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Abstract

In this paper, we propose and study a semi-random model for the Correlation Clustering problem
on arbitrary graphs GG. We give two approximation algorithms for Correlation Clustering instances
from this model. The first algorithm finds a solution of value (1 4 &) opt-cost +Os(n log® n) with
high probability, where opt-cost is the value of the optimal solution (for every > 0). The second
algorithm finds the ground truth clustering with an arbitrarily small classification error 7 (under
some additional assumptions on the instance).
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1. Introduction

One of the most commonly used algorithmic tools in data analysis and machine learning is clus-
tering — partitioning a corpus of data into groups based on similarity. The data observed in several
application domains — e.g., protein-protein interaction data, links between web pages, and social
ties on social networks — carry relational information between pairs of nodes, which can be rep-
resented using a graph. Clustering based on relational information can reveal important structural
information such as functional groups of proteins (Bader and Hogue, 2003; Girvan and Newman,
2002), communities on web and social networks (Fortunato, 2010; Karrer and Newman, 2011), and
can be used for predictive tasks such as link prediction (Taskar et al., 2004).

Correlation clustering tackles this problem of clustering objects when we are given qualitative
information about the similarity or dissimilarity between some pairs of these objects. This quali-
tative information is represented in the form of a graph G(V, E, ¢) in which edges E are labeled
with signs {4+, —}; we denote the set of ‘+’ edges by F and the set of ‘—’ edges by E_. Each
edge (u,v) in E, indicates that u and v are similar, and each edge (u,v) € E_ indicates that u
and v are dissimilar; the cost c(u,v) of the edge shows the amount of similarity or dissimilarity
between u and v.! In the ideal case, this qualitative information is consistent with the intended
(“ground truth”) clustering. However, the qualitative information may be noisy due to errors in the
observations. Hence, the goal is to find a partition P of G that minimizes the cost of inconsistent
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1. One can also think of the instance as a graph G(V, E, ¢) with the edge costs ¢ : E — [—1,1]. If ¢(u,v) > 0 then
(u,v) € E4, and If ¢(u,v) < O then (u,v) € E_.
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edges:

ngn Z c(u,v) + Z c(u,v),

(u,0) € B P (u) £P(v) () € B_:P(u)=P(v)

where P (u) denotes the cluster that contains the vertex u. The objective captures the cost of in-
consistent edges — cut edges in £/, and uncut edges in F/_. (For a partition P, we say that an edge
(u,v) € E is consistent with P if either (u,v) € Ey and P(u) = P(v) or (u,v) € E_ and
P(u) # P(v).)

Note that the underlying graph G(V, E') can be reasonably sparse; this is desirable since collect-
ing pairwise information can be expensive. One important feature of correlation clustering is that it,
unlike most other clustering problems, allows us not to specify the number of clusters. Hence, it is
particularly useful when we have no prior knowledge of the number of clusters that the data divides
into.

Correlation clustering also comes up naturally in MAP inference in graphical models and struc-
tured prediction tasks for such tasks as image segmentation, parts-of-speech tagging and depen-
dency parsing in natural language processing (Nowozin and Lampert, 2010; Smith, 2011). In struc-
tured prediction, we are given some observations as input (e.g., image data, sentences), and the goal
is to predict a labeling x € A that encodes the high-level information that we would like to infer.
For instance, in image segmentation, the variables € {0, 1}" indicate whether each pixel is in the
foreground or background. This is naturally modeled as a Correlation Clustering instance on the set
of pixels (with 2 clusters), where edges connect adjacent pixels, and the costs (with signs) are set
based on the similarity or dissimilarity of the corresponding pixels in the given image. The clusters
in these inference problems then consist of the sets of variables that receive the same assignment
in the MAP solution. Correlation clustering is also used in the context of consensus clustering and
agnostic learning.

Correlation clustering was introduced in (Bansal et al., 2004), and implicitly in (Ben-Dor et al.,
1999) as ‘Cluster Editing’. The problem is APX-hard even on complete graphs’ (when we are
given the similarity information for every pair of objects) (Charikar et al., 2005). The state-of-the-
art approximation algorithm (Charikar et al., 2005; Demaine et al., 2006) achieves an O(log n) ap-
proximation for minimizing disagreements in the worst-case. Furthermore, there is a gap-preserving
reduction from the classic Minimum Multicut problem (Charikar et al., 2005; Demaine et al., 2006),
for which the current state-of-the-art algorithm gives a ©(log n) factor approximation (Garg et al.,
1993). The complementary objective of maximizing agreements is easier from the approximability
standpoint, and a 0.766 factor approximation is known (Charikar et al., 2005; Swamy, 2004). For
the special case of complete graphs (with unit costs on edges), small constant factor approximations
have been obtained in a series of works (Bansal et al., 2004, Ailon et al., 2008; Chawla et al., 2014).
Instances of Correlation Clustering on complete graphs that satisfy the notion of approximation sta-
bility were considered in (Balcan and Braverman, 2009). To summarize, despite our best efforts, we
only know logarithmic factor approximation algorithms for Correlation Clustering; moreover, we
cannot get a constant factor approximation for worst-case instances if the Unique Games Conjecture
is true.

However, our primary interest in solving Correlation Clustering comes from its numerous ap-
plications, and the instances that we encounter in these applications are not worst-case instances.

2. This rules out (1 + €) factor approximations for some small constant € > 0.



CORRELATION CLUSTERING

This motivates the study of the average-case complexity of the problem and raises the following
question:

Can we design algorithms with better provable guarantees for realistic average-case
models of Correlation Clustering?

Several natural average-case models of Correlation Clustering have been studied previously.
Ben-Dor et al. (1999) consider a model in which we start with a ground-truth clustering — an arbi-
trary partitioning of the vertices — of a complete graph. Initially, edges inside clusters of the ground
truth solution are labeled ‘+’ and edges between clusters are labeled ‘-’. We flip the label of each
edge (change ‘4’ to ‘—’ and ‘—’ to ‘4’) with probability ¢ independently at random and obtain
a Correlation Clustering instance (the flipped edges model the noisy observations) . In fact, this
average-case model was also studied in the work (Bansal et al., 2004) that introduced the problem
of Correlation Clustering. Mathieu and Schudy consider a generalization of this model where there
is an adversary: for each edge, we keep the initial label with probability (1 — ¢), and we let the ad-
versary decide whether to flip the edge label or not with probability €. The major drawback of these
models is that they only consider the case of complete graphs, i.e. they require that the Correlation
Clustering instance contains similarity information for every pair of nodes. Chen et al. extended
the model of (Ben-Dor et al., 1999) from complete graphs to sparser Erdos—Renyi random graphs.
In their model, the underlying unlabeled graph G(V, E) comes from an Erdés—Renyi random graph
(of edge probability p), and as in (Ben-Dor et al., 1999), the label of each edge is set (indepen-
dently) to be consistent with the ground truth clustering with probability 1 — ¢ and inconsistent with
probability e.

While these average-case models are natural, they are unrealistic in practice since most real-
world graphs are neither dense nor captured by Erdos—Renyi distributions. For instance, real-world
graphs in community detection have many structural properties (presence of large cliques, large
clustering coefficients, heavy-tailed degree distribution) that are not exhibited by graphs that are
generated by Erdos—Renyi models (Newman et al., 2006; Kumar et al., 1999). Graphs that come up
in computer vision applications are sparse with grid-like structure (Yarkony et al., 2012). Further,
these models assume that every pair of vertices have the same amount of similarity or dissimilarity
(all costs are unit). Our semi-random model tries to address these issues by assuming very little
about the observations — the underlying unlabeled graph G(V, E) — and allowing non-uniform costs.

1.1. Our Semi-random Model

In this paper, we propose and study a new semi-random model for generating general instances
of Correlation Clustering, which we believe captures many properties of real world instances. It
generalizes the model of Mathieu and Schudy (2010) to arbitrary graphs G(V, E, ¢) with costs. A
semi-random instance {G(V, E, c¢), (E4, E_)} is generated as follows:

1. The adversary chooses an undirected graph G(V, E, ¢) and a partition P* of the vertex set V'
(referred to as the planted clustering or ground truth clustering).

2. Every edge is F is included in set E'r independently with probability ¢.

3. Every edge (u,v) € E'\ Egr with u and v in the same cluster of P* is included in F, and
every edge (u,v) € E \ ER, with v and v in different clusters of P* is included in F_.

4. The adversary adds every edge from Eg either to £ or to E_ (but not to both sets).
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This model can be further generalized to an adaptive semi-random model as described in Section 3.1.

1.2. Our Results

We develop two algorithms for semi-random instances of Correlation Clustering. The first algorithm
gives a polynomial-time approximation scheme (PTAS) for instances from our semi-random model.
The second algorithm recovers the planted partition with a small classification error 7.

Theorem 1 For every § > 0, there is a polynomial-time algorithm that given a semi-random
instance {G(V, E,c), (E+, E_)} of Correlation Clustering (with noise probability ¢ < 1/4), finds
a clustering that has disagreement cost (1 4 &) opt-cost +O((1 — 2¢)~*63nlog® n) w.h.p. over
the randomness in the instance, where opt-cost is the cost of disagreements of the optimal solution
for the instance.

The approximation additive term is much smaller than the cost of the planted solution if the average
degree A > £ !polylog n. Note that we compare the performance of our algorithm with the cost
of the optimal solution. Further, these guarantees hold even in a more general adaptive semi-random
model that is described in Section 3.1.

The above result gives a good approximation guarantee with respect to the objective. But what
about recovering the ground truth clustering? Our semi-random model is too general to allow
recovery. For instance, there could be large disconnected pieces inside some clusters of G, or there
could be no edges between some clusters — in both cases, recovery is statistically impossible.
Hence, we need some additional conditions for approximate recovery in our model, that guarantee
at the very least that the ground truth clustering is uniquely optimal (in a robust sense).

Our first assumption is that there is mild expansion inside clusters — this connectivity assump-
tion prevents large pieces inside clusters that are almost disconnected, which might get separated
in an almost optimal clustering. The second and third assumptions are that there are enough edges
from vertices in one cluster to other clusters, to prevent these clusters (or parts of them) from co-
alescing in near-optimal clusterings. Finally, we assume approximate regularity in degrees inside
clusters (the degrees of all vertices are approximately equal up to a factor of « > 1), since it is
hard to correctly classify vertices with very few edges incident on them. These assumptions are
described formally in Section 5. We refer to them as Assumptions 10. We now informally describe
the algorithmic guarantees for approximate recovery:

Theorem 2 There exists a polynomial-time algorithm that given a semi-random instance

Z = {G=(V,E,c),(E+,E_)} satisfying mild expansion inside clusters, regularity and inter-
cluster density conditions with parameters o, 3 and \gqp (see Assumptions 10 for details) finds a
partition P with classification error at most 4n w.h.p. over the randomness in the instance, where

Co nlogn 1/12 a® \ 2
= A=) - )
BNCEES ( o(E) ) (mgap>
Our algorithm outputs a clustering such that only O(nn) vertices are misclassified (up to a renaming
of the clusters). We note that the expansion and regularity assumptions are satisfied by Erdos—Renyi
graphs: for instance, such random graphs have strong expansion both inside and between clusters

(Agap = 1 — 0(1)) and have strong concentration of degrees. Our assumptions for recovery are soft:
if there is bad expansion inside clusters (Agyp is small), or if there are not sufficient edges between
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vertices in different clusters, we just need more observations (edges) to approximately recover the
clusters. For instance, when « is polylogarithmic in n, 8 and Ay, are inverse polylogarithmic in 7,
Theorem 2 only requires that the average degree of the graph (w.r.t. edge costs c(e)) is polyloga-
rithmic in n.

1.3. Related Work on Semi-random Models

Over the last two decades, there has been extensive research on average-case complexity of many
important combinatorial optimization problems. Semi-random instances typically allow much more
structure then completely random instances. Research on semi-random models was initiated by
(Blum and Spencer, 1995), who introduced and investigated semi-random models for k-coloring.
Semi-random models have also been studied for graph partitioning problems (Feige and Kilian,
1998; Chen et al., 2012; Makarychev et al., 2012, 2014), Independent Set (Feige and Kilian, 1998),
Maximum Clique (Feige and Krauthgamer, 2000), Unique Games (Kolla et al., 2011), and other
problems. Most related to our work, both in the nature of the model and in the techniques used,
is a recent result of (Makarychev et al., 2013) on semi-random instances of Minimum Feedback
Arc Set. While the techniques used in both papers are conceptually similar, the semidefinite (SDP)
relaxation for Correlation Clustering that we use in this paper is very different from the SDP relax-
ation for Minimum Feedback Arc Set used in (Makarychev et al., 2013). Further, we get a true 1+ ¢
approximation scheme (with an extra additive approximation term). This is in contrast to previous
semi-random model results (Makarychev et al., 2012, 2013), which compare the cost of the solution
that the algorithm finds to the cost of the planted solution. Moreover, this work gives not only a
PTAS for the problem, but also a simple algorithm for recovery the ground truth solution.

Mathieu and Schudy recently considered a semi-random model for Correlation Clustering on
complete graphs with unit edge costs. Later, Elsner and Schudy conducted an empirical evaluation
of algorithms for the complete graph setting. Chen et al. (2014) extended the average-case model
of Correlation Clustering to sparser Erdos—Renyi graphs. Very recently, Globerson et al. (2014)
considered a semi-random model for Correlation Clustering for recovery in grid graphs and planar
graphs, and gave conditions for approximate recovery in terms of an expansion-related condition.

Comparison of Results. The two works that are most similar in the nature of guarantees are
(Mathieu and Schudy, 2010) and (Chen et al., 2014). Mathieu and Schudy designed an algorithm
based on semidefinite programming (SDP relaxations with ¢3-triangle inequality constraints) for
their semi-random model on complete graphs. It finds a clustering of cost at most 1 + O(nil/ 6)
times the cost of the optimal clustering (as long as ¢ < 1/2 — O(n_l/ 3)) and manages to approx-
imately recover the ground truth solution (when the clusters have size at least v/n). However, this
algorithm only works on complete graphs and assumes unit edge costs. Chen et al. studied the prob-
lem on sparser graphs from the Erdos—Renyi distribution, and using weaker convex relaxations gave
an algorithm that recovers the ground-truth when p > k? logo(l) n/n. In the case of Erdos—Renyi
graphs, our algorithms obtain similar guarantees for smaller values of £k (the implicit dependence
on k is a worse polynomial than in (Chen et al., 2014), however). The main advantage of our algo-
rithms is that they work for more general graphs G: the first algorithm requires only that the average
degree of GG is some poly-log of n, while the second algorithm requires additionally that the graph
has a mild expansion and regularity; its performance depends softly on the expansion and regularity
parameters of the graph.

Empirical Results. We describe our empirical results in Appendix A.
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2. Overview of the Algorithms and Structural Insights

SDP relaxation. We use a simple SDP relaxation for the problem (Swamy, 2004). For every vertex
u, we have a unit vector . For two vertices u and v, we interpret the inner product (u,v) € [0, 1]
as the indicator of the event: u and v lie in the same partition. The SDP is given below:

min Z c(u,v)(1 —(u,v)) + Z c(u,v)(u,v).
(u,v)EEL (u,v)eE_
subject to: for all u,v € V,
(u,v) € [0,1];
lal* = 1.

The intended vector (SDP) solution has one co-ordinate for every cluster of the clustering P:
the vector @ for vertex u has 1 in the co-ordinate corresponding to P(u) and 0 otherwise. Hence this
SDP is a valid relaxation. We note that this relaxation is weaker than the SDP used in (Mathieu and
Schudy, 2010) because it does not have ¢3-triangle inequalities constraints. Hence, this semidefinite
program is more scalable, and it is efficiently solvable for instances with a few thousand nodes.

Approximation Algorithm (PTAS). We now describe the algorithm that gives a PTAS. Fix a
parameter § = o(1) € (0,1/2). To simplify the notation, denote by f(u,v) (for (u,v) € E) the
SDP value of the edge (without cost):

f(u,v) =1—(u,v) if (u,v) € Ey, and f(u,v) = (u,v), otherwise. (2)

Our PTAS is based on a surprising structural result about near-integrality of the SDP relaxation on
the edges of the graph (see Theorem 3 for a formal statement).

Informal Structural Theorem. In any feasible SDP solution of cost at most OPT, the SDP
value of edge f(u,v) > 1—6 foral—os(1/logn) fraction of the inconsistent edges (u,v) € E(QG).

Hence, the structural result suggests that by removing all edges that contribute at least (1 — J)
to the objective, the remaining instance has a solution of very small cost. We then run the O(logn)
worst-case approximation algorithm of (Charikar et al., 2005) or (Demaine et al., 2006) on the
remaining graph to obtain a PTAS overall.

Recovery. The algorithm outlined above finds a solution of near optimal cost. Under additional
assumptions, we show that we can in fact design a very simple greedy rounding scheme that can
also efficiently recover the ground truth clustering approximately.

The structural theorem above shows that the SDP vectors are highly correlated for pairs of
adjacent vertices. Under the additional conditions, we show that the vectors are in fact globally
clustered according to the ground truth clustering:

Informal Structural Theorem. When the semi-random instance {G = (V, E,c), Ey, E_} satis-
fies Assumption 10, we have w.h.p. that: for a (1 — O(n)) fraction of the clusters P} we can choose
centers u; € P} and define cores core(P}) = {v € P} : ||v — u;|| < 1/10} C P’ (balls of radius
1/10 around centers ;) such that core(P;) > (1 — n)|P*| (the core of P} contains all but an n
fraction of vertices of P;") and centers u; are mutually separated by a distance of at least 4/5.

The recovery algorithm is a greedy algorithm that finds heavy regions — sets of vectors that are
clumped together — and puts them into clusters.
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Recovery Algorithm
Input: an optimal SDP solution {#},,y .
Output: partition Py, ..., P, of V (for some t).
t =1, peore = 0.1
Define an auxiliary graph Gauz = (V, Equz) With Eguz = {(u,v) 1 ||t — 0|| < peore}
while V\ (PLU...P_) # &
Let u be the vertex of maximum degree in Gy, [V \ (P U ... P_1)].
Let P, ={v¢ PLU---UP,_1: (u,v) € Egus} / note that P, contains u
i=1+1
return clusters Py, ..., P;_1.

This structural result about the global clustering and near integrality of the SDP vectors is con-
sistent with empirical evidence. While our algorithm succeeds when the SDP is tight (as in (Chen
et al., 2014)), the analysis of our algorithm also shows how to deal with nearly integral solutions,
in which most inner products (@, v) are only close to 0 or 1 (but may not be tight). We believe
that many instances arising in practice have SDP solutions that are nearly integral, but not integral.
Hence, we believe that in practice, our algorithm will work better than previously known algorithms.

3. Polynomial-time Approximation Scheme

In this section, we present the analysis of our polynomial-time approximation scheme for correlation
clustering, which we presented in Section 2. The PTAS works in a very general Adaptive Model,
which we describe first.

3.1. Adaptive Model

We study a more general “adaptive” semi-random model. A semi-random instance is generated
as follows. We start with a graph Go(V, &) on n vertices with no edges and a partition P* of V'
into disjoint sets, which we call the planted partition. The adversary adds edges one by one. We
denote the edge chosen at step ¢ by e; and its cost c(e;) € [0, 1]. After the adversary adds an edge
e; to the set of edges, the nature flips a coin and with probability £ adds e to the set of random
edges E'r. The next edge e;11 chosen by the adversary may depend on whether e; belongs to Er
or not. The adversary stops the semi-random process at a stopping time 7. Thus, we obtain a
graph G*(V,{e1,...,er},c) and a set of random edges Er. We denote the set of all edges by
E* = {ej,...,er}. The adversary may remove some edges belonging to Ep from the set E*.
Denote the set of the remaining edges by E. Note that E* \ Er C E C E*.

Once the graph G(V, E) and the set Er are generated, we perform steps 3 and 4 from the
basic semi-random model for the graph G(V, E') and random set of edges Er N E (as described in
Section 1.1). We obtain a semi-random instance. This is the instance the algorithm gets. Of course,
the algorithm does not get the set of random edges Er. Note that the cost of the planted solution
P* is at most the cost of the edges Er N E i.e. C(ER N E), since all edges in F' \ Er are consistent
with P*.

This Adaptive Model is more general than the Basic Semi-random model we introduced earlier.
The basic semi-random model corresponds to the case when the whole set of edges E* is fixed in
advance independent of the random choices made in Er, and £ = E*. However, in the adaptive
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model the edge e; can be chosen based on which of the edges eq, . . . e;—1 belong to E'r. For instance,
the adversary can choose edge e; from the portion of the graph where many of the previously chosen
edges belong to F'g.

3.2. Analysis of the Algorithm

Now we analyze the algorithm presented in Section 2. We need to bound the number of edges
removed at the first step (that is, edges (u,v) with f(u,v) > 1 — ) and the number of edges cut
by the O(log n) approximation algorithm at the second step. The SDP contribution of every edge
(u,v) removed at the first step is at least ¢(u, v)(1 — 0). Thus the cost of edges removed at the first
step is bounded by SDP/(1 — ) < (1 + 20)OPT. To bound the cost of the solution produced by
the approximation algorithm at the second step, we need to bound the cost of the optimal solution

for the remaining instance i.e., the instance with the set of edges {(u,v) € E': f(u,v) <1 —§}.
For any subset of edges F' C F, let ¢(F') represent the cost of the edges in F ie. ¢(F) =
> ccrcle). Denote £ and E*: B = {(u,v) : P*(u) = P*(v)} and E* = {(u,v) : P*(u) #
P*(v)}. Now define a function f*(u,v), which slightly differs from f(u,v). For all (u,v) € E,
Pl {1_—_<u, 0), P (w) = P*(v); )

(u,v), if P*(u) # P*(v).

Here, P* is the planted partition. Note that P* and f*(u, v) are not known to the algorithm. Observe
that f(u,v) = f*(u,v) if the edge (u, v) is consistent with the planted partition P*, and f(u,v) =
1 — f*(u,v) otherwise. Our goal is to show that the algorithm removes all but very few edges
inconsistent with P*, i.e., edges (u,v) with f(u,v) = 1 — f*(u,v). We prove the following
theorem in Section C. The proof relies on Theorem 9 presented in Section 4.

Theorem 3 Let {G = (V,E,c), (E4, E_)} be a semi-random instance of the correlation clus-
tering problem. Let Eg be the set of random edges, and P* be the planted partition. Denote by
Q) C ER the set of random edges not consistent with P*. Then, for some universal constant C' and
every 6,7 > 0, and for A = C(1 — 25)~2y"25 3nlogn,

6y
P > = .
r E c(u,v) > A+ T 2€C(Q) o(1)
(U,’U)EQ:‘]C(’U,,U)§17§

where f corresponds to any feasible SDP solution of cost at most OPT.

Remark 4 [In the statement of Theorem 3, c(Q) is the value of the solution given by the planted solu-
tion P*. IfOPT = ¢(Q), then the planted solution P* is indeed an optimal clustering. The function
f(u,v) in the theorem that corresponds to the SDP contribution of edge (u, v) could come from any
(not necessarily optimal) SDP solution of cost at most O PT. This will be useful in Lemma 5.

Let D = O(logn) be the approximation algorithms of Charikar et al. (2005) or Demaine et al.
(2006). We apply Theorem 3 with v = %. The cost of edges in {(u,v) € Q : f(u,v) < 1-46}
is bounded by

At 70 e(Q) < At D5e(@) @
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w.h.p., where A = O((1 — 2¢) =46 3nlog® n). Thus, after removing edges with f(u,v) > (1 — §),
the cost of the optimal solution is at most (4) w.h.p. The approximation algorithm finds a solution
of cost at most D times (4). Thus, the total cost of the solution returned by the algorithm is at most

(14+20)OPT+D x (A+D7'5-¢(Q)) = (1+36)c(Q)+ DA
= (1430)c(Q)+O0((1 —2¢)"* 3nlog3n).

The above argument shows that the solution has small cost compared to the cost of the planted
solution P*. We can in fact use Theorem 3 to give a true approximation i.e., compared to the cost
of the optimal solution OPT'. This follows from the following lower bound on O PT in terms of
¢(Q) for semi-random instances (which we prove in Section D).

Lemma 5 In the notation of Theorem 3, with probability 1 — o(1),
e(Q) < (1420)OPT + O ((1 —2¢) %6 *nlog’n).

Proof [Proof of Theorem 1] From Theorem 3, we get the total cost of the solution is bounded by

(1+28)OPT + D x (A+D715-¢(Q)) = (1+20)OPT + D x A+ - (OPT + A)

1-46/D
< (1+ 46)OPT + 2DA
= (1+40)OPT + O((1 — 2¢)*6 3nlog® n).

This finishes the analysis of the algorithm. |

4. Betting with Stakes Depending on the Outcome

We first informally describe the theorem we prove in this section. Consider the following game.
Assume that we are given a set of vectors W C [0, 1]™. Atevery step ¢, the player (adversary) picks

an arbitrary not yet chosen coordinate e; € {1,...,m}, and the casino (nature) flips a coin such that
with probability € < 1/2, the player wins, and with probability (1 — ) > 1/2, the player looses. In
the former case, we set X; = 1; and in the latter case we set X; = —1. At some point 7' < m the

player stops the game. At that point, he picks a vector w € V¥ and declares that at time ¢ his stake
was w(ey) dollars. We stress that the vector w may depend on the outcomes X;. Then, the player’s
payoff equals

T
Z th(et).
t=1

If the player could pick an arbitrary w after the outcomes X; are revealed, then clearly he could get
a significant payoff by letting w(e;) = 1, for X; = 1, and w(e;) = 0, otherwise. However, we
assume that the set ¥V of possible bets is relatively small. Then, we show that with high probability
the payoff is negative unless the total amount of bets ) °, w(e;) is very small. The precise statement
of the theorem (see below) is slightly more technical.

The main idea of the proof is that for any w € W fixed in advance, the player is expected
to loose with high probability, since the coin is not fair (¢ < 1/2), and thus the casino has an
advantage. In fact, the probability that the player wins is exponentially small if the coordinates
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of w are sufficiently large. Now we union bound over all w’s in VW and conclude that with high
probability for every w € W, the player’s payoff is negative.

When we apply this theorem to a semi-random instance of Correlation Clustering (with unit
costs i.e. ¢(e;) = 1), the stakes are defined by the solution of the SDP: for an edge ¢; = (u,v),
w(er) = f*(u,v). Loosely speaking, we show that since the SDP value is at most O PT, the game
is profitable for the adversary. This implies that most stakes f*(u, v) are close to 0. Now, if an edge
(u, v) is consistent with the planted partition P*, then f(u,v) = f*(u,v) =~ 0, and hence we do not
remove this edge. On the other hand, if the edge is not consistent with the planted partition, then
flu,v) =1 — f*(u,v) = 1, hence we remove the edge.

Lemma 6 Let W C [0, 1] be a set of vectors. Consider a stochastic process (e1, X1,c¢1), ..., (er, X1, cr).
Eache, € {1,...,m} \ {e1,...,es—1}, Xi € {£1}, ¢, € [0,1]. Let F; be the filtration generated

by the random variables (e1, X1,¢1), ..., (e, X, ¢t), and F| be the filtration generated by the ran-

dom variables (e1, X1,c1), ..., (et, X¢, ¢) and (€441, ci+1). The random variable T € {1,...,m}

is a stopping time w.r.t. Fy. Each Xy is a Bernoulli random variable independent of F|_.

X, — 1, with probability ¢;
T —1, with probability 1 — ¢;

where ¢ < 1/2. Then, for all A > 3(1 — 2¢)72,

1—2 & T
Zw(et)ct > 0 and Zw(et)ct > A) <

t=1 t=1

T
Pr (Elw e W s.t. Zth(et)ct +
t=1

S 2|W‘€_1/5(1_26)2A. (5)

We prove this lemma in Section D. We now slightly generalize this theorem. In our application,
the set of all possible stakes can be infinite, however, we know that there is a relatively small epsilon
net for it.

Definition 7 We say that a set W C R™ is a y—net for a set Z C R™ in the {~, norm, if for every
z € Z, there exists w € W such that ||z — w||cc = max;{|2(7) — w(7)|} <.

Remark 8 IfW is a y—net for Z C [0,1]™, then there exists W' C [0, 1]™ of the same size as W
(IW'| = |W)|), such that for every z € Z, there exists w' € W' satisfying w' (1) < z(i) < w'(i) +2v
foralli. To obtain W' we simply subtract min (v, w(%)) from each coordinate of w and then truncate
each w' (i) at the threshold of 1.

We prove the following theorem in Section D.

Theorem 9 Consider a stochastic process (e1, X1,c1), ..., (er, Xp,cr) such that each e; €
{1,....m}\{e1,...,es—1}, Xy € {£1} and ¢; € [0,1]. Let F; be the filtration generated by
the random variables (e1, X1,c1), ..., (er, Xi, ¢t), and F| be the filtration generated by the ran-
dom variables (e1, X1,c1), ..., (et, X¢, ¢t) and (€441, ci+1). The random variable T € {1,...,m}
is a stopping time w.r.t. Fi. Each Xy is a Bernoulli random variable independent of F|_.

X, — 1, with probability ¢;
T —1, with probability 1 — ¢;

10
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where ¢ < 1/2. Let Z C [0,1]™ be a set of vectors having a ~y-net in the Lo, norm of size N.
Define two random sets depending on { X, }:

Qi ={t: Xy =1} and Q- ={t: Xy = —1}.

Then, for all A > 3(1 — 2¢)?, we have

Pr (Elz €Z, Qp C Qg st Z Xiz(et)er > 0

teQapUQ -
6
and 37 ez A+ 700 3o a) S2Ne R ()
teQg teQo

5. Recovery Algorithm

In this section, we prove Theorem 2 that shows that under some additional assumptions on the graph
G and partition P*, we can recover the planted partition P* with an arbitrarily small classification
error 7). The recovery algorithm is a very fast and very simple greedy algorithm (presented in
Section 2).

Assumptions 10 Consider a semi-random instance T = {G = (V,E,c),(E+,E_)}. Let P*
be the planted partition. Denote the clusters of G w.r.t clustering P* by Py,..., P}. Let f =
c(E%)/c(E) (note that EY is the set of edges that lie within clusters), B;; = c({(u,v) : u €
Prv € Pr})/c(E) (here, {(u,v) : u € Pf,v € P!} is the set of edges between clusters P and
P;‘ ). Assume that the instance 1 satisfies the following conditions with a parameter o > 1.

e Cluster Expansion. All induced graphs G| P} are spectral expanders with spectral expansion

at least \gqp; that is, the second smallest eigenvalue of the normalized Laplacian of G[P}'] is
at least \gyqp.

1/6
o Intercluster Density. For some sufficiently large constant C, [3;; > (197215)2 (ncl((g)n) .

o Approximate Intercluster Regularity. The graph formed by the edges between every two
clusters P and P]fk is approximately regular with respect to the cost function c: for every
u',u" € Pfwe have c({(v/,v) : v € Pf}) < ac({(v,v) : v € PF}).

e Approximate Cluster Regularity. All induced graphs G[P}] are approximately regular with
the same degree w.r.t to the cost function c. That is, for some number co, every cluster P},
and every vertex u € P, co < c({(u,v) € E:v € P}}) < acy.

Definition 11 Let Z = {G = (V, E,¢), (E+, E_)} be a semi-random instance of correlation clus-
tering, P* be the planted partition, and Py, . . ., P} be the planted clusters. We say that a partition
P of V into clusters Py, ..., P, has an n classification error if there is a partial matching between
clusters Py, ..., P} and clusters Py, ..., P; such that

> [P OB = (1=n)V].

P} is matched with P;

Theorem 2 relies on the following theorem that describes the structure of optimal SDP solutions to
semi-random instances of correlation clustering that satisfy conditions in Assumption 10.

11
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Theorem 12 Assume that a semi-random instance T = {G = (V, E, c), (E+, E_)} satisfies As-
sumptions 10. Let {u} be the optimal SDP solution to I. With probability 1 — o(1), there exist a
subset of clusters C C {Py,..., P} and a vertex u; in each cluster P} satisfying the following
properties. Let peore = 1/10 and pinter = 4/5. Let core(P;) = {v € P : |0 — ;]| < peore } for
Pr € C, then

L |Uprec PF| = (1 =n)|V].

2. |eore(Py)| = (1 —n)|Fl.

3. In particular, ZP;GC |Pr| > (1—n)?|V].

4. ||u; — ;|| > pinter for every two distinct clusters Py, PrecC.

We prove Theorem 12 in Section E.

Proof [Proof of Theorem 2] Let Py, ..., P; be the clusters found by the recovery algorithm (pre-
sented in Section 2). Consider a cluster P;,. Let u be the vertex we choose at iteration ¢ of the
while—loop, during the execution of the recovery algorithm. If P; intersects a core core(P) of a
cluster P;" then [[u — ;|| < 2pcore. Note that P; cannot intersect cores core(F;) and core(F;,) of
two distinct clusters P7; and P, since [|u — wj || + [lu — wjr || = |lujr — wjr|| = pinter > 4pcore-
Thus each cluster P; intersects the core of at most one cluster P]*

We match every cluster P;* € C to the first cluster F; that intersects core(PJ’»* ). Consider a cluster
P} € C and the matching cluster P;. We have, core(P;) N (P U---UP;_1) = @ and, in particular,
uj ¢ PyU---UP;_1. We have that u; is connected to all vertices in core(P}") in the graph Gauz [V'\
(P1U...P—1)]. Thus u; has degree at least | core(P;)| in Gauz[V '\ (P1 U ... P,—1)]. Therefore,
vertex u that we choose at iteration i has degree at least | core(P;)| and |P;| > [core(F})[; in
particular, | P; \ core(P})| > | core(P;) \ P;|. We have,

|PF NP > |core(PY) N Py = | core(P)| — | core(P}) \ P)| > | core(Pf)| — | P; \ core(P}).

Observe that P; \ core(P}) does not contain any vertices from core(Fy) (for every k): since F;

is disjoint from core(Fy) for k # j, P; \ core(P;) is disjoint from core(Fy) for k # j; P\

core(P}) is clearly disjoint from core(P;). We have, > p i 11aiched with P | \ core(P})| < [V] —

| Upsec core(P;)]. From Theorem 12 (item 3), we get [V| — [ U px e core(P})| < n—(1— n)?n <
J J

2nn. Therefore,

> BNz (Y [eore(P)l) — 20n = (1= )0 — 20 = (1 - dn)n.
P; is matched with P]?‘ P;‘ eC
We proved that the algorithm finds a clustering with classification error at most 47. |

12
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Appendix A. Empirical Results

This paper focuses on designing an algorithm with provable theoretical guarantees for correlation
clustering in a natural semi-random model. We have tested our algorithm to confirm that it is easily
implementable and scalable. We used the SDPNAL MATLAB library to solve the semidefinite
programming (SDP) relaxation for the problem (Zhao et al., 2010). We implemented the recovery
algorithm from Section 2 in C++, and also used a simple cleanup step that merges small clusters
with the larger clusters based on their average inner products (this extra step can only improve our
theoretical guarantees). We note that we could solve the SDP relaxation for instances with thousands
of vertices since we used a very basic SDP relaxation without £3-triangle inequality constraints.

We tested the algorithm on random G(n,p) graphs with 4 planted clusters of size n/4 each,
with the error rate (the probability of flipping the label) ¢ = 0.2. We used the same values of 7 as
were used in (Chen et al., 2014); we chose values of p smaller than or close to the minimal values
for which the algorithm of (Chen et al., 2014) works (Chen et al. do not report the exact values
of probabilities p; we took approximate values from Figure 2 in their paper). We summarize our
results in Table 1.

run number
n P 123 |4]avg. %
2001025 (00|22 1 0.50%
4001019 |6 |64 |4]| 5 1.25%
1000 [0.15[0[0|0|0| O |0.00%
2000 [ 0.13 ({0 |0|0|0O| O |0.00%

Table 1: The table summarizes results of our experiments. The first and second columns list the
values of n and p, respectively. The next four columns list the number of misclassified
vertices in 4 runs of the program; column 7 lists the average number of misclassified
vertices; column 8 shows this number as the percent of the total number of vertices.
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Appendix B. Epsilon Net for SDP Solutions

In order to use Theorem 9, we need to prove that the set of all SDP solutions to our problem has a
small epsilon net. We use the following lemma from Makarychev et al. (2013).

Lemma 13 (ITCS, Lemma 2.7) For every graph G = (V, E) on n vertices (V. = {1,...,n})
with the average degree A = 2|E|/|V|, real M > 1, and vy € (0, 1), there exists a set of matrices
W of size at most |W| < eXp(O(nM;%gA + nlogn)) such that: for every collection of vectors
L(1),...,L(n), R(1),...R(n) with ||L(u)|| = M, ||R(v)|| = M and (L(u), R(v)) € [0,1], there
exists W € W satisfying for every (u,v) € E:

Wey < <L(U)a R(U)> < Wyy + 75
wyy € [0, 1].

By letting G be the complete graph, M = 1, L(u) = R(u) = f(u), we get the following
corollary.

Corollary 14 For every v € (0,1), there exists a set of matrices VW of size at most [W| <
exp (O(ny~2logn)) such that: For every collection of vectors { f (u)}, there exists W € W satis-
fying for every (u,v):

[waw = (f (u), f(0))] <.

Appendix C. Structural Theorem — Proof of Theorem 3

Define f and f* as in (2) and (3). Recall, that the algorithm removes all edges (u,v) € E with
flu,v) > (1 — ~). We show that the number of edges inconsistent with the planted partition P*
that are remain in the graph after the fist step of the algorithm is small with high probability.

Proof [Proof of Theorem 3] For (u,v) € E, let

. 1, if (u,v) € Eg;
(u,v) —1, otherwise.

Let @+ = Eg and Q- = E*\ Ei. Then, Q C Q4. Observe, that f(u,v) = f*(u,v) if
(u,v) € E\Q = Q_ and f(u,v) =1 — f*(u,v) if (u,v) € Q C Q. The SDP value is upper
bounded by the optimal value O PT', which in turn is at most ¢(Q). Write,

SDP = Z c(u,v) f(u,v) = Z c(u,v) f*(u,v)+ Z c(u, v)(1 = f*(u,v)) < e(Q).

(u,v)EE (u,w)EE\Q (u,v)EQ
Therefore,
S ) ) <@ - Y ewo)1 - )= 3 el o)f ().
(u,w)EE\Q (u,w)EQ (u,0)EQ

We rewrite this expression as follows,

Z X(u,v)C(u, ’U)f*(u, 'U) 2 0. (7)
(uw)EQUQ -

16
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Suppose that

Z c(u,v) > A+ o c(Q).

(u,)EeQ: f(u,w)<1—-4

For (u,v) € Q, f(u,v) =1 — f*(u,v). Thus, {(u,v) € Q : f(u,v) < 1—48} = {(u,v) € Q :
f*(u,v) >0}, and

S el ) (nv) > 6+
(u,v)EQ

By Theorem 9 and Corollary 14, the probability that inequalities (7) and (8) hold is at most

(@) ®)

2exp (O(ny 26 %logn)) exp (— 1/5(1 — 2¢)%6A) = o(1),

for an appropriate choice of the constant C' in the bound on A. |

Appendix D. Proof of Lemmas 5, 6 and Theorem 9

Proof [Proof of Lemma 5] Let fo pr correspond to the “integral” SDP solution corresponding to the
optimal solution O PT'. In this solution, fopr(u,v) = 1 for positive edges (u, v) which are across
different clusters and negative edges (u, v) which are in the same cluster. This SDP solution has cost
OPT and satisfies the conditions of Theorem 3. Hence, w.h.p., ¢ (Q \ (Q N OPT)) < % c(Q)+A.
Hence,

c(Q) — OPT < %C(Q) + A and OPT > (1 — %) (@) — A.
|

Proof [Proof of Lemma 6] To prove the desired upper bound (5), we estimate the probability that
Zthl Xrw(er)er + 1_228 Ethl w(e)er > 0 and Zthl w(er)er € [A',2A'] for a fixed w € W and
A’ > A. Then we apply the union bound for all w € W, and A’ of the form 2*A.

Fixaw € Wand A’ = 2°. Each X, is independent of F/, hence E[X;  jw(es11)ciy1 | Fi] =
E[Xt+1]w(et+1)ct+1 = (2€ - 1)w(et+1)ct+1. ThUS,

T

S, = Z(Xt +1—22)w(er)cy
t=1

is a martingale. Note that |S;11 — S| < w(eg4+1)ci+1 < 41 and

Var[Xyw(eppicen) | Frl = de(l — e)w(err)’ ¢y < 4e(l —e)w(eprr)er.

I3 Xew(e)er + 352 S0 w(e)er > 0and Y1, w(eg)er € [A, 247, then

T T T
Sr= |3 Xw(e)e, + @—225) 3 wlener| + @—225) S wlener > (1 —225)A,7
=1 t=1

t=1

17
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and

T
ZVar [Xiw(er)er | Fi_q] = 4( e—s Zw er)er < 8e(1—e)N.
t=1 t=1
Now, by Freedman’s inequality (see Freedman (1975)),
T (1—2¢)2A72
(ST (1 —2¢)A’ and ZVar Xyw(er)ey | Fro1] < 8e(1 — 5)A’> < e A(—2e)A+8=(1-2)A")
t=1

and

T T T
Pr (Zth(et)ct > 0 and Zw(et)ct €[N, 2A’]> < Pr <ST > (1 —2¢)A and Zw(et)2
t=1 t=1 t=1
< e’1/5(1’25)2A/ _ (671/5(1725)%)21'
Summing up this upper bound over all w € W and A’ = 2%A, we get (5). |
Proof [Proof of Theorem 9] Let W be a y—net for Z. For simplicity of exposition we subtract
min(y,w(4)) from all coordinates of vectors w € V. Thus, we assume that for all z € Z, there

exists w € W such that w(i) < z(i) < w(i) + 27y and w(i) > 0 for all ¢ (see Remark 8).
Suppose that for some z € Z and Qg C ()4, the inequalities

Z th(et)ct Z 0 (9)
teQopUQ -
and
> A 10
Zz(et)ct_ —1—1_2 Z (10)
teQo teQo
hold. Pick aw € W, such that w(i) < z(i) < w(i) + 27 for all 7. We replace z(e;) with w(e;) in
(10):
Ay
> —29)ee > AN+ —r— - . 11
Z w(er)cy Z z(er) — 27)c +(1_2€) th (11)
teQg teQo t€Qo
Then,
25 4 1— 2
Zth (er)ct —|— Zw > Z Xyw(er)er + 5 Z w(e)er  (12)
t=1 t=1 tEQpUQ - teQo
> Z (z(er) — 2y)er — Z z(ep)er | + 2y Z ¢t
teQq Q- teQo
= Z th(et)ct Z 0.
1€EQaUQ -

By Lemma 6, there exists aw € W satisfying (11) and (12) with probability at most 2Ne™
This concludes the proof. |
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Appendix E. Proof of Theorem 12

Proof [Proof of Theorem 12] Let § = v = (nlogn/c¢(E))"/5. Let A and Q be as in Theorem 3.
Let 0 = 66/(1 — 2¢). Note that A = O(d¢(E)%/%/(1 — 2¢)?).
Define f as in (2):

f(’LL7'U) — {1 - <ﬂ,'f)>, if (U, ’U) c E+’ (13)

(u,v), if (u,v) € E_.
Consider the set of edges Fgip = {(u,v) € E: f(u,v) > 1—6}. Change the sign of each edge in
Eg;p and obtain a new partitioning of E into positive and negative edges, E+ and F_:

Ey = E{AEqyp = {(u,v) € By : f(u,v) <1—68}U{(u,v) € E_: f(u,v) >1— 4},
E_=E_AEgy, = {(u,v) € B_: f(u,v) <1 -8} U{(u,v) € By : f(u,v) >1 3},

Let us now consider the corresponding instance 7 = {G = (V,E,¢), (Ey, E_)} Let f be the
analog of function f for 1:

) {1—@,@, if (uv) € By {f(u,v), if (u,v) ¢ Egip;
£

f(u,v) - <1_L,2_}>, i (U; 'U) € E, 1- f(uyv)a if (U,’U) € Eﬂip' (14)

Similarly, let SDP = > wwer c(u, v) f(u,v) be the cost of the SDP solution {a} for Z.
Lemma 15 With probability 1 — o(1), the following properties hold.
1. ¢(Q\ Eqip) < 0c(Q) + A

c(Egip \ Q) < (26 +0)c(Q) + A

3. Then SDP < (20 + 0)c(Q) + A.

Proof 1. From Theorem 3, we get that ¢(Q \ Eqip) < 0¢(Q) + A with probability 1 — o(1).
2. Write c(Esip \ Q) = ¢(EFaip) — ¢(Q N Egip). Now we bound ¢(FEgjp,) and ¢(Q N Egp,). Note that

SDP = > c(uv)f(u,v) > Y c(u,0)(1-08)=(1-0)c(Eap).

(u,v)EE (u,v)€Eqip
Hence,

c(Eqip) < SDP/(1=06) <¢(Q)/(1—6) < (1+26)c(Q),
here, we used that {u} is an optimal SDP solution and therefore SDP < ¢(Q).

By item 1, ¢(Q N Egip) = ¢(Q) — ¢(Q \ Eqip) > (1 — 0)c(Q) — A. We get that
c(Epip \ @) < (1420)¢(Q) — (1 = 0)e(Q) = A = (26 + 0)c(Q) + A

3. From the second formula for f(y, v) in (14), we get that f(u, v)— f(u,v) = 2f(u,v)—1 > 1—26
for (u,v) € Egip, and f(u,v) — f(u,v) = 0 for (u,v) ¢ Egjp. Therefore,

¢(Q) — SDP > SDP —SDP = > c(u,v)(f(u,v) — f(u,v))

(u,v)EE

= 3w v)(Fuyv) — f(u,v) > (1 - 26)e(Eap) > (1 - 26)e(Q N Egyy)

(u,v)EEgip

> (1-20)((1—0)e(Q) — A) = (1 - 25 — 0)e(Q) — A.
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Therefore, SDP < (20 + 0)c(Q) + A. [

We now bound the total squared Euclidean length of all edges in £} .

Lemma 16 With probability 1 — o(1), we have

% S elwv)ja— 52 < (45 + 30)e(Q) + 3A

(u,v)eEi
Proof Note that for (u,v) € E, Hla—o|? = f(u,v) and thus
1 —_—
= Y c(uv)|u-0|*<SDP.

2 ]
(u,v)EF L

Also, BX N E_ C (Q\ Eaip) U (Faip \ Q). Thus, by Lemma 15, ¢(EX N E_) < ¢(Q \ Ensp) +
c(Eaip \ Q) < 2(0 + 0)c(Q) + 2A. We have,

1 o 1 1
5 Y cwola-iP sy Y ewolu-olf s Y ewo)lu—of

(uw)ery (uw)EESNEY (uw)EESNE_

< SDP +¢(EX N E_) = (45 + 30)c(Q) + 3A.

We are ready to prove Theorem 12. Recall that

Co nlogn 1/12 a® \ 2
T -2 ( e(E) ) '(mgap) '

We assume that ) < 1/4 as otherwise the statement of the theorem is trivial. We let ' = n/a?. Let

= gy 2 el )i =5 < 0(0e(Q)+ A)/e(E}) < O + A/e(E)/8.

+ (uv)EET

Let E% (i) = {(u,v) € E% : u,v € P} be the set of edges within cluster P;*. Write

k
Yo D cwv)a—ol = e(B])pi

=1 (u,0)EE ()
Let C be the set of clusters P;" such that

Y cwv)a—ol? < c(BL(0)phg/ (arf).

(u,0)€E7 (4)
By Markov’s inequality, 3 p- g c(E7 (i) < an'c(EY). By the Approximate Cluster Regularity
condition in Assumptions 10, c(E7 (1)) > L (|Pf|/n)c(E%). We get that Ypegc P < a®n'n
and thus ) p. o |P;| > (1 — n)n. We get that item 1 in the statement of the theorem holds.
Recall that the normalized Laplacian of a graph H is a matrix £ with unit diagonal and non-

diagonal entries L, = —1/y/degy udegyv. We use the following form of the the Poincaré
inequality, which immediately follows from Theorem 4 and formula (1.4) in (Butler, 2008).
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Theorem 17 (Poincaré Inequality) Consider a graph H = (Vir, Er, cir) and set of vectors {u}yevy, -
Let X\ be the second smallest eigenvalue of the normalized Laplacian of H. Suppose that for some
a and every two vertices u and v, degy u < avdegy v. Then we have

1 _ 112 (6 _ —112
s > la—0lP < = > enwo)a—o|*
|VH| u,veV A CH(EH) (u,v)eE[

We apply the Poincaré inequality to the induced graph G[P;]. We have for each cluster P} € C,

L X ot it S e o e < S
| P [? wvePr = Agap (B (7)) ’ = Agap(an’) T Agapt

Therefore,

. 1 - 1 1 o Pave
min | —— Z la— )% | < Z Z la—3|% | < .
uEPi* |’P7,*| ’UGP;‘ ’PZ*‘ ’UIEP,L‘* |'P7,*| ’UGP; Agapn,

2
3 * 1 . _ =2 Pavg : .
Thus we can choose u; in each P € C such that 5= P Y e P lla; — o||* < 3o This choice of

vertices u; defines sets core(P;*), as in the statement of the theorem.

Using again Markov’s inequality, we get that for at least a 1 — n/a fraction of vertices v in
P, |la; — v]|* < aplg/(Agapn’). From the bound p3,, = O(0 + A/c(E))/f3 and (1), we get
pgore 2 a/’gwg/()‘gapnﬁl) and

| core(P)| > [{v € P |lu; — 0l* < aplyg/Ngaprrn) } | = (1 = 1/a)| PY|.

In particular, item 2 in the statement of the theorem holds. We get item 3 from items 1 and 2.
Finally, we show that ||@; — @;|| > pinter for every two distinct clusters P, PJ* € C. To this
end, we show that there are vertices v’ € core(F}) and v" € core(P}) such that [|[v" — 0| >
Pinter + 2Pcore, and thus [|@; — ]| > (pinter + 2Pcore) — |ti — V'[| — | — v"|| > pinger- Assume
to the contrary that ||/ — 0" || < pinter + 2pcore for every v’ € core(P;*) and v" € core(P;). Let

E;; = {(v’,v”) € E: v € core(PF),v" € core(PJ’»")}.
Since E;; C E*, we have for every (v/,v") € Ej; \ (QAEqip),

f(U/>U”) = <Q_/a 1_)N> =1- Hl_/ - l_)”||2/2 > 1 — (pinter + 2pcore)2/2 =1/2.
Therefore,

SDP > 3 (' W F( ") > e(Bij \ (QAEgp)) /2.
(Ulv’U”)eEij\(QAEﬂip)

From the Approximate Intercluster Regularity condition and bounds | core(P;")| > (1 — n/a)|P}|
and | core(P)[ > (1 —n/a)|P}|, we get c(Ei;) > (1 — 2n)B;;¢(E) . By Lemma 15,

(QAEgiy) < 2(5 + 0)e(Q) + 2A < 2(6 + 0)c(E) + 2A.
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By the Intercluster Density condition in Assumptions 10, our choice of § and our assumption that
n < 1/4, we have

c(EBij \ (QAEs;p)) > (1 —21)8i; — 20 — 20)c(E) — 2A > Bije(E)/3.

We get that
(20 +0)c(E)+A>SDP > B;;c(E)/6,
which contradicts to the Intercluster Density condition and our choice of 4. |
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