordingly, the difference of bias values
hπM (s)− hπM (s′) quantifies the (dis-)advantage of starting
in state s rather than s′. In the following, we drop the depen-
dency on M whenever clear from the context and denote
by sp {hπ} := maxs h

π(s) − mins h
π(s) the span of the

bias function. In weakly communicating MDPs, any op-
timal policy π∗ ∈ arg maxπ g

π(s) has constant gain, i.e.,
gπ
∗
(s) = g∗ for all s ∈ S . Let Pd ∈ RS×S and rd ∈ RS be

the transition matrix and reward vector associated with de-
cision rule d ∈ DMR. We denote by Ld and L the Bellman
operator associated with d and optimal Bellman operator

∀v ∈ RS , Ldv := rd + Pdv; Lv := max
d∈DMR

{
rd + Pdv

}
.

For any policy π = d∞ ∈ ΠSR, the gain gπ and bias hπ

satisfy the following system of evaluation equations

gπ = Pdg
π; hπ = Ldh

π − gπ. (1)

Moreover, there exists a policy π∗ ∈ arg maxπ g
π(s) for

which (g∗, h∗) = (gπ
∗
, hπ

∗
) satisfy the optimality equation

h∗ = Lh∗ − g∗e, where e = (1, . . . , 1)ᵀ. (2)

Finally, we denote by D := max(s,s′)∈S×S,s6=s′{τM (s →
s′)} the diameter of M , where τM (s→ s′) is the minimal
expected number of steps needed to reach s′ from s in M .

Learning problem. Let M∗ be the true unknown MDP. We
consider the learning problem where S, A and rmax are
known, while rewards r and transition probabilities p are
unknown and need to be estimated on-line. We evaluate the
performance of a learning algorithm A after T time steps by
its cumulative regret ∆(A, T ) = Tg∗ −∑T

t=1 rt(st, at).

3. Optimistic Exploration-Exploitation
Since our proposed algorithm SCAL (Sec. 6) is a tractable
variant of REGAL.C and thus a modification of UCRL, we
first recall their common structure summarized in Fig. 1.

3.1. Upper-Confidence Reinforcement Learning
UCRL proceeds through episodes k = 1, 2 . . . At the begin-
ning of each episode k, UCRL computes a set of plausible
MDPs defined as Mk =

{
M = 〈S,A, r̃, p̃〉 : r̃(s, a) ∈

Bkr (s, a), p̃(s′|s, a) ∈ Bkp (s, a, s′),
∑
s′ p̃(s

′|s, a) = 1
}

,
where Bkr and Bkp are high-probability confidence intervals
on the rewards and transition probabilities of the true MDP
M∗, which guarantees that M∗ ∈Mk w.h.p. We use con-
fidence intervals constructed using empirical Bernstein’s
inequality (Audibert et al., 2007; Maurer and Pontil, 2009)

βsar,k :=

√
14σ̂2

r,k(s, a)bk,δ

max{1, Nk(s, a)} +
49
3 rmaxbk,δ

max{1, Nk(s, a)− 1} ,

βsas
′

p,k :=

√
14σ̂2

p,k(s′|s, a)bk,δ

max{1, Nk(s, a)} +
49
3 bk,δ

max{1, Nk(s, a)− 1} ,
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where Nk(s, a) is the number of visits in (s, a) be-
fore episode k, σ̂2

r,k(s, a) and σ̂2
p,k(s′|s, a) are the em-

pirical variances of r(s, a) and p(s′|s, a) and bk,δ =
ln(2SAtk/δ). Given the empirical averages r̂k(s, a) and
p̂k(s′|s, a) of rewards and transitions, we define Mk by
Bkr (s, a) := [r̂k(s, a)−βsar,k, r̂k(s, a)+βsar,k]∩[0, rmax] and
Bkp (s, a, s′) := [p̂k(s′|s, a)− βsas′p,k , p̂k(s′|s, a) + βsas

′

p,k ] ∩
[0, 1].

OnceMk has been computed, UCRL finds an approximate
solution (M̃∗k , π̃

∗
k) to the optimization problem

(M̃∗k , π̃
∗
k) ∈ arg max

M∈Mk,π∈ΠSD(M)

gπM . (3)

Since M∗ ∈ Mk w.h.p., it holds that g∗
M̃k
≥ g∗M∗ . As

noticed by Jaksch et al. (2010), problem (3) is equivalent
to finding µ̃∗ ∈ arg max

µ∈ΠSD(M̃k)

{
gµ
M̃k

}
where M̃k is

the extended MDP (sometimes called bounded-parameter
MDP) implicitly defined byMk. More precisely, in M̃k

the (finite) action space A is “extended” to a compact ac-
tion space Ãk by considering every possible value of the
confidence intervals Bkr (s, a) and Bkp (s, a, s′) as fictitious
actions. The equivalence between the two problems comes
from the fact that for each µ̃ ∈ ΠSD(M̃k) there exists a
pair (M̃, π̃) such that the policies π̃ and µ̃ induce the same
Markov reward process on respectively M̃ and M̃k, and
conversely. Consequently, (3) can be solved by running
so-called extended value iteration (EVI): starting from an
initial vector u0 = 0, EVI recursively computes

un+1(s)=max
a,r̃,p̃

[
r̃(s, a) + p̃(·|s, a)Tun

]
= L̃un(s), (4)

where L̃ is the optimistic optimal Bellman operator associ-
ated to M̃k. If EVI is stopped when sp {un+1 − un} ≤ εk,
then the greedy policy µ̃k w.r.t. un is guaranteed to be εk-
optimal, i.e., gµ̃k

M̃k
≥ g∗

M̃k
− εk ≥ g∗M∗ − εk. Therefore,

the policy π̃k associated to µ̃k is an optimistic εk-optimal
policy, and UCRL executes π̃k until the end of episode k.

3.2. A first relaxation of REGAL.C

REGAL.C follows the same steps as UCRL but instead of
solving problem (3), it tries to find the best optimistic model
M̃∗RC ∈MRC having constrained optimal bias span i.e.,

(M̃∗RC, π̃
∗
RC) = arg max

M∈MRC,π∈ΠSD(M)

gπM , (5)

where MRC := {M ∈ Mk : sp {h∗M} ≤ c} is the set
of plausible MDPs with bias span of the optimal policy
bounded by c. Under the assumption that sp {h∗M∗} ≤ c,
REGAL.C discards any MDP M ∈Mk whose optimal pol-
icy has a span larger than c (i.e., sp {h∗M} > c) and other-
wise looks for the MDP with highest optimal gain g∗(M).
Unfortunately, there is no guarantee that all MDPs inMRC
are weakly communicating and thus have constant gain. As

Input: Confidence δ ∈]0, 1[, rmax, S, A, a constant c ≥ 0
For episodes k = 1, 2, ... do

1. Set tk = t and episode counters νk(s, a) = 0.

2. Compute estimates p̂k(s′|s, a), r̂k(s, a) and a confidence
setMk (UCRL, REGAL.C), resp.M‡k (SCAL).

3. Compute an rmax/
√
tk-approximation π̃k of the solution of

Eq. 3 (UCRL), resp. Eq. 5 (REGAL.C), resp. Eq. 15 (SCAL).

4. Sample action at ∼ π̃k(·|st).

5. While νk(st, at) ≤ max{1, Nk(st, at)} do

(a) Execute at, obtain reward rt, and observe next state st+1.
(b) Set νk(st, at) += 1.
(c) Sample action at+1 ∼ π̃k(·|st+1) and set t += 1.

6. Set Nk+1(s, a) = Nk(s, a) + νk(s, a).

Figure 1. The general structure of optimistic algorithms for RL.

a result, we suspect this problem to be ill-posed (i.e., the
maximum is most likely not well-defined). Moreover, even
if it is well-posed, searching the spaceMRC seems to be
computationally intractable. Finally, for any M ∈ Mk,
there may be several optimal policies with different bias
spans and some of them may not satisfy the optimality equa-
tion (2) and are thus difficult to compute.

In this paper, we slightly modify problem (5) as follows:

(M̃∗c , π̃
∗
c ) ∈ arg max

M∈Mk,π∈Πc(M)

gπM , (6)

where the search space of policies is defined as

Πc(M) :=
{
π ∈ ΠSR : sp {hπM} ≤ c ∧ sp {gπM} = 0

}
,

and maxπ∈Πc(M){gπM} = −∞ if Πc(M) = ∅. Sim-
ilarly to (3), problem (6) is equivalent to solving µ̃∗c ∈
arg max

µ∈Πc(M̃k)

{
gµ
M̃k

}
. Unlike (5), for every MDP in

Mk (not just those inMRC), (6) considers all (stationary)
policies with constant gain satisfying the span constraint
(not just the deterministic optimal policies).

Since gπM and sp {hπM} are in general non-continuous func-
tions of (M , π), the argmax in (5) and (6) may not exist.
Nevertheless, by reasoning in terms of supremum value, we
can show that (6) is always a relaxation of (5) (where we
enforce the additional constraint of constant gain).

Proposition 1. Define the following restricted set of MDPs
Ek =MRC ∩ {M ∈Mk : sp {g∗M} = 0}. Then

sup
M∈Ek,π∈ΠSD

gπM ≤ sup
M∈Mk,π∈Πc(M)

gπM .

Proof. The result follows from the fact that Ek ⊆Mk and
∀M ∈ Ek, arg maxπ∈ΠSD{gπM} ⊆ Πc(M).
As a result, the optimism principle is preserved when moving
from (5) to (6) and since the set of admissible MDPsMk

is the same, any algorithm solving (6) would enjoy the
same regret guarantees as REGAL.C. In the following we
further characterise problem (6), introduce a truncated value
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Figure 2. Toy example with deterministic transitions and reward
for all actions.

iteration algorithm to solve it, and finally integrate it into a
UCRL-like scheme to recover REGAL.C regret guarantees.

4. The Optimization Problem
In this section we analyze some properties of the following
optimization problem, of which (6) is an instance,

sup
π∈Πc(M)

{gπM} , (7)

where M is any MDP (with discrete or compact action
space) s.t. Πc(M) 6= ∅. Problem (7) aims at finding a policy
that maximizes the gain gπM within the set of randomized
policies with constant gain (i.e., sp {gπM} = 0) and bias span
smaller than c (i.e., sp {hπM} ≤ c). Since gπM ∈ [0, rmax]
the supremum always exists and we denote it by g∗c (M).
The set of maximizers is denoted by Π∗c(M) ⊆ Πc(M),
with elements π∗c (M) (if Π∗c(M) is non-empty).

In order to give some intuition about the solutions of prob-
lem (7), we introduce the following illustrative MDP.

Example 1. Consider the two-states MDP depicted in
Fig. 2. For a generic stationary policy π ∈ ΠSR with deci-
sion rule d ∈ DMR we have that

d =

[
x 1− x
y 1− y

]
; Pd =

[
1− x x
y 1− y

]
, rd =

[
1−x

2
1− y

]
.

We can compute the gain g = [g1, g2] and the bias h =
[h1, h2] by solving the linear system (1). For any x > 0 or
y > 0, we obtain

g1 =g2 =
1

2
+ x

1− 3y

2(x+ y)
; h2 − h1 =

1

2
+

1− 3y

2(x+ y)
,

while for x = 0, y = 0, we have g1 = 1/2 and g2 = 1,
with h2 = h1 = 0. Note that 0 ≤ sp {hπ} ≤ 1 for any
π ∈ ΠSR. In the following, we will use this example choosing
particular values for x, y, and c to illustrate some important
properties of optimization problem (7).

Randomized policies. The following lemma shows that,
unlike in unconstrained gain maximization where there al-
ways exists an optimal deterministic policy, the solution
of (7) may indeed be a randomized policy.

Lemma 2. There exists an MDP M and a scalar c ≥ 0,
such that Π∗c(M) 6= ∅ and Π∗c(M) ∩ΠSD(M) = ∅.

Proof. Consider Ex. 1 with constraint 1/2 < c < 1. The
only deterministic policy πD with constant gain and bias

span smaller than c is defined by the decision rule with x =
0 and y = 1, which leads to gπD = 1/2 and sp {hπD} =
1/2. On the other hand, a randomized policy πR can satisfy
the constraint and maximize the gain by taking x = 1 and
y = (1− c)/(1 + c), which gives sp {hπR} = c and gπR =
c > gπD , thus proving the statement.

Constant gain. The following lemma shows that if we
consider non-constant gain policies, the supremum in (7)
may not be well defined, as no dominating policy exists. A
policy π ∈ ΠSR is dominating if for any policy π′ ∈ ΠSR,
gπ(s) ≥ gπ′(s) in all states s ∈ S.

Lemma 3. There exists an MDP M and a scalar c ≥ 0,
such that there exists no dominating policy π in ΠSR with
constrained bias span (i.e., sp {hπ} ≤ c).

Proof. Consider Ex. 1 with constraint 1/2 < c < 1. As
shown in the proof of Lem. 2, the optimal stationary policy
πR with constant gain has g∗c = [c, c]. On the other hand,
the only policy π with non-constant gain is x = 0, y = 0,
which has sp {hπ} = 0 < c and gπ(s0) = 1/2 < c = g∗c
and gπ(s1) = 1 > c = g∗c , thus proving the statement.

On the other hand, when the search space is restricted to
policies with constant gain, the optimization problem is well
posed. Whether problem (7) always admits a maximizer is
left as an open question. The main difficulty comes from
the fact that, in general, π 7→ gπ is not a continuous map
and Πc is not a closed set. For instance in Ex. 1, although
the maximum is attained, the point x = 0, y = 0 does not
belong to Πc (i.e., Πc is not closed) and gπ is not continuous
at this point. Notice that when the MDP is unichain (Puter-
man, 1994, Sec. 8.3), Πc is compact, gπ is continuous, and
we can prove the following lemma (see App. A):

Lemma 4. If M is unichain then Π∗c(M) 6= ∅.

We will later show that for the specific instances of (7) that
are encountered by our algorithm SCAL, Lem. 4 holds.

5. Planning with SCOPT

In this section, we introduce SCOPT and derive sufficient
conditions for its convergence to the solution of (7). In the
next section, we will show that these assumptions always
hold when SCOPT is carefully integrated into UCRL (while
in App. B we show that they may not hold in general).

5.1. Span-constrained value and policy operators
SCOPT is a version of (relative) value iteration (Puterman,
1994; Bertsekas, 1995), where the optimal Bellman operator
is modified to return value functions with span bounded by c,
and the stopping condition is tailored to return a constrained
greedy policy with near-optimal gain. We first introduce a
constrained version of the optimal Bellman operator L.
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Input: Initial vector v0 ∈ RS , reference state s ∈ S , contractive
factor γ ∈ (0, 1), accuracy ε ∈ (0,+∞)
Output: Vector vn ∈ RS , policy πn = (Gcvn)∞

1. Initialize n = 0 and v1 = Tcv0 − (Tcv0)(s)e,

2. While sp {vn+1 − vn}+ 2γn

1−γ sp {v1 − v0} > ε do
(a) n += 1.
(b) vn+1 = Tcvn − (Tcvn)(s)e.

Figure 3. Algorithm SCOPT.

Definition 1. Given v ∈ RS and c ≥ 0, we define the value
operator Tc : RS → RS as

Tcv =

{
Lv(s) ∀s ∈ S(c, v),

c+ mins{Lv(s)} ∀s ∈ S \ S(c, v),
(8)

where S(c, v) = {s ∈ S|Lv(s) ≤ mins{Lv(s)}+ c}.

In other words, operator Tc applies a span truncation to
the one-step application of L, that is, for any state s ∈ S,
Tcv(s) = min{Lv(s),minx Lv(x) + c}, which guarantees
that sp {Tcv} ≤ c. Unlike L, operator Tc is not always as-
sociated with a decision rule d s.t. Tcv = Ldv (see App. B).
We say that Tc is feasible at v ∈ RS and s ∈ S if there
exists a distribution δ+

v (s) ∈ P(A) such that

Tcv(s) =
∑
a∈As

δ+
v (s, a)

[
r(s, a) + p(·|s, a)Tv

]
. (9)

When a distribution δ+
v (s) exists in all states, we say that

Tc is globally feasible at v, and δ+
v is its associated decision

rule, i.e., Tcv = Lδ+v v. In the following lemma, we identify
sufficient and necessary conditions for (global) feasibility.

Lemma 5. Operator Tc is feasible at v ∈ RS and s ∈ S if
and only if

min
a∈As

{r(s, a) + p(·|s, a)Tv} ≤ min
s′
{Lv(s′)}+ c. (10)

Furthermore, let

D(c, v) :=
{
d ∈ DMR | sp {Ldv} ≤ c

}
(11)

be the set of randomized decision rules d whose associated
operator Ld returns a span-constrained value function when
applied to v. Then, Tcv is globally feasible if and only if
D(c, v) 6= ∅, in which case we have

Tcv = max
δ∈D(c,v)

Lδv, and δ+
v ∈ arg max

δ∈D(c,v)

Lδv. (12)

The last part of this lemma shows that when Tc is globally
feasible at v (i.e., D(c, v) 6= ∅), Tcv = Lδ+v v is the compo-
nentwise maximal value function of the form Lδv with deci-
sion rule δ ∈ DMR satisfying sp {Lδv} ≤ c. Surprisingly,
even in the presence of a constraint on the one-step value
span, such a componentwise maximum still exists (which
is not as straightforward as in the case of the greedy oper-
ator L). Therefore, whenever D(c, v) 6= ∅, optimization
problem (12) can be seen as an LP-problem (see App. A.2).

Definition 2. Given v ∈ RS and c ≥ 0, let S̃(c, v) be
the set of states where Tcv is feasible (condition (10)) with
δ+
v (s) be the associated decision rule (Eq. 9). We define the

operator Gc : RS → DMR as3

Gcv=

δ
+
v (s) s ∈ S̃(C, v),

arg min
a∈As

{
r(s, a) + p(·|s, a)Tv

}
s ∈ S\S̃(C, v).

As a result, if Tc is globally feasible at v, by definition
Gcv = δ+

v . Note that computing δ+
v is not significantly

more difficult than computing a greedy policy (see App. C
for an efficient implementation).

We are now ready to introduce SCOPT (Fig. 3). Given a
vector v0 ∈ RS and a reference state s, SCOPT implements
relative value iteration where L is replaced by Tc, i.e.,

vn+1 = Tcvn − Tcvn(s)e. (13)

Notice that the term (Tcvn)(s)e subtracted at any itera-
tion n prevents vn from increasing linearly with n and thus
avoids numerical instability. However, the subtraction can
be dropped without affecting the convergence properties
of SCOPT. If the stopping condition is met at iteration n,
SCOPT returns policy πn = d∞n where dn = Gcvn.

5.2. Convergence and Optimality Guarantees
In order to derive convergence and optimality guarantees
for SCOPT we need to analyze the properties of operator Tc.
We start by proving that Tc preserves the one-step span
contraction properties of L.

Assumption 6. The optimal Bellman operator L is a 1-step
γ-span-contraction, i.e., there exists a γ < 1 such that for
any vectors u, v ∈ RS , sp {Lu− Lv} ≤ γsp {u− v}.4

Lemma 7. Under Asm. 6, Tc is a γ-span contraction.

The proof of Lemma 7 relies on the fact that the truncation
of L in the definition of Tc is non-expansive in span semi-
norm. Details are given in App. D, where it is also shown
that Tc preserves other properties of L such as monotonicity
and linearity. It then follows that Tc admits a fixed point
solution to an optimality equation (similar to L) and thus
SCOPT converges to the corresponding bias and gain, the
latter being an upper-bound on the optimal solution of (7).
We formally state these results in Lem. 8.

Lemma 8. Under Asm. 6, the following properties hold:

1. Optimality equation and uniqueness: There exists a
solution (g+, h+) ∈ R×RS to the optimality equation

Tch
+ = h+ + g+e. (14)

3When there are several policies δ+v achieving Tcv(s) =
L
δ+v
v(s) in state s ∈ S, Gc chooses an arbitrary decision rule.

4In the undiscounted setting, if the MDP is unichain, L is a
J-stage contraction with S ≥ J ≥ 1.
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If (g, h) ∈ R × RS is another solution of (14), then
g = g+ and there exists λ ∈ R s.t. h = h+ + λe.

2. Convergence: For any initial vector v0 ∈ RS , the
sequence (vn) generated by SCOPT converges to a so-
lution vector h+ of the optimality equation (14), and

lim
n→+∞

Tn+1
c v0 − Tnc v0 = g+e.

3. Dominance: The gain g+ is an upper-bound on the
supremum of (7), i.e., g+ ≥ g∗c .

A direct consequence of point 2 of Lem. 8 (convergence) is
that SCOPT always stops after a finite number of iterations.
Nonetheless, Tc may not always be globally feasible at h+

(see App. B) and thus there may be no policy associated
to optimality equation (14). Furthermore, even when there
is one, Lem. 8 provides no guarantee on the performance
of the policy returned by SCOPT after a finite number of
iterations. To overcome these limitations, we introduce an
additional assumption, which leads to stronger performance
guarantees for SCOPT.
Assumption 9. Operator Tc is globally feasible at any vec-
tor v ∈ RS such that sp {v} ≤ c.
Theorem 10. Assume Asm. 6 and 9 hold and let γ denote
the contractive factor of Tc (Asm. 6). For any v0 ∈ RS such
that sp {v0} ≤ c, any s ∈ S and any ε > 0, the policy πn
output by SCOPT(v0, s, γ, ε) is such that ‖g+e−gπn‖∞ ≤ ε.
Furthermore, if in addition the policy π+ = (Gch

+)∞ is
unichain, g+ is the solution to optimization problem (7) i.e.,
g+ = g∗c and π+ ∈ Π∗c .

The first part of the theorem shows that the stopping condi-
tion used in Fig. 3 ensures that SCOPT returns an ε-optimal
policy πn. Notice that while sp {h+} = sp {Tch+} ≤ c
by definition of Tc, in general when the policy π+ =
(Gch

+)∞ associated to h+ is not unichain, we might have
sp {h+} < sp{hπ+}. On the other hand, Corollary 8.2.7.
of Puterman (1994) ensures that if π+ is unichain then
sp {h+} = sp{hπ+}, hence the second part of the theorem.
Notice also that even if π+ is unichain, we cannot guarantee
that πn satisfies the span constraint, i.e., sp {hπn} may be
arbitrary larger than c. Nonetheless, in the next section, we
show that the definition of Tc and Thm. 10 are sufficient to
derive regret bounds when SCOPT is integrated into UCRL.

6. Learning with SCAL

In this section we introduce SCAL, an optimistic online
RL algorithm that employs SCOPT to compute policies that
efficiently balance exploration and exploitation. We prove
that the assumptions stated in Sec. 5.2 hold when SCOPT is
integrated into the optimistic framework. Finally, we show
that SCAL enjoys the same regret guarantees as REGAL.C,
while being the first implementable and efficient algorithm
to solve bias-span constrained exploration-exploitation.

Based on Def. 1, we define T̃c as the span truncation of the
optimal Bellman operator L̃ of the bounded-parameter MDP
M̃k (see Sec. 3). Given the structure of problem (6), one
might consider applying SCOPT (using T̃c) to the extended
MDP M̃k. Unfortunately, in general L̃ does not satisfy
Asm. 6 and 9 and thus T̃c may not enjoy the properties of
Lem. 8 and Thm. 10. To overcome this problem, we slightly
modify M̃k as described in Def. 3.

Definition 3. Let M̃ be a bounded-parameter (extended)
MDP. Let 1 ≥ η > 0 and s ∈ S an arbitrary state. We
define the “modified” MDP M̃‡ associated to M̃ by5

B‡r(s, a) = [0,max{Br(s, a)}],

B‡p(s, a, s
′) =

{
Bp(s, a, s

′) if s′ 6= s,

Bp(s, a, s) ∩ [η, 1] otherwise,

where we assume that η is small enough so that:
Bp(s, a, s) ∩ [η, 1] 6= ∅, ∑s′∈S min{B‡p(s, a, s′)} ≤ 1,
and

∑
s′∈S max{B‡p(s, a, s′)} ≥ 1. We denote by L̃‡ the

optimal Bellman operator of M̃‡ (cf. Eq. 4) and by T̃ ‡c the
span truncation of L̃‡ (cf. Def. 1).

By slightly perturbing the confidence intervals Bp of the
transition probabilities, we enforce that the “attractive” state
s is reached with non-zero probability from any state-action
pair (s, a) implying that the ergodic coefficient of M̃‡

γ = 1− min
s,u∈S, a,b∈A
p̃, q̃∈B‡p


∑
j∈S

min {p̃(j|s, a), q̃(j|u, b)}︸ ︷︷ ︸
≥η if j=s


is smaller than 1− η < 1, so that L̃‡ is γ-contractive (Puter-
man, 1994, Thm. 6.6.6), i.e., Asm. 6 holds. Moreover, for
any policy π ∈ ΠSR(M̃‡), state s necessarily belongs to all
recurrent classes of π implying that π is unichain and so
M̃‡ is unichain. As is shown in Thm. 11, the η-perturbation
of Bp introduces a small bias ηc in the final gain.

By augmenting (without perturbing) the confidence inter-
vals Br of the rewards, we ensure two nice properties. First
of all, for any vector v ∈ RS , L̃v = L̃‡v and thus by def-
inition T̃cv = T̃ ‡c v. Secondly, there exists a decision rule
δ ∈ DMR(M̃‡) such that ∀s ∈ S, r̃‡δ(s) = 0 meaning that
sp{L̃‡δv} = sp{P̃ ‡δ v} ≤ sp {v} (Puterman, 1994, Propo-
sition 6.6.1). Thus if sp {v} ≤ c then sp{L̃‡δv} ≤ c and
so δ ∈ D̃‡(c, v) 6= ∅ which by Lem. 5 implies that T̃ ‡c is
globally feasible at v. Therefore, Asm. 9 holds in M̃‡.
When combining both the perturbation of Bp and the aug-
mentation of Br we obtain Thm. 11 (proof in App. E).

5For any closed interval [a, b] ⊂ R, max{[a, b]} := b and
min{[a, b]} := a
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Theorem 11. Let M̃ be a bounded-parameter (extended)
MDP and M̃‡ its “modified” counterpart (see Def. 3). Then

1. L̃‡ is a γ-span contraction with γ ≤ 1 − η < 1 (i.e.,
Asm. 6 holds) and thus Lem. 8 applies to T̃ ‡c . Denote
by (g+, h+) a solution to equation (14) for T̃ ‡c .

2. T̃ ‡c is globally feasible at any v ∈ RS s.t. sp {v} ≤ c

(i.e., Asm. 9 holds) and M̃‡ is unichain implying that
π+ = Gch

+ is unichain. Thus Thm. 10 applies to T̃ ‡c .

3. ∀µ ∈ Πc(M̃), g+ = g∗c (M̃‡) ≥ gµ(M̃)− ηc.

SCAL (cf. Fig. 1) is a variant of UCRL that applies SCOPT

(instead of EVI, see Eq. 4) on the bounded parameter
MDP M̃‡k (instead of M̃k, cf. step 2 in Fig. 1) in each
episode k to solve the optimization problem

max
M∈M̃‡k,π∈Πc(M)

gπM , (15)

whose maximum is denoted by g∗c (M̃‡k). The intervals B‡p
of M̃‡k are constructed using parameter6 ηk = rmax/(c · tk)
and an arbitrary attractive state s ∈ S. SCOPT is run at
step 3 in Fig. 1 with an initial value function v0 = 0, the
same reference state s used for the construction of B‡p, con-
traction factor γk = 1− ηk, and accuracy εk = rmax/

√
tk.

SCOPT finally returns an optimistic (nearly) optimal policy
satisfying the span constraint. This policy is executed until
the end of the episode.

Thm. 11 ensures that the specific instance of problem (6)
for SCAL (i.e., problem (15)) is well defined and admits a
maximizer π∗c (M̃‡k) that can be efficiently computed using
SCOPT. Moreover, up to an accuracy ηk · c = rmax/tk, pol-
icy π∗c (M̃‡k) is still optimistic w.r.t. all policies in the set of
constrained policies Πc(M̃k) for the initial extended MDP.
Since the true (unknown) MDP M∗ belongs toMk with
high probability, under the assumption that sp {h∗M∗} ≤ c,
g∗c (M̃‡k) ≥ g∗M∗ − rmax/tk. As briefly mentioned in Sec. 5,
in practice SCOPT can only output an approximation µ̃k of
π∗c (M̃‡k) and we have no guarantees on sp

{
hµ̃k
}

. However,
the regret proof of SCAL only uses the fact that sp {vn} ≤ c
and this is always satisfied by definition of T̃ ‡c . We are now
ready to prove the following regret bound (see App. F).

Theorem 12. For any weakly communicating MDP M
such that sp {h∗M} ≤ c, with probability at least 1 − δ it
holds that for any T ≥ 1, the regret of SCAL is bounded as

∆(SCAL, T ) = O
(

max{rmax, c}
√

ΓSAT ln

(
T

δ

))
,

6Notice that given that βsap,k ≥ ηk for all (s, a) ∈ S ×A (see
definition in Sec. 3), the assumptions of Def. 3 hold trivially.

where Γ = maxs∈S,a∈A ‖p(·|s, a)‖0 ≤ S is the maximal
number of states that can be reached from any state.

The previous bound shows that when c ≤ rmaxD, SCAL
scales linearly with c, while UCRL scales linearly with
rmaxD (all other terms being equal). Notice that the gap
between sp {h∗} and D can be arbitrarily large, and thus
the improvement can be significant in many MDPs. As an
extreme case, in weakly communicating MDPs the diameter
can be infinite, leading UCRL to suffer linear regret, while
SCAL is still able to achieve sub-linear regret. However
when c > rmaxD, given that the true MDP M∗ may not be-
long toM‡k, we cannot guarantee that the span of the value
function vn returned by SCOPT is bounded by rmaxD. Nev-
ertheless, we can slightly modify SCAL to address this case:
at the beginning of any episode k, we run both SCOPT (with
the same inputs) and EVI (as in UCRL) in parallel and pick
the policy associated to the value with smallest span. With
this modification, SCAL enjoys the best of both worlds, i.e.,
the regret scales with min{max{rmax, c}, rmaxD} instead
of c. When c is wrongly chosen (c < sp {h∗M∗}), SCAL
converges to a policy in Π∗c(M

∗) which can be arbitrarily
worse than the true optimal policy inM∗. For this reason we
cannot prove a regret bound in this scenario. Finally, notice
that the benefit of SCAL over UCRL comes at a negligible
additional computational cost.

7. Numerical Experiments
In this section, we numerically validate our theoretical find-
ings. The code is available on GitHub. In particular, we
show that the regret of UCRL indeed scales linearly with
the diameter, while SCAL achieves much smaller regret that
only depends on the span. This result is even more extreme
in the case of non-communicating MDPs, where D = ∞.
Consider the simple but descriptive three-state domain
shown in Fig. 4(a) (results in a more complex domain are
reported in App. G). In this example, the learning agent only
has to choose which action to play in state s2 (in all other
states there is only one action to play). The rewards are dis-
tributed as Bernoulli with parameters shown in Fig. 4(a) and
rmax = 1. The optimal policy π∗ is such that π∗(s2) = a1

with gain g∗ = 2
3 and bias h∗ =

[
−2−δ
3(1−δ) ,

−1
1−δ , 0

]
. If δ is

small, sp {h∗} = 1
1−δ ≈ 1, while D ≈ 1

δ . Fig. 4(b) shows
that, as predicted by theory, the regret of UCRL (for a fixed
horizon T ) grows linearly with 1

δ ≈ D. The optimal bias
span however is roughly equal to 1. Therefore, we expect
SCAL to clearly outperform UCRL on this example. In all
the experiments, we noticed that perturbing the extended
MDP was not necessary to ensure convergence of SCOPT

and so we set ηk = 0. We also set γk = 0 to speed-up the
execution of SCOPT (see stopping condition in Fig. 3).

Communicating MDPs. We first set δ = 0.005 > 0, giv-

https://github.com/RonanFR/UCRL
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Figure 4. (upper) Simple three-state domain.
(lower) Cumulative regret incurred by UCRL
after T = 2.5 · 107 steps as a function of the
diameter D ≈ 1/δ (averaged over 20 runs).
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Figure 5. Results in the three-states domain with δ = 0.005 (top) and δ = 0 (bottom). We
report the span of the optimistic bias (left) and the cumulative regret (right) as a function
of T . Results are averaged over 20 runs and 95% confidence intervals are shown.

ing a communicating MDP. With such a small δ, visiting
state s1 is rather unlikely. Nonetheless, since UCRL is based
on the OFU principle, it keeps trying to visit s1 (i.e., play
a0 in s2) until it collects enough samples to understand that
s1 is actually a bad state (before that, UCRL “optimistically”
assumes that s1 is a highly rewarding state). Therefore,
UCRL plays a0 in s2 for a long time and suffers large regret.
This problem is particularly challenging for any learning
algorithm solely employing optimism like UCRL (cf. (Or-
tner, 2008) for a more detailed discussion on the intrinsic
limitations of optimism in RL). In contrast, SCAL is able
to mitigate this issue when an appropriate constraint c is
used. More precisely, whenever s1 is believed to be the most
rewarding state, the value function (bias) is maximal in s1

and SCOPT applies a “truncation” in that state and “mixes”
deterministic actions. In other words, SCAL leverages on
the prior knowledge of the optimal bias span to understand
that s1 cannot be as good as predicted (from optimism). The
exploration of the MDP is greatly affected as SCAL quickly
discovers that action a0 in s2 is suboptimal. Therefore,
SCAL is always performing better than UCRL (Fig. 5(a))
and the smaller c, the better the regret. Surprisingly the
actual policy played by SCAL in this particular MDP is
always deterministic. SCOPT mixes actions in s1 where only
one true action is available but the mixing happens in the
extended MDP M̃‡k where the action set is compact. The
policy that SCOPT outputs is thus stochastic in the extended
MDP but deterministic in the true MDP.

Infinite Diameter. By selecting δ = 0 the diameter be-
comes infinite (D = +∞) but the MDP is still weakly

communicating (with transient state s1). UCRL is not able
to handle this setting and suffers linear regret. On the con-
trary, SCAL is able to quickly recover the optimal policy
(see Fig. 5(b) and App. G).

8. Conclusion
In this paper we introduced SCAL, a UCRL-like algorithm
that is able to efficiently balance exploration and exploita-
tion in any weakly communicating MDP for which a finite
bound c on the optimal bias span sp {h∗} is known. While
UCRL exclusively relies on optimism and uses EVI to com-
pute the exploratory policy, SCAL leverages the knowledge
of c through the use of SCOPT, a new planning algorithm
specifically designed to handle constraints on the bias span.
We showed both theoretically and empirically that SCAL
achieves smaller regret than UCRL. Although SCAL was
inspired by REGAL.C, it is the only implementable approach
so far. Therefore, this paper answers the long-standing open
question of whether it is actually possible to design an algo-
rithm that does not scale with the diameter D in the worst
case. Moreover, SCAL paves the way for implementable
algorithms able to learn in an MDP with continuous state
space. Indeed, existing algorithms achieving regret guaran-
tees in this framework (Ortner and Ryabko, 2012; Laksh-
manan et al., 2015) all rely on REGAL.C. We also believe
that our approach can easily be extended to optimistic PSRL
(Agrawal and Jia, 2017) to achieve an even better regret
bound of Õ

(
min {c, rmaxD}

√
SAT

)
, i.e., drop the depen-

dency in Γ. Finally, we leave it as an open question whether
the assumption that c is known can be relaxed.
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