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1 Gradient of the Posterior

For the hidden Markov model (HMM), the posterior distribution of all hyperpa-
rameters 6 can be calculated by the Bayes rule, where

p(0ly) o< p(y|0)p(0).

Since
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where y = (y1, - - - yr) denotes the data as real valued vector, and x = (21, - - - z7)
as discrete valued vector with z; € {1,--- K'},Vt. We can directly marginalize
out the hidden variables, x, with matrix multiplication as

p(ylf) = 17T* P(yr)A--- P(y1)A mo,
where P(yr) is a diagonal matrix and P, ;(y;) = p(ye|x; = 4)6; 53 15 = (1, , 1)

is a row vector of k ones (T denotes transpose); (m); = mo(ro = 7). Hence the
same as Eq. (2), (3) and (8) of the main paper, the posterior distribution is:

p(0ly) =17 P(yr)A--- P(y1)A g - p(6).

When we divide the whole sequence into subsequences of

YrL = (yT*L7"'7yT7"'7yT+L>7



the posterior can be rewritten as:

p(Oly) o< 1" [ Plyrr)mo - p(0), (D

Yr,L €S

where S is the minimum set of y . ;, covering y.
We can then use gradient information of the posterior distribution to construct
MCMC algorithms. The gradient of the log-posterior distribution is:
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Denoteq;, ;. = 17P(yr)A- - P(yp1)Aand w1 = P(y;—1)A- - P(y1) Amy.
Then

ou(9) _  9np(yl#) 9Ip(0)
00, 00, 00;
OP(y-)
T
_ Z qT+L+1 aez Tr—L—1 B alnp(e) (2)

y.cd q;f+L+1P(yT)7"T—L—1 00,

as shown in Eq. (11) of the main paper.

2 Lyapunov Exponent

The question of buffer length is equivalent to: for two random vectors 7 and 7*,
what’s the expected length of L B such that after the application of P(yg), 7 and
7* will synchronize? This is a question of random dynamical systems and can be
answered through defining the Lyapunov exponent.

We first transform 7r through stereographic projection into X — 1 dimensions
and denote as: r. Then operator P(y;)A| - | is projected to new space and the
equivalent dynamics over r becomes: F,,. We define the Lyapunov exponent £
through the projected random dynamics F, as

e= [ mVeE @), ®
OxRE-1



where y € (2. Measure i, corresponds to the distribution of the data y;, and ji, is
the invariant measure of r under the dynamics of P(y;)A, which will be estimated
through sampling.

Once the Lyapunov exponent £ is calculated, we can set the buffer length:

1 )
B = . —1In (5(]) 4)

where § = 1072 is the error tolerance and d, = 2 is the maximum initial error for
probability vectors.

3 Subsequence Sampling Procedure

We use the following sampling procedure to obtain the subsequences used to
compute stochastic gradient estimates. In order to enforce the non-overlapping
mixing-time constraint between adjacent subsequences, we sample them sequen-
tially. This results in the following form for the probability of the minibatch S:
p(S) = 11720 L/|S,), where |S,| = = |Sp—1| — (¥ +2B+2L) — Loyerlap-
The quantity Loverlap is calculated as follows:
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of observations required to fit an entire subsequence while respecting minimum
8ap V, Loyerlap = 0. Otherwise, Loyerap €quals to the sum of all the above terms
that are less than 2v + 3L + 3B. _

Since T' > L, B, v, then p(S) provides the correct probability of the mini-
batch S.



Diagonally Dominant Reversed Cycles
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Figure 1: Synthetic experiments with hard-to-capture dynamics. Diagonally dominant
(DD) (left) and reversed cycles (RC) (right) experiments. First Row: The emission dis-
tributions corresponding to 8 different states. Arrows in the RC case indicate the Markov
transition structure with transition between bridge states as dashed arrows. Second Row:
Decrease of error in transition matrix estimation versus runtime. Comparisons are made
for SG-RLD algorithms with estimated buffer, without buffer, and treating data as i.i.d.
All of the experiments use a constant computation budget by varying the number of sub-
chains, | S|, with the length of the subchains, L.

4 Detailed Descriptions of Experiments

4.1 Evaluating Buffer Effectiveness

The first data set, diagonally dominant (DD) consists of a Markov chain that
heavily self-transitions. Most subchains in a minibatch thus contain redundan-
t information with observations generated from the same latent state. Although
transitions are rarely observed, the emission means are set to be distinct so that



this example is likelihood-dominated and highly identifiable. See Fig. 1 (top left).
For this data we choose L = 2 and |S| = 10 subsequences in order to incorpo-
rate observations from distant parts of the observation sequence. This corresponds
to an extreme setting where each gradient is based only on 5 observations. The
transition matrix and emission parameters used for this experiment were:
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Kpp = {(07 20); (207 0); (_307 _30); (307 _30); (_207 0); (0’ _20); (307 30); (_307 30); }

and Xpp = [ for all states.

The second dataset we consider contains two reversed cycles (RC): the Markov
chain strongly transitions from states 1 -2 -3 — land 5 — 7 — 6 — 5 with
a small probability of transiting between cycles via bridge states 4 and 8. See
Fig. 1 (top right). The emission means for the two cycles are very similar but
occur in reverse order with respect to the transitions. The emission variance is
larger, making states 1 and 5, 2 and 6, 3 and 7 indiscernible by themselves. Tran-
sition information in observing long enough dynamics is thus crucial to identify
between states 1,2, 3 and 5, 6, 7. Therefore, we set L = 5 and |S| = 4. Note that
same amount of data are used in the calculation of the gradient. The transition
matrix and emission parameters were:
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p = {(-50,0);(30,—30); (30, 30); (—100, —10); (40, —40); (—65, 0); (40, 40); (100, 10) } ,

and Y pc = 20 * [ for all states.

We use a non-conjugate flat prior to demonstrate the flexibility of our algo-
rithm. We initialize with a short run of k-means clustering to ensure that different
states have different emission parameters.

4.2 Non-conjugate Emission Distribution

For the non-conjugate experiment, we used the following transition matrix:
19
9 1)

For emission probability, we use a log-normal distribution: py(y) o e
with parameters: p; =0, s = 4; 01 = 09 = 2.

In the non-conjugate model, we use the following priors on the emission pa-
rameters: ji1, fia, 01,02 ~ N (0, 1).
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