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Supplementary material for: Harmonic Exponential Families

This document provides additional background and im-
plementation details for the paper “Harmonic Exponential
Families on Manifolds”.

Code will be released on the project webpage.

A simple test script for the harmonic density on the circle
(the generalized von-Mises) is included. This density is not
studied experimentaly in the paper, but the script shows the
simplicity and effectiveness of the algorithm.

1. Numerical stability: the log - Fourier - exp
trick

When the distribution is highly peaked, the unnormalized
probabilities ϕ(g) = exp (η · T (g)) can become extremely
large, causing numerical instability or overflow. A similar
problem is regularly encountered in probilistic computa-
tions where one wishes to compute ln

∑
expxi, for some

log-probabilities xi. The standard solution is to subtract the
maximum x∗ = maxxi before exponentiating:

x∗ + ln
∑
i

exp (xi − x∗) = ln
∑
i

exp (xi) (1)

This is stable because all numbers exp (xi − x∗) are be-
tween zero and one.

Our situation is slightly different, because we want to com-
pute the Fourier transform of exponentially large quantities.
The Fourier transform is a linear transformation but not a
plain sum, so the outputs (the moments) can be negative
even when the inputs are all positive. The logarithm of a
negative number is a complex number, so one way to make
the computation stable is to use the log-Fourier-exp trick
with a complex logarithm function.

Alternatively, we may notice that all we need is the ratio of
large quantities, so we need not compute the logarithm at
all. The algotihm becomes:

1. Compute lnϕ = F−1η.

2. Compute m = maxi lnϕ(gi).

3. Compute ϕ̄ = exp (lnϕ−m).

4. Compute M = F ϕ̄.

5. Compute Ep(g|η) [T (g)] = M/M0
00.

The factor e−m cancels in the division.

2. Fast and stable evaluation of spherical
harmonics

In order to compute the empirical moments one must eval-
uate the sufficient statistics at the data. For a spherical har-
monic density, these sufficient statistics are spherical har-
monics Y lm (denoted Tλm0 in the paper) of potentially high
degree l. We found that the spherical harmonics imple-
mentation in SciPy has acceptable performance for eval-
uations of all spherical harmonics up to degree 50 – 80,
but was much too slow to be used for orders up to 200. We
also found that for large orders the SciPy function produces
NaN values.

Faster and more stable algorithms for the evaluation of
spherical harmonics have been developed recently, but they
are quite complicated, involving code generators or ex-
tended floating point numbers (Sloan, 2013; Fukushima,
2011). We developed a very simple, stable, and fast al-
gorithm for evaluation of all spherical harmonics up to or-
der L. Our method uses the algorithm of Pinchon & Hog-
gan (2007) for computing real-valued Wigner D-functions
Dλ
mn(α, β, γ) = Tλmn(g), and the fact that spherical har-

monics Y λm are the n = 0 column of this matrix:

Y lm(φ, θ) = Dl
m0(φ, θ, 0). (2)

(up to an arbitrary scaling constant)

Pinchon and Hoggan decompose the D matrix as

Dl(α, β, γ) = X l(α)J lX l(β)J lX l(γ), (3)

where X are matrices with sinusoids on the diagonal and
anti-diagonal, and J l is a pre-computed symmetric orthog-
onal block matrix with 4 non-zero blocks.

Computing the entire matrix

D(φ, θ, 0) = blockdiag(D0(φ, θ, 0), . . . , DL(φ, θ, 0)),

and then selecting the n = 0 column from each block is
not feasible because it involves the multiplication of O(L)
blocks of dimension O(L), which makes the complexity
O(L4).

A better approach is to construct a binary coefficient vector
c with ones in the positions corresponding to m = 0 (one
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Harmonic Exponential Families

for each value of l), and then compute

D(φ, θ, 0)c = X l(α)J lX l(β)J lc (4)

in the right-associative order.

The vector c for L = 2 would be:

c = (1; 0, 1, 0; 0, 0, 1, 0, 0)

(the semicolons are there for readability only). One way
to think of c is as selecting the n = 0 columns from the
blocks ofD when left multiplied byD. Another way to un-
derstand this is to think of c = Y (0, 0) as the evaluation of
the spherical harmonics at the north-pole of the sphere, and
then D(φ, θ, 0)c rotates this vector to become the spheri-
cal harmonics evaluated at some other point (φ, θ) on the
sphere.

By exploiting right-associativity, each multiplication is a
matrix-vector multiplication with cost O(L2) instead of
matrix-matrix multiplication with cost O(L3). Further-
more, the products involvingX(·) take only linear time be-
cause X is very sparse (Pinchon & Hoggan, 2007). The
total cost of computing spherical harmonics is thus O(L2)
per degree or O(L3) for all degrees up to L. Since the
number of spherical harmonics grows quadratically with
the maximum degree L, the complexity of this algorithm
when measured in terms of the number of spherical har-
monics is O(N3/2) Stability follows from the orthogonal-
ity of X and J , as demonstrated by Pinchon & Hoggan
(2007).

3. A basis for L2(H)

We claim in the paper that one can find a subset of ma-
trix elements of irreducible unitary representations to span
the space of square-integrable functions on a homogeneous
space. This will be clarified in this section.

Let Gλ be the finite-dimensional subspace of L2(G)
spanned by the matrix elements Uλmn. Let Hλ be the sub-
set of Gλ consisting of right invariant functions (i.e. for
f ∈ Hλ, we have f(gk) = f(g),∀g ∈ G, k ∈ K). First,
notice thatHλ is indeed a subspace of Gλ: Let f ′, f ′′ ∈ Hλ
and set f(g) = αf ′(g) + βf ′′(g) for scalars α, β. Then

f(gk) = αf ′(gk) +βf ′′(gk) = αf ′(g) +βf ′′(g) = f(g).

So f ∈ Hλ and henceHλ is a vector space.

Since Hλ is a finite-dimensional subspace one can obtain
a basis for it by taking linear combinations of matrix ele-
ments Uλmn. In fact, one may choose the matrix elements
for the group in such a way that a subset of these form a
basis forHλ.

4. Action of SO(3) on the spherical harmonics
expansion

We claim in the paper that the rotation group SO(3) acts
irreducibly on the spherical harmonics coefficients. That
is to say, if x is a function on the sphere and x̂ = Fx
are its Fourier coefficients, then the Fourier coefficients of
x′ = R(g)x(p) = x(g−1p) are given by x̂′ = Fx′ =
U(g)x̂, where U(g) is a block-diagonal matrix with irre-
ducible representations Uλ as blocks.

Recall that the spherical Fourier transform is the expansion
of a function on the sphere in terms of spherical harmonics
Y λm(p) = Uλm0(gp), where Uλ are the irreducible unitary
representation of SO(3), and gp ∈ SO(3) is an element
in the coset that represents p. In the following derivation,
we will write a finite-dimensional vector of spherical har-
monics evaluated at p as Y (p) = (Y 0

0 (p), . . . , Y λ∗λ∗ (p))T =
U:,0(gp). In full detail:

[R(h)x](p) = x(h−1p)

= x̂ · Y (h−1p)

= x̂ · U·,0(h−1gp)

= x̂ · U(h−1)U·,0(gp)

= x̂ · U(h−1)Y (p)

= UT (h−1)x̂ · Y (p)

= U(h)x̂ · Y (p)

= U(h)Fx · Y (p)

= F−1U(h)Fx

(5)

The spherical harmonics are not always defined equal to
Uλm0, but can have different scale factors depending on λ.
The result above still holds for other scalings, though.
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