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Abstract

The Gibbs sampler is the most popular
Markov chain used for learning and inference
problems in Graphical Models (GM). These
tasks are computationally intractable in gen-
eral, and the Gibbs sampler often suffers from
slow mixing. In this paper, we study the
Swendsen-Wang dynamics which is a more
sophisticated Markov chain designed to over-
come bottlenecks that impede Gibbs sam-
pler. We prove O(logn) mixing time for at-
tractive binary pairwise GMs (i.e., ferromag-
netic Ising models) on stochastic partitioned
graphs having n vertices, under some mild
conditions including low temperature regions
where the Gibbs sampler provably mixes ex-
ponentially slow. Our experiments also con-
firm that the Swendsen-Wang sampler sig-
nificantly outperforms the Gibbs sampler for
learning parameters of attractive GMs.

1 INTRODUCTION

Graphical models (GM) express a factorization of
joint multivariate probability distributions in statis-
tics via a graph of relations between variables. GM’s
have been used successfully in information theory,
physics, artificial intelligence and machine learning
[B7, M2, 22 21, 1, @]. For typical learning and in-
ference problems using GM’s, marginalizing the joint
distribution, or equivalently computing the partition
function (normalization factor), is the key computa-
tional bottleneck; this sampling/counting problem is
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computationally intractable in general, more formally,
it is NP-hard even to approximate the partition func-
tion [0} [38]. Nevertheless, Markov Chain Monte Carlo
(MCMC) methods, typically using the Gibbs sampler,
are widely-used in learning and inference applications
of GM, but they often suffer from slow mixing.

To address the potential slow mixing of the Gibbs sam-
pler, there have been extensive efforts in the literature
to establish fast mixing regimes of the Gibbs sampler
(also known as the Glauber dynamics). Most of these
theoretical works have studied under perspectives of
the Ising model and its variants [31], 24] [6]. Given a
graph G = (V, E) having n vertices and parameters
B = [Buv : (u,v) € E] € RIFl 4y = [y, : v € V] € R,
the Ising model is a joint probability distribution on
all spin configurations Q = {o : ¢ = [0y,] € {-1,1}"}
such that

Z BuvOu0y + Z YvOv (1)

(u,v)EE veV

p(0) o exp

The parameter «y corresponds to the presence of an
“external (magnetic) field”, and when ~, = 0 for all
v € V, we say the model has no (or zero) external field.
If Byy > 0 for all (u,v) € E the model is called ferro-
magnetic/attractive, and anti-ferromagnetic/repulsive
if Buy < 0 for all (u,v) € E. Tt is naturally ex-
pected that the Gibbs sampler mixes slow if interaction
strengths of GM are high, i.e., 8 is large which corre-
sponds to low temperature regimes. For example, for
the ferromagnetic Ising models on the complete graph
G (which is commonly referred to as the mean-field
model) it is known that the mixing-time in the high
temperature regime (8 < 1) has O(nlogn), whereas
the mixing-time in the low temperature regime (8 > 1)
is exponential in n [24].

This paper focuses on ferromagnetic Ising models
(FIM), where any pairwise binary attractive GM can
be expressed by FIM. We study the Swendsen-Wang
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dynamicsﬂ which is a more sophisticated Markov chain
designed to overcome bottlenecks that impede Gibbs
sampler. Pairwise binary attractive GMs, equivalently
FIMs, have gained much attentions in the GM litera-
ture because they do not contain frustrated cycles and
have several advantages to design good algorithms for
approximating the partition function [20} [44] 45, [34]
30, B9]. Furthermore, they have been used for vari-
ous machine learning applications. For example, the
non-negative Boltzmann machine (NNBM) has been
used to describe multimodal non-negative data [7].
Non-negative restricted Boltzmann machine (RBM),
equivalent to FIM on complete bipartite graphs, has
also been studied in the context of unsupervised deep
learning models [33], where non-negativity (i.e., ferro-
magneticity) provides non-negative matrix factoriza-
tion [23] like interpretable features, which is especially
useful for analyzing medical data [41] 26] and docu-
ment data [33]. FIM is also a popular model for study-
ing strategic diffusion in social networks [35] 29], where
in the case (,, represents a friendship or other positive
relationships between two individuals u, v.

Motivated by the recent studies on FIM, we prove
O(logn) mixing time of the Swendsen-Wang sampler
for FIM on stochastic partitioned graphsﬂ which in-
clude complete bipartite graphs and social network
models (e.g., stochastic block models [19]) as special
cases. In particular, we show that the Swendsen-
Wang chain mixes fast in low temperature regions
where the Gibbs sampler provably mixes exponentially
slow. Our experimental results also confirm that the
Swendsen-Wang sampler significantly outperforms the
Gibbs sampler for learning parameters of attractive
GMs. We remark that it has been recently shown that
an arbitrary binary pairwise GM can be approximated
by FIM of a certain partitioned structure. In conjunc-
tion with this, we believe that our results potentially
extend to a certain class of non-attractive GMs as well
(see Section [G)).

Related work. There has been considerable effort
on analyzing the mixing times of the Swendsen-Wang
and Gibbs samplers for the ferromagnetic Ising model.
All of the below theoretical works consider ‘uniform’
parameters on edges, i.e., all 3,,’s are equal, and zero
external field, i.e., 7, = 0. There are several works
showing examples where the Swendsen-Wang dynam-
ics has exponentially slow mixing time [16] 4] 2] 3] [11]
for the Potts model which is the generalization of the
Ising model to more than two spins; all of these slow
mixing results are at the critical point for the associ-

!The Swendsen-Wang dynamics is formally defined in
Section

2See Section [3] for the formal definition of stochastic
partitioned graphs

ated phase transition. It was very recently shown that
the Swendsen-Wang dynamics is rapidly mixing on ev-
ery graph and at every (positive) temperature [I7]; the
mixing time is a large polynomial, e.g., O(n!?) for the
complete bipartite graphs, so this general result does
not give bounds which are useful in practice. How-
ever, the appeal for utilizing this dynamics is that its
mixing time is conjectured to be much smaller, as we
prove O(logn) for stochastic partitioned graphs.

For the mean-field model (i.e., the complete graph) a
detailed analysis of the Swendsen-Wang dynamics was
established by [27] who proved that the mixing time is
(1) for B < B, O(n'/*) for B = B. and O(logn) for
B8 > B. where . is the inverse critical temperature.
For the two-dimensional lattice, [42] established poly-
nomial mixing time of the Swendsen-Wang dynamics
for all 8 > 0. On the other hand, the mixing time of
the Gibbs sampler (also known as the Glauber dynam-
ics or Metropolis-Hastings algorithm) for the complete
graph is known to be O(nlogn) for f < f., ©(n®/?)
for 8 = B, and €™ for § > B, [24]. For the Erdds-
Rényi random graph G(n,d/n), the mixing time of the
Gibbs chain is O(n!+©(1/10glogn)) for dtanh B < 1 [32]
and (™) for dtanh 3 > 1 [I3] with high probability
over the choice of the graph.

2 PRELIMINARIES

2.1 Swendsen-Wang Sampler

The Swendsen-Wang dynamics [40] is a Markov chain
{X: € Q:t=0,1,2,...} having p as its stationary
(i.e., invariant) distribution. A step of the Swendsen-
Wang dynamics works at a high-level as follows: (i) the
current spin configuration X; is converted into a con-
figuration M in the random-cluster model [§] by taking
the monochromatic edges, (ii) then we do a percolation
step on M by each edge being deleted with some prob-
ability, and finally (iii) each component of the perco-
lated subgraph chooses a random spin and this defines
the new spin configuration X;;;. Whereas the tradi-
tional Gibbs sampler modifies the spin at one vertex in
a step, the Swendsen-Wang dynamics may change the
spin at every vertex in a single step. Under the Ising
model with no external field, its formal description of
transitions from X; to X;11 is defined as follows:

1. Let M be the set of monochromatic edges in Xy,
ie, M ={(u,v) € E: Xi(u) = X¢(v)}.

2. For each edge (u,v) € M, delete it with probabil-
ity 1 — puy, where py, = 1 —exp(—28,,). Let M’
denote the set of monochromatic edges that were
not deleted.

3. For each connected component C' of the subgraph
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Figure 1: Tllustration of a single iteration of the Swendsen-Wang dynamics. Each subfigure represents (a) an
input X; (b) a subgraph induced by the set of monochromatic edges M (c) a subgraph induced by the set of
monochromatic edges M’ after the step 2 (d) a configuration after the step 3 (e) an output X;;; where black

and white imply assignments —1, +1 respectively.

G’ = (V,M’), independently, choose a spin s €
{=1,+1} uniformly at random and assign spin s
to all vertices in C'. Let X;y; denote the resulting
spin configuration.

One can generalize the dynamics to a model having
external fields by modifying step 3 as follows:

3. For each connected component C' of the subgraph
G' = (V,M'), set

: . 23 )
+1  with probabilit xp(2 3 vev (o)
5= b Y L+exp(2 X, cv(e) W)

—1  with probability

1+6XP(2 ZUEV(C) 'Yv)

Then, assign all vertices in C' the chosen spin s
and let X4 1 denote the resulting spin configura-
tion.

Figure [1] visualizes each step of the Swendsen-Wang
dynamics. For completeness, in the supplementary
material, we prove the following well-known fact that
the above Swendsen-Wang dynamics has p as the sta-
tionary distribution ]

Lemma 1 The stationary
Swendsen-Wang chain is (1)).

distribution  of the

2.2 Mixing Time and Coupling

We use the following popular notion of ‘mixing time’:
given an ergodic Markov chain {X; € Q : t =
0,1,2,...} having the stationary distribution p, we
define its mixing time Ti,ix as

1
Tose :_argmin( sup | Pr(X, € A) — p(4)] < )
t \X,eQ,ACO 4

A classical technique for bounding the mixing time
is the ‘coupling’ technique [25]. Counsider two copies

3We did not find a version of the Swendsen-Wang dy-
namics for the Ising model with external fields in the lit-
erature, and hence present it with the formal proof for
completeness.

(X4, Y;) of the same Markov chain (i.e., Xy, Y; have
the same transition probabilities) defined jointly with
property that if X; = Y; then Xy =Yy for all ¢/ > t.
We call such (X, Y;) as a coupling, where X, Y; might
be dependent and there can be many ways to design
such dependencies. Then, one can observe that

p(A)]

| Pr(X; € A) —

sup |Pr(X;e€ A)—
Xo€R,ACQ

< sw
X0,Y0€Q,ACQ

< sup Pr(X; #Y;),
Xo,Yo€Q

Pr(Y; € A)]

which implies that

1
sup Pr(Xt¢n>s4>. 2)

Thix < argmin (
t \ Xo,Y0eQ

We will design a coupling for obtaining a bound on
mixing time of the Swendsen-Wang chain.

3 MAIN RESULTS

In this section, we state the main results of this pa-
per that the Swendsen-Wang chain mixes fast for a
class of stochastic partitioned graphs. To this end,
we first formally define the notion of stochastic par-
titioned graphs. Given a positive integer r € Z.,
a vector [a;] € (0,1)" with > ,a; = 1 and a ma-
trix [p;;] € [0,1]"*", a stochastic partitioned graph
(V,E) = G(n,[a], [pij]) on n vertices and r parti-
tions (or communities) of size ajn,...,q,n is a ran-
dom graph model such that

V=V, Vil=amn and V;nV;=0, fori#j.
i

An edge between any pair of vertices u € V;,v € V;
exists with probability p;; independently. For exam-
ple, if p;; = 0 for all ¢ and p;; = 1 for all i # j,
then the stochastic partitioned graph is the complete
r-partite graph. One can also check that the stochas-
tic block model [I9] is a special case of the stochastic
partitioned graph. In particular, if » = 1, p1; = p



Rapid Mixing Swendsen-Wang Sampler for Stochastic Partitioned Attractive Models

for some p € [0,1], we say it is the Erdés-Rényi
random graph and use the notation G(n,p) to de-
note it. Similarly, if 7 = 2, p13 = pee = 0 and
P12 = pa1 = p for some p € [0, 1], we say it is the bipar-
tite Erd6s-Rényi random graph and use the notation
G(n,m,p) = (V1, Vg, E) to denote it, where n, m are
sizes of partitions Vi, Vg. We say a graph (V| F) has
size n if |V| = n and bipartite graph (Vy, Vg, E) has
size (n,m) if |Vz| =n and |Vg| = m.

3.1 O(logn) Mixing in Low Temperatures

We first establish the following rapid mixing prop-
erty of the Swendsen-Wang chain in low temperature
regimes, i.e., By, = Q(1). These are in particular most
interesting regimes since the Gibbs chain (provably)
mixes slower as (,, grows. Moreover, these are also
reasonable in practical applications, e.g., in social net-
works, (., represents a positive interaction strength
between two individuals u,v and it is independently
of the network size n.

Theorem 2 The mizing time T, of Swendsen-
Wang chain on graph G (n, [a), [pij]) is

Tmiz = O(logn)

almost surely if

o a; = Q1) for all i

0 Yy >0 (orv, <0) forallveV
and either a) or b) holds
a) pi = Q) for all i, By = Q1) for all u,v €'V,

b) pij = Q1) and By, = Q1) for alluw € V;,v €V
with i # j.

The proof of Theorem [2] is presented in Section [£.2]
where we will show the existence of a good coupling
of the Swendsen-Wang chain. Theorem [2] implies that
the Swendsen-Wang chain mixes fast as long as pos-
itive parameters [p;;] and [By,] are not ‘too small’
(e.g., pij = Q1) and By, = (1)) and all external
fields [v,] are positive or negative. We believe that
the restriction on positive (or negative) external fields
is inevitable since it is known that approximating the
partition function of ferromagnetic Ising model under
mixed external fields is known to be #P-hard [I5]. De-
spite the worst-case theoretical barrier, the Swendsen-
Wang chain still works well under mixed external fields
in our experiments (see Section .

3.2 O(logn) Mixing in High Temperatures

The restriction on parameters [8y,] in Theorem [2] is
merely for technical reasons in our proof techniques,
and we believe that it is not necessary. This is be-
cause it is natural to expect that a Markov chain mixes
faster for higher temperatures. To support the conjec-
ture, as stated in the following theorem, we prove that
the Swendsen-Wang chain mixes fast even for small
parameters [3,,] under the complete bipartite graphs,
where its proof is much harder than that of Theorem

2

Theorem 3 Given any constant k > 0, the mixing
time Tz of Swendsen-Wang chain on the complete
bipartite graph (V5,, Vg, E) of size (n, kn) is

Trniz = O(log n)

if Buv = —3 log (1 — n'ﬁ) for all (u,v) € E for some
non-negative constant B # 2 and v, = 0 for allv € V.

In the above theorem, we consider the scenario S, =
o(1), i.e.,

3 1 o < 1 B ) . B

The proof of Theorem [3] is presented in Section
where we will also show the existence of a good cou-
pling of the Swendsen-Wang chain using a similar
strategy to that in [I0]. The authors of [10] es-
tablish the rapid mixing property of the Swendsen-
Wang chain for the complete graphs by analyzing
a one-dimensional function, the so-called simplified
Swendsen-Wang (see Section B.1 in the supplementary
material), and utilizing known properties of Erdds-
Rényi random graphs. In the case of the complete
bipartite graphs, the simplified Swendsen-Wang be-
comes a two-dimensional function, which makes harder
to analyze. Furthermore, the proof of Theorem [3] re-
quires properties of the bipartite Erdés-Rényi random
graph G(n, m,p) which are less studied compared to
the popular ‘non-bipartite’ Erdés-Rényi random graph
G(n,p). In this paper, we also establish necessary
properties of G(n,m,p) for the proof of Theorem
We believe that the conclusion of Theorem [ holds
for general stochastic partitioned graphs. However,
in this case, there exist technical challenges handling
more randomness in graphs, and we do not explore
further in this paper.

4 PROOFS OF THEOREMS

4.1 Notation

Before we start the proof of Theorem [2] and Theo-
rem [3] we define some notations about configurations
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of the Ising model on a stochastic partitioned graph.
Given a spin configuration o, denote V_(0), V(o) as
sets of vertices of spin —1,+1, respectively. In par-
ticular, given the Ising model on a bipartite graph
(Vi, Vg, E) with partitions of vertices V5, Vg, edges
E C {(u,v) :u € Vi,v € Vg} and a spin configuration
o € {~1,1}IVEVVRl we say the configuration o has
the ‘phase’ a(o) = (ar,ag) if a larger spin class, say
s € {—,+} with Vi(o) > (|[VL| + |Vr])/2, of o satisfies

(ap, an) = (Vs@ NV Vile)n VR> |

Vi ’ Vr

One can define the induced probability on the phase
(ar,ar) under the Ising model as

Pr(ar,agr) = Z

o:a(o)=(aL,ar)

(o).

4.2 Proof of Theorem [2]

In this section, we only present the proof of Theorem
[2for v, > 0 since the proof for the case v, < 0 is iden-
tical. We will first show that in O(logn) iterations
of the Swendsen-Wang chain, all spins are same with
probability ©(1). Using this fact, we will bound the
mixing time via the coupling technique. To this end,
we introduce the following key lemmas on the (bipar-
tite) Erdés-Renyi random graph. Proofs of Lemma
are presented in the supplementary material.

Lemma 4 If p = Q(1), then every induced subgraphs
of G(n,p) of size ecn, ¢ = Q(1), contain a component
of size > cn — O(1) with probability 1 — e~ ™),

Lemma 5 If p = Q(1), then every induced subgraphs
of size n — O(y/n) of G(n,p) is connected with proba-
bility 1 — e~ (),

Lemma 6 If k = O(1) and p = Q(1), then every
induced subgraphs of G(n,kn,p) of size (cpn,crkn),
cr,cr = 1), contain a component of size > (an —
O(1), crkn — O(1)) with probability 1 — e~ 0

Lemma 7 If k = ©(1) and p = Q(1), then every in-
duced subgraphs of size (n — O(y/n), kn — O(\/n)) of
G(n,kn,p) is connected with probability 1 — e~ ™),

Now, we provide the proof of Theorem [2| assuming the
condition a) while the proof for the condition b) is
almost identical. Consider the Swendsen-Wang chain
{X; :t=0,1,...} on G(n,[a], [ps;]) under the con-
dition a). Ome can easily observe that using the as-
sumption ~, > 0, after running a single iteration of
the Swendsen-Wang chain from any initial state X,
there exists a spin class s € {—,+} in X; such that

Vi(X1) N V| > %n 3)

for all ¢ = 1,2,...,r with probability ©(1). This is
because we assume the number of partitions r and
a; = |V;|/n are constants. Assume that the event
occurs at X;. After the step 2 of the Swendsen-Wang
dynamics starting from X7, the resulting graph on ver-
tices Vi (X1) NV follows the distribution

G([Va(X1) NVil, [1], [pis(1 — exp(—2Bu0))]).-

Since V,(X1) has a constant fraction of vertices of each
partition, p;; = Q(1) for all i and By, = Q(1) for all
u,v € Vi, Lemmaimplies that > 1—O(n~1) fraction
of V,(X71) is still connected with probability 1 —e~?(")
after the step 2 of the Swendsen-Wang dynamics start-
ing from X7, i.e. almost all spins in V;(X7) are identi-
cal at X3. We call this connected > 1 — O(n™1!) frac-
tion in Lemmal[d] as a ‘giant component’. Note that an
edge between different partitions only increase the size
of the giant component in a single partition.We define
the event &£, that after the step 2 of the Swendsen-
Wang dynamics, 1 — O(n™!) fraction of vertices of
Vs(X;) are connected for T} = 1log,n + 1 iterations
of the Swendsen-Wang chain, i.e. giant components
exists for 7} iterations. By Lemmal[d] the event £ oc-
curs with probability 1 — e~*("). Conditioning on the
event &1, let N; be the number of vertices having a dif-
ferent spin from a giant component after ¢-th iteration
of the Swendsen-Wang chain. Since 7, > 0 and each
component receives the spin + with probability > 1/2
in the step 3 of the Swendsen-Wang dynamics, the ex-
pectation of Niyq given Ny = Q(y/n) and & becomes

B[N [N, 1] < (; n o<n-1/2>) N,

for t < T;. By using , one can bound the expecta-
tion of Ny, as

Tlfl
E[Nr,|&1] < g (; + O(n1/2)> :

If we use the Markov inequality, it follows that

I\
Pr(Nr, < Villé) >1—w€(2) —o) ()

and Pr(Np, < +/n) > Pr(Np, < /nl&1)Pr(&) >
©(1). Given the event Ny, < +/n, by Lemma
the largest component of X741 remains to be con-
nected with probability 1 — e~ We define the
event & that given Ny, < +/n, after the step 2 of
the Swendsen-Wang dynamics, the largest component
is still connected for T = 3 log, n+ 1 iterations of the
Swendsen-Wang chain starting from X7,. By Lemma
the event & occurs with probability 1 —e~(") Us-
ing the same technique that we used for , one can
obtain the following inequality

Pr(NT1+T2 = 0) > @(1)7
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i.e. Xp 47, consists of a single spin with probabil-
ity ©(1). Since all events so far occur with prob-
ability ©(1), for two independent copies {X; : t =
0,1,...} and {Y; : ¢ = 0,1,...} of the Swendsen-
Wang chain, all spins of X7 47,41 and Y, 47,41 are
same, i.e. Xpim+1 = Y yr,4+1 with probability
O(1). Thus, there exists T = O(logn) and a trivial
coupling (X¢,Y;) such that Pr(Xy # Yy) < 1/4. This
completes the proof of Theorem

4.3 Proof of Theorem [3

In this section, we present the proof of Theorem
We provide the proof outlines for the cases B > 2 and
B < 2, where proofs of key lemmas are given in the
supplementary material. We first define

(a],aR) == nh_)rglo arg (amagx)Pr(aL,aR),
L,XR

where such (o ,a};) uniquely exists as we stated in
Lemma 17 in the supplementary material.

Rapid mixing proof for B > 2. In this case,
we will show that the Swendsen-Wang chain moves
within the constantly small distance from (a7 , aF,) for
any starting state in O(1) iterations with probability
©(1). Then, we will show that the Swendsen-Wang
chain moves within O(n~'/2) distance from (a},a%)
in O(logn) iterations with probability ©(1). Finally,
using this fact, we will bound the mixing time via the
coupling technique. More formally, we introduce the
following key lemmas.

Lemma 8 Let {X; : t = 0,1,...} be the Swendsen-
Wang chain on a complete bipartite graph of size
(n, kn) with any constants k > 1, B > 2 and any start-
ing state Xo. For any constant § > 0, there exists
T = O(1) such that ||a(X7) — (o}, aR)||lec < § with
probability ©(1).

Lemma 9 Let {X; : t = 0,1,...} be the Swendsen-
Wang chain on a complete bipartite graph of size
(n, kn) with any constants k > 1, B > 2. There exist
constants §, L > 0 such that the following statement
holds. Suppose that we start at state Xy such that
la(Xo) — (aF, af)|loc < 0. Then, in T = O(logn) it-
erations, the Swendsen- Wang chain moves to X1/ such
that ||a(X7) — (o, a%)||ee < Ln~Y/2 with probability
o(1).

Lemma 10 Let {X; : ¢t = 0,1,...}, {Y; : t =
0,1,...} be Swendsen-Wang chains on a complete bi-
partite graph of size (n, kn) with any positive constants
k>1,B # 2. Let X,Yy be a pair of configurations
satisfying

llo((X0) = (@) oo [l Yo) — (@, ay)lloe < L'/

for some constant L > 0. Then, there exists a coupling
for (X4,Y:) such that o(X;) = a(Yy) with probability
o(1).

Lemma 11 Let {X; : t = 0,1,...}, {Y; : t =
0,1,...} be Swendsen-Wang chains on a complete bi-
partite graph of size (n,kn) with any constants k >
1,B > 0. For any constant € > 0, there exist
T = O(logn) and a coupling for (X;,Y:) such that
Pr[Xr # Yr|a(Xo) = a(Yo)] <e.

The proofs of the above lemmas are presented in the
supplementary material. Since the proof of Lemma
is identical to that of Lemma 9 in [I0], we omit it.
Now, we are ready to complete the proof of Theorem
Bl for B > 2.

Consider two copies X;, Y; under the Swendsen-Wang
chain. We will show that for some 7' = O(log n), there
exists a coupling such that Pr[ Xy # Yr] < 1/4. Let
8, L be as in Lemma [§ and Lemma [9} Then, for some
T, = O(1) with probability ©(1), we have that

le(X1,) = (aL, aR)lloo, (Y1) = (a7, @)oo < 6.

Furthermore, for some To = O(logn) with probability
O(1), we have that

Il X7y 47,) = (af, afy)lloo < Ln™'/2

la(Yr,17,) = (af, aR)lloe < Ln~/2.

(6)

Conditioning on @ and using Lemma there ex-
ists a coupling that (X1 im+1) = o(Yryi1m+41)
holds with probability ©(1). Conditioning on
a(Xr,4r41) = a(Yr+1,+1) and using Lemma
for any constant & > 0, there exists T3 = O(logn)
and another coupling such that Pr(Xrp, 4741541 #
Y1 +1+1s41) < €. Since all events so far occur with
probability (1), there exists small enough constant
¢’ so that Pr(Xr # Yr) < 1/4 for some T = O(logn)
under some coupling. This completes the proof of The-
orem [3] for the case B > 2.

Rapid mixing proof for B < 2. In this case, we
will show that a(X;) moves within O(n~'/?) distance
from (o}, af;) in O(1) iterations. Then, we will bound
the mixing time via the coupling technique as before.
More formally, we introduce the following key lemmas.

Lemma 12 Let {X; :t=0,1,...} be the Swendsen-
Wang chain on a complete bipartite graph of size
(n,kn) with any constants k > 1,B < 2. There ex-
ists a constant L such that for any starting state Xg
after T = O(1), the Swendsen-Wang chain moves to
state Xp such that |a(X7) — (af,af)||eo < Ln~1/2
with probability ©(1).

The proof of Lemma is presented in the supple-
mentary material. By combining Lemmas and
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using same arguments used for the case B > 2, one
can complete the proof of Theorem [3| for B < 2.

5 EXPERIMENTS

In this section, we compare the empirical performances
of the Swendsen-Wang and the Gibbs chains for learn-
ing parameters of ferromagnetic Ising models. We con-
struct models on real world social graphs and synthetic
stochastic partitioned graphs by assigning random pa-
rameters [Buy], [1»] on graphs. For the choice of learn-
ing algorithm, we use the popular contrastive diver-
gence (CD) algorithm [I8] which uses a Markov chain
as its subroutine.

Data sets. For each model, we generate a data set
of 1000 samples by running the Swendsen-Wang chain.
To construct a model, we use two real world social
graphs which are known to have certain partitioned
structures, e.g., see [I4]. The first social graph is a
Facebook graph consisting of 4039 nodes and 88234
edges, originally used in [28]. Each node of the graph
corresponds to an account of Facebook and each edge
of the graph corresponds to a ‘friendship’ in Face-
book. The second social graph is a UCI graph created
from an online community consisting of 1899 nodes
and 13838 edges, originally used in [36]. Each node
in the graph corresponds to a student at the Univer-
sity of California, Irvine and each edge in the graph
corresponds to the message log from April to October
2004, i.e. edge (u,v) exists if u sent message to v or
vice versa. For the real world social graphs, we as-
sign v, ~ Unif(0,0.1), Unif(—0.1,0.1), i.e., both pos-
itive and mixed external field, and S, ~ Unif(0, z)
where z € [0.01, 1]E| For given x, we sample 10 i.i.d.
[Buv] to obtain 10 different models.

Our synthetic stochastic partitioned graphs are bipar-
tite random graphs of 100 to 1000 vertices with two
partitions of same size, i.e. |Vi| = |V2|. We set the
inter-partition edge probability p1; = p2e = 0.007
and the intra-partition edge probability p1o = 0.003.
For each graph size, we sample 10 bipartite ran-
dom graphs. For synthetic graphs, we assign ~, ~
Unif(0,0.1), Unif(—0.1,0.1) and B, ~ Unif(0, 1).

Contrastive divergence learning. Given a data
set, the most standard way to estimate/recover pa-
rameters of a ‘hidden’ model is the log-likelihood max-
imization. To this end, it is known [43] that gradients
of a graphical model requires computations of marginal
probabilities, e.g., E[o,0,] and E[o,], where one can
run a Markov chain to estimate them. However, this
is not efficient since the Markov chain has to be run
for large enough iterations until it mixes. To address

4Unif(a, b) denotes the random variable chosen in the
interval [a, b] uniformly at random.

the issue, the contrastive divergence (CD) learning al-
gorithm [I8] suggests that it suffices to run a Markov
chain for a fixed number of iterations to approximate
each gradient. The underlying intuition under CD
learning is that it is not necessary to wait for mixing
for each gradient update since parameters are slowly
changing and mixing effects are amortized over itera-
tions. The detailed procedure of the algorithm is pre-
sented in Algorithm

Algorithm 1 Contrastive Divergence Learning

1: Input: n;, 1(-), k, ns, MC(+,*), fhuw, o
2: Output: Estimated parameters [Byy], [30]
Initialization: 7, 8yy,% < 0 and randomly ini-
tialize states o', ..., o™ of Ising model
while ¢ < n; do
s+ 0
while s < ng do
o® < MC(o%, k)
s s+1
end while
10: fluw n% Yo osos
R A D D
12: Buv < Buv + 1(8) (fuw — fluy) for all (u,v) € E
13: Ao — Yo +1(8) (y — f1p) for allv € V
14: 14— 1+ 1
15: end while

@

In Algorithm |1} we denote MC(c, k) as a state of the
Ising model generated from running k iterations of
Markov chain starting from the state o, and pi,, =
Elo,0y), iy = Eloy,] are empirical marginals from the
data set. In addition, n;, n(-), k, ns the number of
gradient updates, the step size (or learning rate), the
number of samples and the number of MC updates, re-
spectively, which are hyper parameters of the CD algo-
rithm. Since the Swendsen-Wang chain takes O(|V])
times longer per each iteration, we use £k = 1 and
k = |V] for the Swendsen-Wang chain and the Gibbs
chain, respectively, for fair comparisons.

Experimental results. In our experiments, we ob-
serve that the Swendsen-Wang chain outperforms the
Gibbs chain, where the gap is significant as f,, or
a graph size are large. Our experimental results on
real world graphs are reported in Figure
2dl which show that the Swendsen-Wang chain out-
performs the Gibbs chain for both errors on [y,] and
[Buv]- One can observe that the error difference of the
Swendsen-Wang chain and the Gibbs chain grows as
interaction strength [8,,] increases, which is because
the Gibbs chain mixes slower at low temperatures.
Furthermore, the variance of errors of the Gibbs chain
increases while the variance of the Swendsen-Wang
chain remains small. Our experimental results using
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Figure 2: x-axis value z of (a), (b), (d), (e) is a range that B, is sampled from, i.e. By, ~ Unif(0, z), and x-axis
value of (c), (f) is a number of vertices in a graph. y-axis of external field error is a normalized external field
error >, ey |70 — 40|/|V] and y-axis of coupling error is a normalized coupling error }_, ,yep [Buv — Bul/|E|.
Each point is an average of 10 independent Ising models while each Ising model is learnt by 1000 data samples.

synthetic graphs are similar to those of the real world
social graphs. Figure [2¢| 2] show that the Swendsen-
Wang chain also outperforms the Gibbs chain as a
graph size grows. We observe that the external field
error of the Gibbs chain increases as a graph size in-
creases while that of the Swendsen-Wang chain tends
to stay.

6 Conclusion

Despite rich expressive powers of graphical models,
their expensive inference tasks have been the key bot-
tleneck for their large-scale applications. In this paper,
we prove that the Swendsen-Wang sampler mix fast for
stochastic partitioned attractive GMs, where our mix-
ing bound O(logn) is quite practical for large-scale
instances. We believe that our findings have much
more potentials even for general (not necessarily, at-
tractive) GMs if one can approximate a non-attractive
model by an attractive one; it was recently shown that
any binary pairwise GM can be approximated by an
attractive binary pairwise one on the so-called 2-cover
graph having two partitions [39]. For example, one can

use the Swendsen-Wang sampler to learn parameters
of the 2-cover attractive model and further fine-tune
them using the Gibbs sampler on the original model.
This is an interesting future research direction.
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