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Abstract
Stochastic gradient descent (SGD) on a low-rank
factorization (Burer & Monteiro, 2003) is com-
monly employed to speed up matrix problems
including matrix completion, subspace tracking,
and SDP relaxation. In this paper, we ex-
hibit a step size scheme for SGD on a low-rank
least-squares problem, and we prove that, un-
der broad sampling conditions, our method con-
verges globally from a random starting point
within O(ε−1n log n) steps with constant prob-
ability for constant-rank problems. Our modifi-
cation of SGD relates it to stochastic power iter-
ation. We also show experiments to illustrate the
runtime and convergence of the algorithm.

1. Introduction
We analyze an algorithm to solve the stochastic optimiza-
tion problem

minimize E

[∥∥∥Ã−X∥∥∥2
F

]
subject to X ∈ Rn×n, rank (X) ≤ p,X � 0,

(1)

where p is an integer and Ã is a symmetric matrix drawn
from some distribution with bounded covariance. The so-
lution to this problem is the matrix formed by zeroing
out all but the largest p positive eigenvalues of the matrix
E[Ã]. This problem, or problems that can be transformed
to this problem, appears in a variety of machine learning
applications including matrix completion (Jain et al., 2013;
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Teflioudi et al., 2012; Chen et al., 2011), general data anal-
ysis (Zou et al., 2004), subspace tracking (Balzano et al.,
2010), principle component analysis (Arora et al., 2012),
optimization (Burer & Monteiro, 2005; Journée et al.,
2010; Mishra et al., 2013; Horstmeyer et al., 2014), and rec-
ommendation systems (Gupta et al., 2013; Oscar Boykin,
2013-2014).

Sometimes, (1) arises under conditions in which the sam-
ples Ã are sparse, but the matrix X would be too large to
store and operate on efficiently; a standard heuristic to use
in this case is a low-rank factorization (Burer & Monteiro,
2003). The idea is to substitute X = Y Y T and solve the
problem

minimize E

[∥∥∥Ã− Y Y T
∥∥∥2
F

]
subject to Y ∈ Rn×p.

(2)

By construction, if we set X = Y Y T , then X ∈ Rn×n,
rank (X) ≤ p, and X � 0; this allows us to drop these
constraints. Instead of having to store the matrixX (of size
n2), we only need to store the matrix Y (of size np).

In practice, many people use stochastic gradient descent
(SGD) to solve (2). Efficient SGD implementations can
scale to very large datasets (Recht & Ré, 2013; Niu et al.,
2011; Teflioudi et al., 2012; Agarwal et al., 2011; Bottou,
2010; Duchi et al., 2011; Bottou & Bousquet, 2008; Hu
et al., 2009). However, standard stochastic gradient descent
on (2) does not converge globally, in the sense that there
will always be some initial values for which the norm of
the iterate will diverge .

People have attempted to compensate for this with sophis-
ticated methods like geodesic step rules (Journée et al.,
2010) and manifold projections (Absil et al., 2008); how-
ever, even these methods cannot guarantee global conver-
gence. Motivated by this, we describe Alecton, an algo-
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rithm for solving (2), and analyze its convergence. Alecton
is an SGD-like algorithm that has a simple update rule with
a step size that is a simple function of the norm of the it-
erate Yk. We show that Alecton converges globally. We
make the following contributions:

• We establish the convergence rate to a global optimum
of Alecton using a random initialization; in contrast,
prior analyses (Candès et al., 2014; Jain et al., 2013)
have required more expensive initialization methods,
such as the singular value decomposition of an empir-
ical average of the data.

• In contrast to previous work that uses bounds on the
magnitude of the noise (Hardt & Price, 2014; Hardt,
2014), our analysis depends only on the variance of
the samples. As a result, we are able to be robust to
different noise models, and we apply our technique to
these problems, which did not previously have global
convergence rates:

– matrix completion, in which we observe entries
of A one at a time (Jain et al., 2013; Keshavan
et al., 2010) (Section 4.1),

– phase retrieval, in which we observe tr(uTAv)
for randomly selected u, v (Candès et al., 2014;
Candès & Li, 2014) (Section 4.3), and

– subspace tracking, in whichA is a projection ma-
trix and we observe random entries of a random
vector in its column space (Balzano et al., 2010)
(Section 4.4).

Our result is also robust to different noise models.

• We describe a martingale-based analysis technique
that is novel in the space of non-convex optimization.
We are able to generalize this technique to some sim-
ple regularized problems, and we are optimistic that it
has more applications.

1.1. Related Work

Much related work exists in the space of solving low-rank
factorized optimization problems. Foundational work in
this space was done by Burer and Monteiro (Burer & Mon-
teiro, 2003; 2005), who analyzed the low-rank factorization
of general semidefinite programs. Their results focus on the
classification of the local minima of such problems, and on
conditions under which no non-global minima exist. They
do not analyze the convergence rate of SGD.

Another general analysis in Journée et al. (2010) exhibits a
second-order algorithm that converges to a local solution.
Their results use manifold optimization techniques to op-
timize over the manifold of low-rank matrices. These ap-
proaches have attempted to correct for falling off the man-
ifold using Riemannian retractions (Journée et al., 2010),

geodesic steps (Balzano et al., 2010), or projections back
onto the manifold. General non-convex manifold optimiza-
tion techniques (Absil et al., 2008) tell us that first-order
methods, such as SGD, will converge to a fixed point, but
they provide no convergence rate to the global optimum.
Our algorithm only involves a simple rescaling, and we are
able to provide global convergence results.

Our work follows others who have studied individual prob-
lems that we consider. Jain et al. (2013) study matrix com-
pletion and provides a convergence rate for an exact recov-
ery algorithm, alternating minimization; subsequent work
(Jain & Netrapalli, 2014) gives fast rates for projected gra-
dient descent. Candès et al. (2014) provide a similar re-
sult for phase retrieval. Sun & Luo (2014) give general
conditions under which various algorithms work for exact
matrix recovery. In contrast to these results, which require
expensive SVD-like operations to initialize, our results al-
low random initialization. Our provided convergence rates
apply to additional problems and SGD algorithms that are
used in practice (but are not covered by previous analysis).
However, our convergence rates are slower in their respec-
tive settings. This is likely unavoidable in our setting, as
we show that our convergence rate is optimal in this more
general setting .

A related class of algorithms that are similar to Alecton is
stochastic power iteration (Arora et al., 2012). These al-
gorithms reconsider (1) as an eigenvalue problem, and uses
the familiar power iteration algorithm, adapted to a stochas-
tic setting. Stochastic power iteration has been applied to a
wide variety of problems (Arora et al., 2012; John Goes &
Lerman, 2014). Oja (1985) show convergence of this algo-
rithm, but provides no rate. Arora et al. (2013) analyze this
problem, and state that “obtaining a theoretical understand-
ing of the stochastic power method, or of how the step size
should be set, has proved elusive.” Our paper addresses this
by providing a method for selecting the step size, although
our analysis shows convergence for any sufficiently small
step size.

Shamir (2014) provide exponential-rate local convergence
results for a stochastic power iteration algorithm for PCA.
As they note, it can be used in practice to improve the
accuracy of an estimate returned by another, globally-
convergent algorithm such as Alecton.

Also recently, Balsubramani et al. (2013) and Hardt & Price
(2014) provide a global convergence rate for the stochastic
power iteration algorithm. Our result only depends on the
variance of the samples, while both their results require ab-
solute bounds on the magnitude of the noise. This allows us
to analyze a different class of noise models, which enables
us to do matrix completion, phase retrieval, and subspace
tracking in the same model.
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2. Algorithmic Derivation
We focus on the low-rank factorized stochastic opti-
mization problem (2). We can rewrite the objective as
E
[
f̃(Y )

]
, with sampled objective function

f̃(Y ) = tr
(
Y Y TY Y T

)
− 2tr

(
Y ÃY T

)
+
∥∥∥Ã∥∥∥2

F
.

In the analysis that follows, we let A = E
[
Ã
]
, and let its

eigenvalues be λ1 ≥ λ2 ≥ · · · ≥ λn with corresponding
orthonormal eigenvectors u1, u2, . . . , un (such a decompo-
sition is guaranteed since A is symmetric). The standard
stochastic gradient descent update rule for this problem is,
for some step size αk,

Yk+1 = Yk − αk∇f̃k(Y )

= Yk − 4αk

(
YkY

T
k Yk − ÃkYk

)
,

where Ãk is the sample we use at timestep k.

The low-rank factorization introduces symmetry into the
problem. If we let

Op =
{
U ∈ Rp×p | UTU = Ip

}
denote the set of orthogonal matrices in Rp×p, then f̃(Y ) =
f̃(Y U) for any U ∈ Op. Previous work has used mani-
fold optimization techniques to solve such symmetric prob-
lems (Journée et al., 2010). Absil et al. (2008) state that
stochastic gradient descent on a manifold has the general
form

xk+1 = xk − αkG
−1
xk
∇f̃k(xk),

where Gx is the matrix such that for all u and v,

uTGxv = 〈u, v〉x,

where the right side of this equation denotes the Rieman-
nian metric (do Carmo, 1992) of the manifold at x. For (2),
the manifold in question is

M = Rn×p/Op,

which is the quotient manifold of Rn×p under the orthog-
onal group action. According to Absil et al. (2008), this
manifold has induced Riemannian metric

〈U, V 〉Y = tr
(
UY TY V T

)
. (3)

For Alecton, we are free to pick any Riemannian metric and
step size. Inspired by (3), we pick a new step size parameter
η, and let αk = 1

4η and set

〈U, V 〉Y = tr
(
U(I + ηY TY )V T

)
.

(We can think of this as an interpolation between the flat
metric and the quotient metric.) With this, the SGD update
rule becomes

Yk+1 = Yk − η
(
YkY

T
k Yk − ÃkYk

) (
I + ηY T

k Yk
)−1

=
(
Yk
(
I + ηY T

k Yk
)
− η

(
YkY

T
k Yk − ÃkYk

))
·
(
I + ηY T

k Yk
)−1

=
(
I + ηÃk

)
Yk
(
I + ηY T

k Yk
)−1

.

For p = 1, choosing a Riemannian metric to use with SGD
results in the same algorithm as choosing an SGD step size
that depends on the iterate Yk. The same update rule would
result if we substituted

αk =
1

4
η
(
1 + ηY T

k Yk
)−1

into the standard SGD update formula. We can think of this
as the manifold results giving us intuition on how to set our
step size.

The reason why selecting this particular step size/metric is
useful in practice is that we can run the simpler update rule

Ȳk+1 =
(
I + ηÃk

)
Ȳk. (4)

If Ȳ0 = Y0, the iteration will satisfy the property that the
column space of Yk will always be equal to the column
space of Ȳk, (since C(XY ) = C(X) for any invertible
matrix Y , where C(X) denotes the column space of X).
That is, if we just care about computing the column space
of Yk, we can do it using the much simpler update rule
(4). Intuitively, we have transformed an optimization prob-
lem operating in the whole space Rn to one operating on
the Grassmannian manifold; one benefit of Alecton is that
we don’t have to work on the actual Grassmannian, but
get some of the same benefits from a rescaling of the Yk
space. In this specific case, the Alecton update rule is akin
to stochastic power iteration, since it involves a repeated
multiplication by the sample; this would not hold for opti-
mization on other manifolds.

We can use (4) to compute the column space (or “angu-
lar component”) of the solution, before then recovering the
rest of the solution (the “radial component”) using aver-
aging. Doing this corresponds to Algorithm 1, Alecton.
Notice that, unlike most iterative algorithms for matrix re-
covery, Alecton does not require any special initialization
phase and can be initialized randomly.

Analysis Analyzing this algorithm is challenging, as the
low-rank decomposition also introduces symmetrical fam-
ilies of fixed points. Not all these points are globally opti-
mal: in fact, a fixed point will occur whenever

Y Y T =
∑
i∈C

λiuiu
T
i
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Algorithm 1 Alecton: Solve stochastic matrix problem
Require: η ∈ R, K ∈ N, L ∈ N, and a sampling distribu-

tion A
. Angular component (eigenvector) estimation phase
Select Y0 uniformly in Rn×m s.t. Y T

0 Y0 = I .
for k = 0 to K − 1 do

Select Ãk uniformly and independently at random
from the sampling distribution A.
Yk+1 ← Yk + ηÃkYk

end for
Ŷ ← YK

(
Y T
K YK

)− 1
2

. Radial component (eigenvalue) estimation phase
R0 ← 0
for l = 0 to L− 1 do

Select Ãl uniformly and independently at random
from the sampling distribution A.
Rl+1 ← Rl + Ŷ T ÃlŶ

end for
R̄← RL/L

return Ŷ R̄
1
2

for any set C of size less than p.

One consequence of the non-optimal fixed points is that the
standard proof of SGD’s convergence, in which we choose
a Lyapunov function and show that this function’s expecta-
tion decreases with time, cannot work. If such a Lyapunov
function were to exist, it would show that no matter where
we initialize the iteration, convergence to a global optimum
will still occur rapidly; this cannot be possible due to the
presence of the non-optimal fixed points. Thus, a standard
statement of global convergence, that convergence occurs
uniformly regardless of initial condition, cannot hold.

We therefore use martingale-based methods to show con-
vergence. Specifically, our attack involves defining a
process xk with respect to the natural filtration Fk of
the iteration, such that xk is a supermartingale, that is
E [xk+1|Fk] ≤ xk. We then use the optional stopping
theorem (Fleming & Harrington, 1991) to bound both the
probability and rate of convergence of xk, from which we
derive convergence of the original algorithm. We describe
this analysis in the next section.

3. Convergence Analysis
First, we need a way to define convergence for the angular
phase. For most problems, we want C(Yk) to be as close as
possible to the span of u1, u2, . . . , up. However, for some
cases, this is not what we want. For example, consider the
case where p = 1 but λ1 = λ2. In this case, the algorithm
could not recover u1, since it is indistinguishable from u2.
Instead, it is reasonable to expect C(Yk) to converge to the
span of u1 and u2. To handle this case, we instead want

to measure convergence to the subspace spanned by some
number, q ≥ p, of the most significant eigenvectors (in
most cases, q = p). For a particular q, let U be the projec-
tion matrix onto the subspace spanned by u1, u2, . . . , uq ,
and define ∆, the eigengap, as ∆ = λq − λq+1. We now
let ε > 0 be an arbitrary tolerance, and define an angular
success condition for Alecton.

Definition 1. When running the angular phase of Alecton,
we define a quantity ρk to measure success, and say that
success has occurred at timestep k if

ρk = min
z∈Rp

‖UYkz‖2

‖Ykz‖2
≥ 1− ε.

This condition requires that all members of the column
space of Yk are close to the desired subspace. We say that
success has occurred by time t if success has occurred for
some timestep k < t. Otherwise, we say the algorithm has
failed, and we let Ft denote this failure event.

To prove convergence, we need to put some restrictions on
the problem. Our theorem requires the following three con-
ditions.

Condition 1 (Alecton Variance). A sampling distribution
A with expected value A satisfies the Alecton Variance
Condition (AVC) with parameters (σa, σr) if for any y ∈
Rn and for any symmetric matrix W � 0 that commutes
withA, if Ã is sampled fromA, the following bounds hold:

E
[
yT ÃTWÃy

]
≤ σ2

atr (W ) ‖y‖2

and

E

[(
yT Ãy

)2]
≤ σ2

r ‖y‖
4
.

In Section 4, we show several models that satisfy AVC.

Condition 2 (Alecton Rank). An instance of Alecton sat-
isfies the Alecton Rank Condition if either p = 1 (rank-1
recovery), or each sample Ã fromA is rank-1 (rank-1 sam-
pling).

Most of the noise models we analyze have rank-1 samples,
and so satisfy the rank condition.

Condition 3 (Alecton Step Size). Define γ as

γ =
2nσ2

ap
2(p+ ε)

∆ε
η.

This represents a constant step size parameter that is inde-
pendent of problem scaling. An instance of Alecton satis-
fies the Alecton Step Size Condition if γ ≤ 1.

Note that the step size condition is only an upper bound on
the step size. This means that, even if we do not know the
problem parameters exactly, we can still choose a feasible
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step size as long as we can bound them. (However, smaller
step sizes imply slower convergence, so it is a good idea to
choose η as large as possible.)

We will now define a useful function, then state our main
theorem that bounds the probability of failure.

Definition 2. For some p, let R ∈ Rp×p be a random ma-
trix the entries of which are independent standard normal
random variables. Define function Zp as

Zp(γ) = 2
(

1−E
[∣∣I + γp−1(RTR)−1

∣∣−1]) .
Theorem 1. Assume that we run an instance of Alecton
that satisfies the variance, rank, and step size conditions.
Then for any χ > 0, if we run for t timesteps where

t ≥ 4nσ2
ap

2(p+ ε)

∆2γε(χ− Zp(γ))
log

(
np2

γqε

)
, (5)

then the probability that the angular phase has not suc-
ceeded is P (Ft) ≤ χ. Also, after running for L steps in

the radial phase, for any constant ψ it holds that

P

(∥∥∥R̄− Ŷ TAŶ
∥∥∥2
F
≥ ψ

)
≤ p2σ2

r

Lψ
.

In particular, if σa∆−1 does not vary with n, this theo-
rem implies convergence of the angular phase with con-
stant probability after O(ε−1np3 log n) iterations and in
the same amount of time. Note that since we do not reuse
samples in Alecton, our rates do not differentiate between
sampling and computational complexity, unlike many other
algorithms . We also do not consider numerical error or
overflow: periodically re-normalizing the iterate may be
necessary to prevent these in an implementation of Alec-
ton. Note that if we initialized with the SVD instead of
randomly, we could afford to pick a larger value of γ since
we start nearer to the optimum; the algorithm will therefore
converge quicker.

Since the upper bound expression uses Zp, which is ob-
scure, we plot it here (Figure 1). We also can make a more
precise statement about the failure rate for p = 1.

Lemma 1. For the case of rank-1 recovery,

Z1(γ) =
√

2πγ exp
(γ

2

)
erfc

(√
γ

2

)
≤
√

2πγ.

3.1. Martingale Technique

A proof for Theorem 1 and full formal definitions will ap-
pear in the appendix of this document, but since the method
is nonstandard for non-convex optimization (although it has
been used in Shamir (2011) to show convergence for con-
vex problems), we will outline it here. First, we define a
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Figure 1. Value of Zp computed as average of 105 samples.

failure event fk at each timestep, that occurs if the iterate
gets “too close” to the unstable fixed points. Next, we de-
fine a sequence τk, where

τk =

∣∣Y T
k UYk

∣∣∣∣Y T
k (γn−1p−2qI + (1− γn−1p−2q)U)Yk

∣∣
(where |X| denotes the determinant of X); the intuition
here is that τk is close to 1 if and only if success occurs,
and close to 0 when failure occurs. We show that, for some
constant R, if neither success nor failure occurs at time k,

E [τk+1|Fk] ≥ τk (1 +R (1− τk)) ; (6)

here, Fk denotes the filtration at time k, which contains
all the events that have occurred up to time k (Fleming &
Harrington, 1991). If we let T denote the first time at which
either success or failure occurs, then this implies that τk is
a submartingale for k < T . We use the optional stopping
Theorem (Fleming & Harrington, 1991) (here we state a
discrete-time version).

Definition 3 (Stopping Time). A random variable T is a
stopping time with respect to a filtration Fk if {T ≤ k} ∈
Fk for all k. That is, we can tell whether T ≤ k using only
events that have occurred up to time k.

Theorem 2 (Optional Stopping Theorem). If xk is a mar-
tingale (or submartingale) with respect to a filtration Fk,
and T is a stopping time with respect to the same filtra-
tion, then xk∧T is also a martingale (resp. submartingale)
with respect to the same filtration, where k ∧ T denotes the
minimum of k and T . In particular, for bounded submartin-
gales, this implies that E [x0] ≤ E [xT ].

Applying this to the submartingale τk and time T results in

E [τ0] ≤ E [τT ]

= E [τT |FT ]P (fT ) + E [τT |¬FT ] (1− P (fT ))

≤ δP (fT ) + (1− P (fT )).
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This isolates the probability of the failure event occurring.
Next, we return to (6); subtracting 1 from both sides and
taking the logarithm results in

E [log (1− τk+1)|Fk] ≤ log(1− τk) + log (1−Rτk)

≤ log(1− τk)−Rδ.

So, if we let Wk = log(1− τk) +Rδk, then Wk is a super-
martingale. We again apply the optional stopping theorem
to produce

E [W0] ≥ E [WT ] = E [log(1− τT )] +RδE [T ] .

This isolates the expected value of the stopping time. Fi-
nally, we notice that success occurs before time t if T ≤ t
and fT does not occur. By the union bound, and Markov’s
inequality, this implies that

Pfailure ≤ P (fT ) + t−1E [T ] .

Substituting the isolated values for P (fT ) and E [T ] pro-
duces the result of Theorem 1.

The radial part of the theorem follows from an application
of Chebychev’s inequality to the average of L samples of
ŷT Ãŷ — we do not devote any discussion to it since aver-
ages are already well understood.

4. Application Examples
4.1. Entrywise Sampling

One sampling distribution that arises in many applica-
tions (most importantly, matrix completion (Candès &
Recht, 2009)) is entrywise sampling. This occurs when the
samples are independently chosen from the entries of A.
Specifically,

Ã = n2eie
T
i Aeje

T
j ,

where i and j are each independently drawn from 1, . . . , n.
It is standard for these types of problems to introduce a
matrix coherence bound (Jain et al., 2013).

Definition 4. A matrix A ∈ Rn×n is incoherent with pa-
rameter µ if and only if for every unit eigenvector ui of the
matrix, and for all standard basis vectors ej ,∣∣eTj ui∣∣ ≤ µn− 1

2 .

Under an incoherence assumption, we can provide a bound
on the second moment of Ã, which is all that we need to
apply Theorem 1 to this problem.

Lemma 2. If A is incoherent with parameter µ, and Ã is
sampled uniformly from the entries of A, then the distri-
bution of Ã satisfies the Alecton variance condition with
parameters σ2

a = µ4 ‖A‖2F and σ2
r = µ4tr (A)

2.

For problems in which the matrix A is of constant rank,
and its eigenvalues do not vary with n, neither ‖A‖F nor
tr (A) will vary with n. In this case, σ2

a, σ2
r , and ∆ will

be constants, and theO(ε−1n log n) bound on convergence
time will hold.

4.2. Rectangular Entrywise Sampling

Entrywise sampling also commonly appear in rectangular
matrix recovery problems. In these cases, we are trying to
solve something like

minimize ‖M −X‖2F
subject to X ∈ Rm×n, rank (X) ≤ p.

To solve this problem using Alecton, we first convert it into
a symmetric matrix problem by constructing the block ma-
trix

A =

[
0 M
MT 0

]
;

it is known that recovering the dominant eigenvectors of A
is equivalent to recovering the dominant singular vectors of
M .

Entrywise sampling on M corresponds to choosing a ran-
dom i ∈ 1, . . . ,m and j ∈ 1, . . . , n, and then sampling Ã
as

Ã = mnMij(eie
T
m+j + em+je

T
i ).

In the case where we can bound the entries of M (this is
natural for recommender systems), we can prove the fol-
lowing.
Lemma 3. If M ∈ Rm×n satisfies the entry bound

M2
ij ≤ ξm−1n−1 ‖M‖

2
F

for all i and j, then the rectangular entrywise sampling
distribution on M satisfies the Alecton variance condition
with parameters σ2

a = σ2
r = 2ξ ‖M‖2F .

As above, for problems in which the magnitude of the en-
tries of M is bounded and does not vary with problem size,
our big-O convergence time bound will still hold.

4.3. Trace Sampling

Another common sampling distribution arises from the ma-
trix sensing problem (Jain et al., 2013). In this problem,
we are given the value of vTAw for unit vectors v and w
selected uniformly at random. (Candès et al. (2014) han-
dle this problem for the more general complex case using
Wirtinger flow.) Using this, we can construct an unbiased
sample Ã = n2vvTAwwT ; this lets us bound the variance.
Lemma 4. If n > 50, and v and w are sampled uniformly
from the unit sphere in Rn, then for any positive semidef-
inite matrix A, if we let Ã = n2vvTAwwT , then the dis-
tribution of Ã satisfies the Alecton variance condition with
parameters σ2

a = 16 ‖A‖2F and σ2
r = 16tr (A)

2.
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If the eigenvalues of A do not vary with problem size, our
big-O convergence time bound will be the same.

In some cases of the trace sampling problem, instead of be-
ing given samples of the form uTAv, we know uTAu. In
this case, we need to use two independent samples uT1 Au1
and uT2 Au2, and let u ∝ u1 + u2 and v ∝ u1 − u2 be
two unit vectors which we will use in the above sampling
scheme. Notice that since u1 and u2 are independent and
uniformly distributed, u and v will also be independent and
uniformly distributed (by the spherical symmetry of the un-
derlying distribution). Furthermore, we can compute

uTAv = (u1 + u2)TA(u1 − u2) = uT1 Au1 − uT2 Au2.

This allows us to use our above trace sampling scheme even
with samples of the form uTAu.

4.4. Subspace Sampling

We now analyze the following more complicated distri-
bution, which arises in subspace tracking (Balzano et al.,
2010). Our matrixA is a rank-r projection matrix, and each
sample consists of some randomly-selected entries from a
randomly-selected vector in its column space. Specifically,
we are given Qv and Rv, where v is selected uniformly at
random from C(A), and Q and R are independent random
diagonal projection matrices with expected value mn−1I .
With this, we can construct the unbiased sample

Ã = rn2m−2QvvTR.

As in the entrywise case, we need to introduce a coherence
constraint to bound the second moment.
Definition 5. A subspace of Rn of dimension q with asso-
ciated projection matrix U is incoherent with parameter µ
if for all standard basis vectors ei, ‖Uei‖2 ≤ µrn−1.

Using this, we can prove the following facts about the sec-
ond moment of this distribution.
Lemma 5. The subspace sampling distribution, when sam-
pled from a subspace that is incoherent with parameter µ,
satisfies the Alecton variance condition with parameters
σ2
a = σ2

r = r2(1 + µrm−1)2.

Sometimes we are given just one random diagonal projec-
tion matrix S, and the product Sv. We can use this to con-
struct a sample of the above form by randomly splitting the
given entries among Q and R in such a way that Q = QS
and R = RS, and Q and R are independent. We can then
construct an unbiased sample Ã = rn2m−2QSvvTSR,
which uses only the entries of v that we are given.

4.5. Noisy Sampling

Since our analysis depends only on a variance bound, it
extends naturally to the case in which the values of our

Algorithm 2 Alecton One-at-a-time
Require: A sampling distribution A1

for i = 1 to p do
. Run rank-1 Alecton to produce output yi.
yi ← Alectonp=1(Ai)

Generate sampling distribution Ai+1 such that, if Ã′

is sampled from Ai+1 and Ã is sampled from Ai,
E
[
Ã′
]

= E
[
Ã
]
− yiyTi .

end for
return

∑p
i=1 yiy

T
i

samples themselves are noisy. Using the additive property
of the variance for independent random variables, we can
show that additive noise only increases the variance of the
sampling distribution by a constant amount proportional to
the variance of the noise. Similarly, using the multiplica-
tive property of the variance for independent random vari-
ables, multiplicative noise only multiplies the variance of
the sampling distribution by a constant factor proportional
to the variance of the noise. In either case, we can show
that the noisy sampling distribution satisfies AVC. Numer-
ical imprecision can also be modeled in the same way.

4.6. Extension to Higher Ranks

It is possible to use multiple iterations of the rank-1 version
of Alecton to recover additional eigenvalue/eigenvector
pairs of the data matrix A one-at-a-time. This is a standard
technique for using power iteration algorithms to recover
multiple eigenvalues. Sometimes, this may be preferable
to using a single higher-rank invocation of Alecton (for ex-
ample, we may not know a priori how many eigenvectors
we want). We outline this technique as Algorithm 2. If the
eigenvalues of A are independent of n and p, it will con-
verge in O(ε−1pn log n) total SGD update steps.

5. Experiments
We experimentally verify our main claim, that Alecton
does converge quickly for practical datasets. No data was
collected for the radial phase of Alecton, since the perfor-
mance of averaging is already well understood.

The first experiments were run on symmetric synthetic data
matrices A ∈ Rn×n each with ten random eigenvalues
λi > 0. Figure 2(a) illustrates the convergence of Alec-
ton with p = q = 1 using three sampling distributions on
datasets with n = 104. We ran Alecton starting from five
random initial values; the different plotted trajectories illus-
trate how convergence time can depend on the initial value.
Note that, due to the underlying symmetry of the quadratic
substitution, the multiple runs of the algorithm do not con-
verge to the same value of Y but rather X = Y Y T .
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Figure 2. Experiments ran on a single twelve-core machine (Intel Xeon E5-2697, 2.70GHz) with 256 GB of shared memory.

Figure 2(b) illustrates the performance of Alecton on a
larger dataset with n = 106 as the step size parameter η
is varied: a smaller value of η yields slower, but more ac-
curate convergence. Also, the smaller the value of η, the
more the initial value seems to affect convergence time.

Figure 2(c) shows convergence of a modified version of
Alecton in which the step size η is decreased over time
(proportional to 1/k): we converge to the global optimum,
rather than to a noise floor as in the constant-η case. Figure
2(d) shows the angular convergence time of Alecton on a
dataset with n = 104 as the rank of the model changes: the
convergence time increases as the rank increases. Figure
2(e) gives the angular convergence time of Alecton as the
dataset size changes. It illustrates the near-linear relation-
ship between dataset size and convergence time.

Figure 2(f) demonstrates convergence results on real data
from the Netflix Prize problem (Funk, 2006). This prob-
lem involves recovering a matrix with 480,189 columns
and 17,770 rows from a training dataset containing
110,198,805 revealed entries. We used the rectangular en-
trywise distribution described above, and ran Alecton One-
at-a-time to recover the twelve most significant singular
vectors of the matrix, using 107 iterations for each run of
Alecton. Each point in Figure 2(f) represents the absolute
runtime and RMS errors after the recovery of some number
of eigenvectors. This plot illustrates that the runtime of this

algorithm does not increase disastrously as the number of
recovered eigenvectors expands.

5.1. Future Work

The Hogwild! algorithm (Niu et al., 2011) is a parallel,
lock-free version of SGD that performs similarly to se-
quential SGD on convex problems. It is an open question
whether a Hogwild! version of Alecton converges with a
good rate, but we are optimistic that it will.

6. Conclusion
This paper exhibited Alecton, a stochastic gradient de-
scent algorithm applied to a non-convex low-rank factor-
ized problem; it is similar to the algorithms used in prac-
tice to solve a wide variety of problems. We prove that
Alecton converges globally, and provide a rate of conver-
gence. We do not require any special initialization step
but rather initialize randomly. Furthermore, our result de-
pends only on the variance of the samples, and therefore
holds under broad sampling conditions that include both
matrix completion and matrix sensing, and is also able to
take noisy samples into account. We show these results us-
ing a martingale-based technique that is novel in the space
of non-convex optimization, and we are optimistic that this
technique can be applied to other problems in the future.
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