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Abstract

With the flourishing development of high-
dimensional data, sparse versions of princi-
pal component analysis (PCA) have imposed
themselves as simple, yet powerful ways of
selecting relevant features in an unsupervised
manner. However, when several sparse prin-
cipal components are computed, the inter-
pretation of the selected variables may be
difficult since each axis has its own spar-
sity pattern and has to be interpreted sep-
arately. To overcome this drawback, we pro-
pose a Bayesian procedure that allows to ob-
tain several sparse components with the same
sparsity pattern. To this end, using Roweis’
probabilistic interpretation of PCA and an
isotropic Gaussian prior on the loading ma-
trix, we provide the first exact computation
of the marginal likelihood of a Bayesian PCA
model. In order to avoid the drawbacks of
discrete model selection, we propose a sim-
ple relaxation of our framework which al-
lows to find a path of models using a vari-
ational expectation-maximization algorithm.
The exact marginal likelihood can eventually
be maximized over this path, relying on Oc-
cam’s razor to select the relevant variables.
Since the sparsity pattern is common to all
components, we call this approach globally
sparse probabilistic PCA (GSPPCA). Its use-
fulness is illustrated on synthetic data sets
and on several real unsupervised feature se-
lection problems.
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1 INTRODUCTION

From the children test results of the seminal paper
of Hotelling (1933) to the challenging analysis of mi-
croarray data (Ringnér, 2008), principal component
analysis (PCA) has become one of the most popular
tools for data-preprocessing and dimension-reduction.
The original procedure consists in projecting the data
onto a ”principal” subspace spanned by the leading
eigenvectors of the sample covariance matrix. It was
later shown that this subspace could also be retrieved
from the maximume-likelihood estimator of a parame-
ter, in a particular factor analysis model called prob-
abilisitic PCA (PPCA) (Roweis, 1998; Tipping and
Bishop, 1999). This probabilistic framework led to di-
verse Bayesian analysis of PCA (Bishop, 1999a; Minka,
2000; Nakajima et al., 2011).

1.1 Local and global sparsity

A drawback of PCA is that the principal components
are linear combinations of every single original vari-
able, and can be difficult to interpret. To tackle this
issue, several procedures have been designed to project
the data onto subspaces generated by sparse vectors
while retaining as much variance as possible. Many of
them were based on convex or partially convex relax-
ations of cardinality-constrained PCA problems (Jol-
liffe et al., 2003; Zou et al., 2006; d’Aspremont et al.,
2008), or on using sparsity-inducing prior distribu-
tions on the projection matrix (Archambeau and Bach,
2009; Guan and Dy, 2009).

However, when several principal components are com-
puted, these various techniques do not enforce them
to have to same sparsity pattern, and each component
has to be interpreted individually. While individual
interpretation is particularly natural in several cases
— when PCA serves visualization, for example —, it is
not adapted to situations where the practitioner aims
at globally selecting which features are relevant. In
these situations, a simple and popular approach has
been to consider that the relevant variables correspond
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to the sparsity pattern of the first principal compo-
nent (Zou et al., 2006; Zhang et al., 2012). However,
this procedure has its limits, and several important as-
pects of the data may lie in the next principal compo-
nents. For example, in the colon cancer data set stud-
ied by d’Aspremont et al. (2008), the most relevant
genes were the ones selected by the second principal
component. Another motivation for global sparsity is
the fact that, in many real-life situations, the sparsity
pattern of the axes computed by a sparse PCA algo-
rithm are extremely close . This is for example the
case of the three axes of the template attacks applica-
tion considered by Archambeau and Bach (2009). An-
other interesting feature of global sparsity is the fact
that, once the common sparsity pattern has been de-
termined, performing PCA on the relevant variables
yields orthogonal and uncorrelated principal compo-
nents — contrarily to most sparse PCA procedures.

In this paper, we present a Bayesian approach that
allows to project the data onto a globally sparse sub-
space (i.e a subspace spanned by vectors with the same
sparsity pattern) while preserving a large part of the
variance. To this end, we use Roweis’ noiseless PPCA
model (Roweis, 1998) together with an isotropic Gaus-
sian prior on the projection matrix and a binary vec-
tor that segregates relevant from irrelevant variables.
While past Bayesian PCA frameworks had to rely
on variational (Archambeau and Bach, 2009; Bishop,
1999b; Guan and Dy, 2009) or Laplace (Bishop, 1999a;
Minka, 2000) methods to approximate the marginal
likelihood, we derive here a closed-form expression for
the evidence based on the multivariate Bessel distri-
bution. In order to be able to avoid the drawbacks of
discrete model selection and to treat high-dimensional
data, we also present a simple relaxation of our model
by replacing the binary vector with a continuous one.
Inference in this relaxed model can be performed using
a variational expectation-maximization (VEM) algo-
rithm. Such a procedure allows to find a path of mod-
els. The exact evidence is eventually maximized over
this path, relying on Occam’s razor (MacKay, 2003,
chap. 28) to select the relevant variables.

1.2 Related work

Since the seminal papers of Jolliffe (1972, 1973), sev-
eral methods have been designed to discard features
in PCA (see e.g Brusco (2014) for a recent review).
However, these techniques were designed to eliminate
redundant, rather that irrelevant variables, and are
based on combinatorial algorithms that are not really
suitable for high-dimensional problems.

Another natural approach to global sparsity is /¢;-
based regularization, which has imposed itself as one
of the most versatile and efficient approaches to sparse

statistical learning (Hastie et al., 2015). In a con-
text of structured sparse PCA, Jenatton et al. (2009)
proposed to recast sparse PCA as a penalized matrix
factorization problem and suggested that limiting the
number of sparsity patterns allowed within the princi-
pal vectors could improve the feature extraction qual-
ity — particularly in face recognition problems. Using
the ¢; — ¢5 norm, they derived an algorithm (hereafter
referred as SSPCA) that allows to compute d sparse
components with exactly m < d sparsity patterns.
However, they only considered cases where m is larger
than 2 and therefore did not focus on global sparsity.
Other similar approaches based on structured compos-
ite norms have been conducted by Masaeli et al. (2010)
and Khan et al. (2015).

1.3 Notation

Vectors and matrices are denoted by bold cases. Given
a vector x € RP, we define its support as Supp(x) =
{i € {1,....,p},z; # 0}, and its fp-pseudonorm as
[|Ix|lo = #Supp(x), where z; denotes the i-th coor-
dinate of x. Given a vector x € R"™, we denote diag(x)
the n x n matrix with diagonal x and 0 outside the
diagonal. The identity matrix of dimension n is de-
noted by I,,. Given a binary vector z € {0,1}", we
denote z the binary vector of {0, 1}? whose support is
exactly the complement of Supp(z). Given a binary
vector z € {0,1}? and a matrix A € R"*P, we denote
A, the extracted matrix of A where only the columns
corresponding to the nonzero indexes of z have been
kept. Given a mean vector p € R™ and a positive
definite covariance matrix S € Rn x n, the density of
the normal distribution is denoted N(-; u,S). Given
a real order v, we respectively denote by J, and K,
the Bessel function of the first kind and the modified
Bessel function of the third kind (Abramowitz and Ste-
gun, 1965, chap. 10 and 11). The complete gamma
function is denoted by I'.

2 BAYESIAN VARIABLE
SELECTION FOR PCA

We assume that a centered i.i.d. sample x1,...,x, €
RP is observed. We wish to project it onto a d-
dimensional subspace while retaining as much variance
as possible. All the observations are stored in the n xp
matrix X = (X1, ...,%,) 7.

2.1 Probabilistic PCA

PPCA assumes that each observation is driven by the
following generative model:

x=Wy+e (1)
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where y ~ N(0,1;) is a low-dimensional Gaussian la-
tent vector, W is a p x d matrix called the loading
matriz and € ~ N(0,0%L,) is Gaussian noise term.

Tipping and Bishop (1999) proved that the principal
components of X could be retrieved using the maxi-
mum likelihood (ML) estimator Wy, of W. Indeed,
if A is a p x d matrix of ordered principal eigenvectors
of XTX and if A is the d x d diagonal matrix with
corresponding eigenvalues, we have

Wt = A(A - 0°Ly)'°R (2)

where R is an arbitrary orthogonal matrix. Since (2)
is true for all o > 0, the limit noiseless setting o — 0
also allows to recover the principal components, while
getting rid of the noise term. This convenient frame-
work was first studied by Roweis (1998) and has proven
to be useful in several contexts (Sigg and Buhmann,
2008; Tlin and Raiko, 2010).

2.2 Sparsity, variable selection and marginal
likelihood

In a classical (locally) sparse PCA context, the loading
matrix W would be expected to contain few nonzero
coefficients. However, to reach global sparsity, several
entire lines of W have to be further constrained to
be null. In this work, we will handle variable selec-
tion using a binary vector v € {0,1}? whose nonzero
entries correspond to relevant variables. We denote
q = ||vllo. In the PPCA framework, this would lead
to the following model for each observation:

x=VWy+e (3)

where V = diag(v). Notice that, since the lines of
VW, corresponding the zero entries of v are null, the
principal subspace will be generated by a basis of vec-
tors who share the sparsity pattern of v. Such spaces
spanned by a family of vectors sharing the same spar-
sity pattern will be called globally sparse subspaces.
This definition of global sparsity is closely related to
the notion of row sparsity introduced by Vu and Lei
(2013).

We assume that the coefficients of the matrix W are
endowed with Gaussian priors w;; ~ N(0,«), for all
1,j. Following the empirical Bayes framework leads to
seeking the parameters v, a and ¢ that maximizes the
marginal likelihood or evidence

n
p(X|V’ @, U) = Hp(xi|v7 a, 0)
i=1

= H‘/]R dp(xi|W,V7a,0)p(W)dW
i=1 P

of the data. In previous Bayesian PCA models, the
marginal likelihood was never derived because too
hard to compute in practice or even intractable. Here,
the evidence of the model can be expressed analyti-
cally as a univariate integral using the anisotropy of
the prior on W.

Theorem 1. The density of x is given by

I1xg 113
px|v, a,0) = e 27 09 P(2m) P2 xy |5

2

00 uq/26702u
/0 W«qu_l(ﬂlxv\lz)du (4)

A proof of this theorem is given in Appendix A. While
reducing the dimension of the integration domain to
one appears to be a valuable improvement, the integral
of (4), albeit univariate, is delicate to compute. This is
partly due to the fact that high-order Bessel functions
are difficult to evaluate precisely and can have fast
oscillations.

To obtain a closed-form expression of the marginal
likelihood, we consider the following modification of
model (3). For the relevant variables, we use the noise-
less PPCA model of Roweis (1998), and we assume
that the irrelevant variables are generated by a Gaus-
sian white noise. More specifically, we write

x = VWy + Ve; + Ve, (5)

where 1 ~ N(0,071,) is the noise of the inactive vari-
ables and ez ~ N(0,031,) is the noise of the active
variables, having in mind that we aim at investigating
the noiseless limit oo — 0.

In this particular case, the evidence has a closed form
expression.

Theorem 2. In the noiseless limit oo — 0, x con-
verges in probability to a random variable X whose den-
sity s

NESIE d—g ||)~( H2
p(X|v,a,01) = Ce 27 ||Xy]|5? Kyp_a (\/Va) .
(6)

where
p+d

ke (27T)7p/2217d/2

C:
I (g)ei™"

A proof of this theorem is given in Appendix B. Inter-
estingly, the distribution of the active variables exactly
corresponds to a particular case of the multivariate
Bessel distribution introduced by Fang et al. (1990,
Def. 2.5).

If we assume that v is known, (6) allows us
to efficiently compute the marginal log-likelihood
S logP(x = x;|v,a,01) and to optimize it with
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respect to the parameters a and o7. Indeed, o can be
found using univariate gradient ascent and o by com-
puting the standard error of the variables which were
not selected by v. Regarding o1, another option is to
use the maximum likelihood estimator from (3) which
is simply the mean of the p — d smallest eigenvalues
of the sample covariance matrix (Tipping and Bishop,
1999). We found this choice to be the most effective
in the experiments that we carried out.

2.3 Continuous relaxation

In spite of the results of the previous subsection, max-
imizing the evidence, even in the noiseless case, is
particularly difficult (because of the discreteness of v
which can take 2P possible values). We therefore con-
sider a simple continuous relaxation of the problem by
replacing v by a continuous vector u € [0,1]?. This
relaxation is close to the one considered by Latouche
et al. (2016) in a sparse linear regression framework.
Denoting U = diag(u), this relaxed model can be writ-
ten as

x=UWy +e. (7)

We denote 8 = (u, o, o) the vector of parameters. In
order to maximize the evidence p(X|0), we adopt a
variational approach. We view yq, ...y, and W as la-
tent variables.

Given a (variational) distribution ¢ over the space of
latent variables, the variational free energy is given by

J:Q(Xla ane) = —Eq[lnp(X,Y,W|0)} - H(Q) (8)

where H denotes the differential entropy, and is an
upper bound to the negative log-evidence:

—Inp(X|6) = F,(X|0) — KL(q||p(-0)) < F,(X]6).

To minimize F,(X]0), the following mean-field ap-
proximation is made on the variational distribution:

(Y, W) = q(Y)q(W). 9)

With this factorization, the variational posterior dis-
tribution ¢*, which minimizes the free energy, can be
derived. Note that two factorizations arise naturally.
This will conveniently keep the size of the covariance
matrices lower than d.

Proposition 1. The variational posterior distribution
of the latent variables which minimizes the free energy
s given by

n

g (Y) = HN(}’@WwE) (10)
and ,
¢"(W) = [T N (wi|my, 1) (11)
k=1

where

1 U "
Ky = ;ZMTUXZ'7 my, = =S > wikm,

=1
1 1< -
=1+ —=MTU>M + — 28

1 nu? up o op -t
Sk = *Id+722+*2’MM s
« o o
M = (my,..m,)" and M = (u,, ...up)T
forallie{l,..,n} and k € {1,...,p}.

A proof of this proposition, as well as a detailed com-
putation of the free energy, are provided as supple-
mentary material. Both rely on standard results in
variational mean-field approximations (Bishop, 2006,
chap. 10). The four equations of Proposition 1 will
constitute the E-step of the variational expectation-
maximization (VEM) algorithm used to maximized
the evidence. Maximizing the free energy then leads
to the following M-step updates:

P

N 1
ot = o ;Tr(sk +m;m}), (12)

. Tr(XXT + XUMM)
g = np
1 n p
+— IS BT + ppl ) (S) + mim])], (13)

np i=1 k=1

and, for k € {1, ...,p},
i . u? & T
uj, = ArgMill, e (0,153 Z Te[(2 + pp; )(Sk
i=1

tmam?)] —uY eml . (14)
=1

Note that the objective function of the optimization
problem (14) is simply an univariate polynomial.

2.4 Final estimation

Once the VEM algorithm has converged, we still need
to transform the continuous vector u into a binary one.
To do so, the following simple procedure is considered:

e a family of p nested models is built using the order
of the coefficients of u as a way of ranking the
variables
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Figure 1: Variable selection with GSPPCA on the in-
troductory example.

e the marginal likelihood of the non-relaxed model
(computed using the formula of Theorem 2) is
then maximized over this family of models.

e the model v with the largest marginal likelihood
is kept.

Once the model is estimated, the globally sparse prin-
cipal components of X can be computed by simply per-
forming PCA on Xy. This type of post-processing is
similar to the wvariational renormalization introduced
by Moghaddam et al. (2005) and extended by Journée
et al. (2010).

3 NUMERICAL SIMULATIONS

3.1 An introductory example

We consider here a simple introductory example which
aims at highlighting the main features of the proposed
combination between the relaxed VEM algorithm and
the closed-form expression of the marginal likelihood.
For this experiment, n = 50 observations are simulated
according to (3) with p = 30, d =5 and ¢ = 10. Each
coefficient of W is drawn at random according to a
standard Gaussian distribution.Fig. 1 presents the re-
sults of GSPPCA on this toy data set. The left panel
presents in dark blue the coefficients of the estimated
0 obtained after running the VEM algorithm (sorted
in decreasing order) and the corresponding true values
of v (pale blue points) used in the simulations. The
right panel shows the values of evidence computed on
the family of models inferred by the order of the coef-
ficients of 1. On this simple example, G captures the
true ranking of the variables and the model with the
largest evidence is actually the true one.

3.2 Range of the noiseless assumption

In all the experiments that we carried out, since the
noiseless PPCA model is not a true generative p-
dimensional model (the random variable X belongs to

1.0 G- A »“W
T
0.9
ol
[s}
@
i n=50,p=150
408 p
A n=p=100
0.74
1 1 1 1 1
0.00 0.25 0.50 0.75 1.00

Noise level

Figure 2: Median, first and third quartiles of the F-
score for the experiment of subsection 3.2, based on
100 runs

a strict subspace of RP), we chose not to use it to gen-
erate data in our experiments. We rather chose the
more realistic and natural model (3). Since this model
includes a nonzero noise, it is important to know the
limits of the noiseless assumption. We therefore simu-
lated two scenarios according to (3):

e a first one with n = 50 and p = 150

e a second one with n = p = 100.

In both scenarios, d = 10, each coefficient of W is
drawn according to a standard Gaussian distribution
and a grid of different noise levels from o = 0.05 to
o = 1 are considered. To evaluate the quality of the
variable selection, we computed the F-score between v
and v on 100 runs. We recall that the F-score is the
harmonic mean of precision and recall, and is closer to
1 when the selection is faithful. Unsurprisingly, when
the noise rises, the quality of the variable selection
diminishes. However, GSPPCA appears to be quite
robust to noise, even when the data are not generated
according to the underlying noiseless model.

3.3 Model selection

We compared the model selection accuracies of GSP-
PCA and SSPCA (Jenatton et al., 2009). Regarding
SSPCA, we used the Matlab code available at the main
author’s webpage and chose the tuning parameter us-
ing 5-fold cross-validation on the reconstruction error.

Table 1: F-score for the experiment of subsection 3.3,
based on 50 runs

n=p/2 n=p n=2p
SSPCA-CV  0.944 +0.061 0.985 + 0.022 1+0
GSPPCA 0.97+0.071 0985+0.34 140
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Figure 3: Percentage of variance explained by the data
projected onto a 30-dimensional globally sparse sub-
space

We constrained the algorithm in order to obtain glob-
ally sparse solutions. Using the framework of the pre-
vious experiments, we chose p = 100, d = 10, 0 = 0.6
and considered three cases regarding n. The F-scores
obtained after 50 runs are stored in Table 1. We can
see that the performances of the two algorithms are
very similar and accurate.

3.4 Global versus local

In this subsection, we illustrate on real data sets
how using GSPPCA instead of computing the lead-
ing sparse principal component for model selection can
lead to selecting ”better” variables — i.e variables that
retain more variance or are more interpretable.

Explained variance. First, we consider the
leukemia data set introduced by Golub et al. (1999)
consisting in expression levels of p = 3051 genes for
n = 38 leukemia patients. Given a cardinality ¢, we
used five methods to select relevant genes:

e we computed the first g-sparse principal compo-
nent using SPCA (Zou et al., 2006), GSPPCA and
SSPCA withd =1

e we computed the support of the globally g-sparse
subspace of dimension d = 30 using GSPPCA and
SSPCA.

For each method, we projected the data onto a 30-
dimensional globally g-sparse subspace using the spar-
sity pattern found by the algorithm and computed the
percentage of explained variance using the criterion in-
troduced by Shen and Huang (2008) — for each method,
we applied the post-processing technique of Moghad-
dam et al. (2005). The results are plotted on Fig.
3. While the performances of the three local meth-

Table 2: Variable selection of SPCA and GSPPCA for
the three datasets of Larochelle et al. (2007), selected
variables are in white

mnist-basic mnist-back-rand mnist-back-image

Sample

SPCA

GSPPCA

ods are mostly similar, the variables selected by GSP-
PCA and SSPCA (d = 30) retain much more variance,
and may consequently be of superior interest. Since
the data is eventually projected onto a globally sparse
subspace, it is not surprising that the global meth-
ods outperform the local ones. However, we can no-
tice that this this improvement is highly significative.
This means that achieving global sparsity by select-
ing the variables according to a single axis will lead
to very suboptimal choices. It is worth noticing that,
among the two global methods, GSPPCA consistently
outperforms SSPCA.

Interpretability. Inspired by Hastie et al. (2015,
section 8.2.3.1), we consider the problem of learning
which features are relevant on three data sets of hand-
written digits. We consider n = 500 gray-scale images
(with p = 758 pixels) of handwritten sevens from three
data sets introduced by Larochelle et al. (2007):

e mnist-basic which is simply a subsample of sevens
from the original MNIST data set,

e mnist-back-rand in which random backgrounds
were inserted in the images. Each pixel value of
the background was generated uniformly between
0 and 255,

e mnist-back-image in which random patches ex-
tracted from a set of 20 grey-scale natural images
were used as backgrounds for the sevens.
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On these three data sets, we apply SPCA (with d = 1),
SSPCA and GSPPCA (both with d = 100) in order to
select ¢ = 200 relevant pixels. On mnist-basic, even
if SPCA’s result is a little bit more erratic than the
two others, all selections are interpretable and we can
easily recognize a seven. On mnist-back-rand how-
ever, while the two globally sparse selections are still
consistent, SPCA’s pixels are more scattered and it
is harder to recognize the shape of a seven. Eventu-
ally, on mnist-back-image, GSPPCA’s selection is less
smooth but a seven can still be recognized, whereas
SPCA appears to randomly select pixels almost ev-
erywhere but near the mean seven. SSPCA seems to
notice that the zone occupied by the upper bars of the
sevens is of interest, but its selection does not appear
interpretable. It is worth noticing that, on this last
data set, applying GSPPCA with a small value of d
would also lead to poorly interpretable pixels.

4 CONCLUSION

Unsupervised feature selection is an hazy and excit-
ing problem. It becomes particularly difficult and ill-
posed when no specific learning task (such as cluster-
ing) is driving it. We have proposed in this paper a
new method for unsupervised feature selection based
on the idea that the data may lie close to a subspace of
moderate dimension spanned by a basis with a shared
sparsity pattern. On several real data sets, this ap-
proach outperforms a popular method which consists
in finding the sparsity pattern of the single leading
principal vector of the data. These results suggest
that, on many real-life high-dimensional data sets, an
important part of the information cannot be captured
by one-dimensional subspace approximations.

While building our framework, we derived the first
closed-form expression of the marginal likelihood of
a Bayesian PCA model, using the noiseless model of
Roweis (1998). A thorough study of the consequences
and applications of this result will be the subject of
future work. It would be interesting to see if more
complex priors can be used and to what extend our ex-
pression can lead to a simultaneous estimation of the
sparsity level and the dimension of the latent space.
Indeed, intrinsic dimension estimation, which was be-
yond the scope of this paper, has an enduring rela-
tionship with probabilistic versions of PCA (Minka,
2000; Bouveyron et al., 2011; Nakajima et al., 2015)
and would be an interesting direction.
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Appendix A. Proof of Theorem 1

Proof. Let us first consider the case where all variables
are active and assume that v = (1,1, ...,1). Therefore,
V = I, and the considered model reduces to prob-
abilistic PCA. In this framework, we will derive the
density of x by computing the Fourier transform of its
characteristic function.

In order to compute the characteristic function of x,
we first decompose the latent vector y in the canonical
base:

Yy =11€e1+ ... +Yyqed

where (e;);>q is the canonical base of R?. We can now
write the vector Wy as a sum of of d i.i.d variables

Wy =y1Wey + ... + ysWeq.
Its characteristic function will consequently be

PwWy = (‘Py1We1 )d-

Now, for all u € R%, we have

Py we, (1) = Elexp(iy1e:” W )] (15)
=E [GXP <iy1 Z wkl“k)] (16)
k=1

but, since wg; ~ N (0, @) for all s,¢, we will have

1
vallulls

thus, since y and W are independent, the law of
(Vallull2) "ty D% wriuy will be the one of a prod-
uct of two standard Gaussian random variables, whose
density is 1/7Ky(].]) (Wishart and Bartlett, 1932).
Therefore, we find that

p
Z WE1UE ~ N(O, 1)
k=1

1 +oo .
Py1Wer (u) = — K0(|t|)61\/auu||2tdt
T J—co
2 +o00
= Ko(t) cos(v/a||ul|ot)dt
0

is simply the cosine Fourier transform of a univariate
Bessel function. Using a formula in Abramowitz and
Stegun (1965, p. 486), we eventually find that

(u) L
Pyywll) = —F/—
" V1+alul3

which leads to
1
e
Finally, since the noise term and Wy are independent,
the characteristic function of x will be
—o?||ull3

ox(u) = pwy (u)pe(u) = 0+ al[u]2)72"
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The density of x is then given by the Fourier transform
of its characteristic function:

1

p(x) = 2 /Rp ex(u)e™ “du

but, since px(u) is a radial function (i.e a function that
only depends on the norm of its argument), its Fourier
transform can be expressed as a univariate integral
(Schaback and Wu, 1996) and we can write

2

|1~ /+°o up/2e=o"
) =" A
0

2r)?7? Toyai(ullxlz) du

(1+ au?)d/2"P
(17)

which is the desired form for the case with no inactive
variable.

In the general case, v is not necessarily equal to

(1,1,...,1) but we can notice that, since x, and xg

are independent, we can write p(x) = p(x7)p(xy) =
—lIxgll3

(vV2ro)~P=9De 207 p(x,). Applying (17) to the vec-
tor of nonzero coefficients of x, allows us to compute
p(xy) and to eventually obtain the expression of the
density given by the theorem. O

Appendix B. Proof of Theorem 2

Proof. Let us first consider the case where all variables
are active and assume that v = (1,1,...;1). In that
particular case, the noiseless limit reduces to Roweis’
probabilistic interpretation of PCA Roweis (1998). Us-
ing Lévy’s continuity theorem, it is straightforward to
see that eo weakly converges to zero when oy vanishes.
Since zero is a constant, this convergence also happens
to be in probability (Van der Vaart, 2000, p. 10). The
variable x therefore converges in probability to Wy.
The first computations of the proof of Theorem 1 as-
sure that the characteristic function of Wy is, for all
u e RP,
1
Pyl = G a7

which is the characteristic function of the multivariate
Bessel distribution (Kotz et al., 2001, p. 257), whose
density is exactly the one of (6) in the case with no
inactive variable.

Similarly to the proof of Theorem 1, we can prove (6)
in the general case when v is not necessarily equal
to (1,1,...,1) by invoking the independence of x, and
Xv- O
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