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1 Gradient of the Posterior
For the hidden Markov model (HMM), the posterior distribution of all hyperpa-
rameters θ can be calculated by the Bayes rule, where

p(θ|y) ∝ p(y|θ)p(θ).

Since

p(y,x|θ) = π0(x0)
T∏
t=1

Axt,xt−1 ·
T∏
t=1

p(yt|xt),

where y = (y1, · · · yT ) denotes the data as real valued vector, and x = (x1, · · ·xT )
as discrete valued vector with xt ∈ {1, · · ·K},∀t. We can directly marginalize
out the hidden variables, x, with matrix multiplication as

p(y|θ) = 1T
T P (yT )A · · ·P (y1)A π0,

where P (yT ) is a diagonal matrix and Pi,j(yt) = p(yt|xt = i)δi,j; 1T
T = (1, · · · , 1)

is a row vector of k ones (T denotes transpose); (π0)i = π0(x0 = i). Hence the
same as Eq. (2), (3) and (8) of the main paper, the posterior distribution is:

p(θ|y) = 1T
T P (yT )A · · ·P (y1)A π0 · p(θ).

When we divide the whole sequence into subsequences of

yτ,L = (yτ−L, . . . , yτ , . . . , yτ+L),
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the posterior can be rewritten as:

p(θ|y) ∝ 1T
∏

yτ,L∈S

P (yτ,L)π0 · p(θ), (1)

where S is the minimum set of yτ,L covering y.
We can then use gradient information of the posterior distribution to construct

MCMC algorithms. The gradient of the log-posterior distribution is:

∂ ln p(θ|y)

∂θi
=

|S|∑
τ=1

1TP (y|S|,L)A · · · ∂ (P (yτ,L)A)

∂θi
· · ·P (y1,L)Aπ0

1TP (y|S|,L)A · · ·P (yτ,L)A · · ·P (y1,L)Aπ0

+
∂ ln p(θ)

∂θi
.

Denote qT
τ+L+1 = 1T

TP (yT )A · · ·P (yt+1)A and πτ−L−1 = P (yt−1)A · · ·P (y1)Aπ0.
Then

∂U(θ)

∂θi
= −∂ ln p(y|θ)

∂θi
− ∂p(θ)

∂θi

= −
∑
yτ∈S̃

qT
τ+L+1

∂P (yτ )

∂θi
πτ−L−1

qT
τ+L+1P (yτ )πτ−L−1

− ∂ ln p(θ)

∂θi
, (2)

as shown in Eq. (11) of the main paper.

2 Lyapunov Exponent
The question of buffer length is equivalent to: for two random vectors π and π∗,
what’s the expected length of LB such that after the application of P (yLB), π and
π∗ will synchronize? This is a question of random dynamical systems and can be
answered through defining the Lyapunov exponent.

We first transform π through stereographic projection into K − 1 dimensions
and denote as: r. Then operator P (yt)A[ · ] is projected to new space and the
equivalent dynamics over r becomes: Fyt . We define the Lyapunov exponent L
through the projected random dynamics Fyt as

L =

∫
Ω×RK−1

ln ||∇rFy(r)||dµydµr, (3)
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where y ∈ Ω. Measure µy corresponds to the distribution of the data yt, and µr is
the invariant measure of r under the dynamics of P (yt)A, which will be estimated
through sampling.

Once the Lyapunov exponent L is calculated, we can set the buffer length:

B =
1

L
ln

(
δ

δ0

)
, (4)

where δ = 10−3 is the error tolerance and δ0 = 2 is the maximum initial error for
probability vectors.

3 Subsequence Sampling Procedure
We use the following sampling procedure to obtain the subsequences used to
compute stochastic gradient estimates. In order to enforce the non-overlapping
mixing-time constraint between adjacent subsequences, we sample them sequen-
tially. This results in the following form for the probability of the minibatch S̃:
p(S̃) =

∏R−1
n=0 L/|Sn|, where |S0| = T , |Sn| = |Sn−1|− (ν+ 2B+ 2L)−Loverlap.

The quantity Loverlap is calculated as follows:

L0
overlap = |τn|,

LToverlap = |T − τn|,

LLoverlap =
n−1

min
n′=1,τn′<τn

{|τn − τn′ |} − L−B,

LRoverlap =
n−1

min
n′=1,τn′>τn

{|τn − τn′ |} − L−B.

If min{L0
overlap, L

T
overlap, L

L
overlap, L

R
overlap} ≥ 2ν+3L+3B, the minimum number

of observations required to fit an entire subsequence while respecting minimum
gap ν, Loverlap = 0. Otherwise, Loverlap equals to the sum of all the above terms
that are less than 2ν + 3L+ 3B.

Since T � L,B, ν, then p(S̃) provides the correct probability of the mini-
batch S̃ .
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Diagonally Dominant Reversed Cycles 
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Figure 1: Synthetic experiments with hard-to-capture dynamics. Diagonally dominant
(DD) (left) and reversed cycles (RC) (right) experiments. First Row: The emission dis-
tributions corresponding to 8 different states. Arrows in the RC case indicate the Markov
transition structure with transition between bridge states as dashed arrows. Second Row:
Decrease of error in transition matrix estimation versus runtime. Comparisons are made
for SG-RLD algorithms with estimated buffer, without buffer, and treating data as i.i.d.
All of the experiments use a constant computation budget by varying the number of sub-
chains, |S̃|, with the length of the subchains, L.

4 Detailed Descriptions of Experiments

4.1 Evaluating Buffer Effectiveness
The first data set, diagonally dominant (DD) consists of a Markov chain that
heavily self-transitions. Most subchains in a minibatch thus contain redundan-
t information with observations generated from the same latent state. Although
transitions are rarely observed, the emission means are set to be distinct so that
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this example is likelihood-dominated and highly identifiable. See Fig. 1 (top left).
For this data we choose L = 2 and |S̃| = 10 subsequences in order to incorpo-
rate observations from distant parts of the observation sequence. This corresponds
to an extreme setting where each gradient is based only on 5 observations. The
transition matrix and emission parameters used for this experiment were:

ADD =



.999 .001 0 0 0 0 0 0
0 .999 .001 0 0 0 0 0
0 0 .999 .001 0 0 0 0
0 0 0 .999 .001 0 0 0
0 0 0 0 .999 .001 0 0
0 0 0 0 0 .999 .001 0
0 0 0 0 0 0 .999 .001
.001 0 0 0 0 0 0 .999


.

µDD = {(0, 20); (20, 0); (−30,−30); (30,−30); (−20, 0); (0,−20); (30, 30); (−30, 30); }

and ΣDD = I for all states.
The second dataset we consider contains two reversed cycles (RC): the Markov

chain strongly transitions from states 1→ 2→ 3→ 1 and 5→ 7→ 6→ 5 with
a small probability of transiting between cycles via bridge states 4 and 8. See
Fig. 1 (top right). The emission means for the two cycles are very similar but
occur in reverse order with respect to the transitions. The emission variance is
larger, making states 1 and 5, 2 and 6, 3 and 7 indiscernible by themselves. Tran-
sition information in observing long enough dynamics is thus crucial to identify
between states 1, 2, 3 and 5, 6, 7. Therefore, we set L = 5 and |S̃| = 4. Note that
same amount of data are used in the calculation of the gradient. The transition
matrix and emission parameters were:

ARC =



.01 0 .85 0 0 0 0 1

.99 .01 0 0 0 0 0 0
0 .99 0 0 0 0 0 0
0 0 .15 0 0 0 0 0
0 0 0 1 .01 0 .85 0
0 0 0 0 .99 .01 0 0
0 0 0 0 0 .99 0 0
0 0 0 0 0 0 .15 0


.
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µ = {(−50, 0); (30,−30); (30, 30); (−100,−10); (40,−40); (−65, 0); (40, 40); (100, 10)} ,

and ΣRC = 20 ∗ I for all states.
We use a non-conjugate flat prior to demonstrate the flexibility of our algo-

rithm. We initialize with a short run of k-means clustering to ensure that different
states have different emission parameters.

4.2 Non-conjugate Emission Distribution
For the non-conjugate experiment, we used the following transition matrix:(

.1 .9

.9 .1

)
.

For emission probability, we use a log-normal distribution: pk(y) ∝ e
−

ln(y − µk)2

2σ2
k

with parameters: µ1 = 0, µ2 = 4; σ1 = σ2 = 2.
In the non-conjugate model, we use the following priors on the emission pa-

rameters: µ1, µ2, σ1, σ2 ∼ N (0, 1).
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