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Abstract
We present a new matrix factorization model for
rating data and a corresponding active learning
strategy to address the cold-start problem. Cold-
start is one of the most challenging tasks for rec-
ommender systems: what to recommend with
new users or items for which one has little or
no data. An approach is to use active learning
to collect the most useful initial ratings. How-
ever, the performance of active learning depends
strongly upon having accurate estimates of i) the
uncertainty in model parameters and ii) the in-
trinsic noisiness of the data. To achieve these
estimates we propose a heteroskedastic Bayesian
model for ordinal matrix factorization. We also
present a computationally efficient framework
for Bayesian active learning with this type of
complex probabilistic model. This algorithm
successfully distinguishes between informative
and noisy data points. Our model yields state-of-
the-art predictive performance and, coupled with
our active learning strategy, enables us to gain
useful information in the cold-start setting from
the very first active sample.

1. Introduction
Collaborative filtering (CF) based recommender systems
exploit shared regularities in people’s behavior to learn
about entities such as users and items. The patterns learned
can then be used to make predictions and decisions such
as recommending new items to a user. However, CF meth-
ods can perform poorly when new users or items are in-
troduced and the amount of data available for such entities
is minimal. This scenario is referred to as the cold-start
problem (Maltz & Ehrlich, 1995; Schein et al., 2002). One
solution to the cold-start problem is to use features (e.g. de-
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mographic information) to improve predictive performance
(Claypool et al., 1999; Park et al., 2006; Ahn, 2008; Park
& Chu, 2009). However, such features may not be avail-
able, e.g. for privacy reasons. A complementary strategy is
then to collect additional ratings so that the system learns
as much as possible about the new entities from a minimal
number of user interactions. This is an instance of active
learning (Settles, 2010).

We address the cold-start problem with a Bayesian ap-
proach to active learning. Bayesian methods are becom-
ing increasingly popular for CF for several reasons: i) they
exhibit strong predictive performance, ii) they can deal for-
mally with missing data and iii) they provide uncertainty
estimates for predictions and parameter values (Salakhut-
dinov & Mnih, 2008; Stern et al., 2009; Paquet et al., 2012;
Marlin & Zemel, 2009). This last property is particularly
important for the success of active learning. Obtaining cor-
rect estimates of uncertainty in both the model parameters
and the noise levels is essential for identifying the most
informative data to collect. This is especially relevant in
cold-start learning as parameters relating to the new en-
tity are highly uncertain. To achieve good models of rat-
ing uncertainty we propose a new probabilistic model for
rating data. This model allows us to encode uncertainty
both through a posterior distribution over the parameters
and a likelihood function with different noise levels across
users and items (heteroskedasticity). We demonstrate su-
perior performance of this model on several rating datasets
relative to current state-of-the-art alternatives.

A drawback of Bayesian approaches to active learning is
that they can be computationally expensive. They often
require computing the expected change in posterior param-
eter uncertainty for every candidate data instance yet to be
collected. Most approaches speed up the process either
by approximating the required posterior entropies directly
(MacKay, 1992; Lewi et al., 2007) or by using heuristics
such as selecting the data for which the current predic-
tions are the most uncertain (maximum entropy sampling)
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Figure 1. Graphical model for the robust method for ordinal ma-
trix data as it is described in the main text. The observed variables
are the rating values ri,j . All the other variables are latent. Dots
denote fixed hyper-parameters.

(Shewry & Wynn, 1987). As an alternative, we extend a
new active learning framework (Bayesian Active Learn-
ing by Disagreement or BALD) to the cold-start CF sce-
nario (Houlsby et al., 2012). With this framework we can
compute the expected change in posterior uncertainty ac-
curately and we only need to re-compute the posterior after
collecting new ratings.

In cold start learning it is critical to gain maximal infor-
mation from the very first sample so as not to deter a new
user with multiple requests for information. We find that,
after collecting a single rating with BALD, random sam-
pling and maximum entropy sampling require 60% and
85% more data, respectively, to achieve the same predictive
performance. An increase from one to two initial rating re-
quests may be critical to whether a user stays with the sys-
tem. In summary, we propose a complete Bayesian frame-
work to address the cold-start problem in recommender
systems. This includes a new heteroskedastic model for or-
dinal matrix factorization that accurately estimates uncer-
tainty and the intrinsic noisiness of the data, and a compu-
tationally efficient algorithm for Bayesian active learning
with this model.

2. A Robust Model for Ordinal Matrix Data
We are given a dataset D = {ri,j : 1 ≤ i ≤ n, 1 ≤ j ≤
d, ri,j ∈ {1, . . . L}, (i, j) ∈ O} of discrete ratings by n
users on d items, where the possible rating values are ordi-
nal, 1 < . . . < L, for example, 1 to L ‘stars’ assigned to a
product. O denotes the set of pairs of users and items for
which a rating is available (observed). We assume that the
dataset D is a sample from a full n × d rating matrix R,
where the entry ri,j in the i-th row and j-th column of R
contains the i-th user’s rating for the j-th item. In practice,
D contains only a small fraction of the entries in R.

We propose a new probabilistic model for R that allows
the noise levels to vary across rows and columns of R, pro-

viding robustness. This is particularly important for active
learning, where collecting data from users or items that are
too noisy is wasteful. To capture the discrete nature and
natural ordering of rating data, our model takes an ordi-
nal regression approach (Chu & Ghahramani, 2005; Stern
et al., 2009). This is an advantage over the more common
Gaussian likelihood that inappropriately assumes continu-
ous entries in R. To obtain better predictions, we learn
different threshold parameters in the ordinal likelihood for
each column (item) of R. The model also has a low rank
matrix factorization with a hierarchical prior on the latent
factors. The hierarchical prior allows us to avoid specifying
hyper-parameter values and increases robustness to overfit-
ting. The graphical model for this new probabilistic method
is shown in Figure 1.

2.1. Model Description

We now describe our probabilistic model, additional details
are in the supplementary material. We model the gener-
ation of R as a function of two low rank latent matrices
U ∈ Rn×h and V ∈ Rd×h, where h � min(n, d). ri,j
is determined by i) the scalar uT

i vj , where ui is the vec-
tor in the i-th row of U and vj is the j-th row of V, and
ii) a partition of the real line into L − 1 contiguous inter-
vals with thresholds, or boundaries, bj,0 < . . . < bj,L, with
bj,0 = −∞ and bj,L = ∞. The value of ri,j is a function
of the interval in which uT

i vj lies. Note that the interval
boundaries are different for each column of R. A simple
model would be ri,j = l if uT

i vj ∈ (bj,l−1, bj,l]. However,
in practice, due to noise there may be no bj,0, . . . , bj,L, U
and V that guarantee uT

i vj ∈ (bj,ri,j−1, bj,ri,j ] for all rat-
ings in D. Therefore, we add zero-mean Gaussian noise
ei,j to uT

i vj before generating ri,j and introducing the la-
tent variable ai,j = uT

i vj + ei,j . The probability of ri,j
given ai,j and bj = (bj,1, . . . , bj,L−1) is

p(ri,j |ai,j ,bj) =

ri,j−1∏
k=1

Θ[ai,j − bj,k]

L−1∏
k=ri,j

Θ[bj,k − ai,j ]

=

L−1∏
k=1

Θ [sign[ri,j − k − 0.5](ai,j − bj,k)] , (1)

Θ denotes the step function, Θ[x] = 1 for x ≥ 0
and 0 otherwise. Thus, the likelihood (1) takes value
1 when ai,j ∈ (bri,j−1, bri,j ] and 0 otherwise. Note
that the dependence of (1) on all the entries in bj , not
just the neighboring boundaries, allows us to learn the
value of bj whilst guaranteeing that bj,0 < . . . <
bj,L. We put a hierarchical Gaussian prior on the bound-
ary variables bj , p(bj |b0) =

∏L−1
k=1 N (bj,k|b0,k, v0),

where b0 are base interval boundaries, with prior
p(b0) =

∏L−1
k=1 N (b0,k|mb0

k , v
b
0). mb0

1 , . . . ,mb0

L−1 and vb0
are hyper-parameters.

We include heteroskedasticity in the additive noise ei,j , that
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is, the noise level varies across users and items. To do this
we put a a zero-mean Gaussian distribution on ei,j with
variance γrow

i γcol
j . Thus γrow

i and γcol
j are factors that spec-

ify the noise level in the i-th row and j-th column of R,
respectively. We define ci,j = uT

i vj and assume that the
conditional distribution of ai,j given ci,j , γrow

i and γcol
j is

p(ai,j |ci,j , γrow
i , γcol

j ) = N (ai,j |ci,j , γrow
i γcol

j ). To learn the
user and item specific noise levels we put Inverse Gamma
priors on γrow

i and γcol
j .

For robustness to fixing hyper-parameter values, we
use a hierarchical Gaussian prior for U and V,
p(U|mU,vU) =

∏n
i=1

∏h
k=1N (ui,k|mU

k , v
U
k ) and

p(V|mV,vV) =
∏d
j=1

∏h
k=1N (vj,k|mV

k , v
V
k ), where

mU,mV are mean parameters for the rows of U,V, re-
spectively, and are given factorized standard Gaussian pri-
ors. vU,vV are variance parameters for the rows of U,V
and are given factorized Inverse Gamma priors.

Finally, let C denote the set of variables ci,j for which ri,j
is observed, then p(C|U,V) =

∏
(i,j)∈O δ(ci,j − uT

i vj).
Similarly we collect the variables ai,j into A, and
the boundary variables bj into a d× (L− 1) ma-
trix B. RO denotes the set of entries in R
that are observed. The likelihood factorizes as
p(RO|A,B) =

∏
(i,j)∈O p(ri,j |ai,j ,bj). Given RO,

the posterior distribution over all of the variables Ξ =
{U,V,B,A,C,γrow,γcol,b0,m

U,mV,vU,vV} is

p(Ξ|RO) =

p(RO|A,B)p(A|C,γrow,γcol)p(C|U,V)p(U|mU,vU)

p(V|mV,vV)p(B|b0)p(b0)p(γrow)p(γcol)

p(mU)p(mV)p(vU)p(vV)[p(RO)]−1 , (2)

where p(RO) is the normalization constant (conditioning
on hyper-parameters has been omitted for clarity). The
hyper-parameters values are in the supplementary material.

2.2. Inference

As with most non-trivial models, the posterior (2) is in-
tractable. Therefore, we approximate this distribution us-
ing expectation propagation (EP) (Minka, 2001) and varia-
tional Bayes (VB) (Ghahramani & Beal, 2001). We use the
following parametric approximation to the exact posterior:

Q(Ξ) =[
d∏
i=1

L−1∏
k=1

N (bi,k|mb
i,k, v

b
i,k)

] ∏
(i,j)∈O

N (ai,j |ma
i,j , v

a
i,j)


 ∏

(i,j)∈O

N (ci,j |mc
i,j , v

c
i,j)

[ n∏
i=1

h∏
k=1

N (ui,k|mu
i,k, v

u
i,k

]
[
d∏
j=1

h∏
k=1

N (vj,k|mv
j,k, v

v
j,k

][
L−1∏
k=1

N (b0,k|mb0
k , v

b0
k )

]

[
h∏
k=1

N (mU
k |mmU

k , vm
U

k )

][
h∏
k=1

N (mV
k |mmV

k , vm
V

k )

]
[

h∏
k=1

IG(vU
k |av

U

k , av
U

k )

][
h∏
k=1

IG(vV
k |av

V

k , bv
V

k )

]
[
n∏
i=1

IG(γrow
i |aγ

row

i , bγ
row

i )

][
d∏
j=1

IG(γrow
j |aγ

col

j , bγ
col

j )

]
. (3)

The parameters on the right hand side of Equation (3)
are learned by running a combination of EP and VB. We
choose EP as our main workhorse for inference because it
has shown good empirical performance in the related prob-
lem of binary classification (ordinal regression with only 2
rating values) (Nickisch & Rasmussen, 2008). However,
it is well known that for factors corresponding to the ma-
trix factorizations, EP provides poor approximations (Stern
et al., 2009), so for these we use VB. Implementational de-
tails are in the supplementary material.

2.3. Predictive Distribution

Given the approximation to the posterior in (3) we estimate
the predictive probability of a new entry r?i,j in R that is
not contained in the observed ratings RO using

P(r?i,j |RO) ≈
∫
p(r?i,,j |a?i,j ,bj)p(a?i,j |c?i,j , γrow

i , γcol
j )

p(c?i,j |ui,vj)Q(Ξ) dΞ da?i,j dc
?
i,j

≈ Φ
{
ζ(r?i,j)

}
− Φ

{
ζ(r?i,j − 1)

}
, (4)

where ζ(r?i,j) = (mb
i,r?i,j

−mc,?
i,j )(vc,?i,j + vbj,r?i,j + vγi,j)

−0.5,

mc,?
i,j =

∑h
k=1m

u
i,km

v
j,k, vc,?i,j =

∑h
k=1[mu

i,k]2vvj,k +

vui,k[mv
j,k]2 + vui,kv

v
j,k, vγi,j = [bγ

row
bγ

col
][(aγ

row
+ 1)(aγ

col
+

1)]−1 and Φ is the standard Gaussian cdf (details in the
supplementary material).

Intuitively, the above predictive distribution incorporates
two sources of uncertainty. The first comes from the un-
known values of the variables in Ξ. This uncertainty is
captured by the width (variance) of the different factors
that form Q and it is summarized in ζ(r?i,j) by the vari-
ance terms vc,?i,j and vbj,r?i,j . The second comes from the
heteroskedastic additive noise in a?i,j . This uncertainty is
encoded in ζ(r?i,j) by the variance term vγi,j . Therefore,
(4) allows us to take into account the uncertainty in model
parameters Ξ and the intrinsic noisiness of the data when
making predictions. Equipped with this model we can take
a Bayesian approach to active learning. We first outline our
active learning strategy in its general form.

3. Bayesian Active Learning
In active learning, the system selects which data points it
wants to be labelled, rather than passively receiving la-
belled data. A central objective of Bayesian active learning
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is to select points to minimize uncertainty over the param-
eters of interest, which we denote by Θ. Uncertainty in a
random variable is most naturally captured by the Shan-
non entropy of its distribution. Hence, a popular utility
function for Bayesian active learning is the reduction in en-
tropy of the posterior on Θ resulting from the selected point
(MacKay, 1992). However, besides Θ, we may have a set
of additional parameters Φ that are of lesser interest. We
want to focus on actively learning about Θ and not waste
data gaining information about Φ. Most Bayesian active
learning algorithms do not make this distinction between
parameters of interest and nuisance parameters. We make
our interest on Θ explicit by integrating out Φ from the
posterior distribution. The utility (information gain about
Θ) of collecting an additional rating r?i,j from R is then

H

[∫
p(Θ,Φ|RO) dΦ

]
−

Ep(r?i,j |RO)

{
H

[∫
p(Θ,Φ|r?i,j ,RO) dΦ

]}
, (5)

where H[·] denotes the entropy of a distribution. The ex-
pectation with respect to p(r?i,j |RO) is taken because r?i,j
is unknown prior to requesting the rating. A Bayesian ap-
proach to active learning selects the (user, item) pair (i, j)
that maximizes (5). However, this can be computationally
prohibitive since one must calculate the new parameter pos-
terior p(Θ,Φ|r?i,j ,R) for every possible entry under con-
sideration and each possible value of that entry. Existing
methods avoid this problem by using simple models whose
approximate posterior can be updated quickly, e.g. aspect
and flexible mixture models (Jin & Si, 2004; Harpale &
Yang, 2008). However, our model is more complex and
running the EP-VB routine to update the posterior approx-
imation Q is relatively expensive.

To avoid having to simplify or approximate our model, we
describe a more efficient approach to evaluating the util-
ity function in (5). The previous objective can be recog-
nized as the mutual information between Θ and r?i,j given
RO, that is, I[Θ, r?i,j |RO]. This means that we can exploit
the symmetry properties of the mutual information between
two random variables to re-arrange (5) into

H[p(r?i,j |RO)]−
Ep(Θ|RO)

{
H[Ep(Φ|Θ,RO)p(r

?
i,j |Θ,Φ)]

}
. (6)

The rearrangement is highly advantageous because we no
longer have to compute p(Θ,Φ|r?i,j ,RO) multiple times
(for every possible r?i,j), we only require the current poste-
rior p(Θ,Φ|RO). Therefore we only need to update the
posterior once per sample after collecting the rating, as
in online passive learning. Direct exploitation of this re-
arrangement is uncommon in the Bayesian active learning
literature. Previously, it has been used for preference elici-
tation and is called Bayesian Active Learning by Disagree-
ment (BALD) (Houlsby et al., 2012).

BALD provides intuition about the most informative en-
tries in R. The first term in (6) seeks entries for which
the predictive distribution has highest entropy, that is, the
entries we are most uncertain about. This is maximum
entropy sampling (MES) (Shewry & Wynn, 1987). How-
ever, the second term penalizes entries with high intrinsic
noise. That is, if we know Θ exactly, and the conditional
predictive distribution for r?i,j still has high entropy, then
r?i,j is not informative about Θ. For example, this second
term will penalize selecting matrix entries corresponding
to users who provide noisy, unreliable ratings. The formu-
lation in (6) is particularly convenient as it allows the in-
formation gain to be computed accurately whilst requiring
only a single update to the posterior per active sample, as
in MES.

Equation (6) indicates that for effective Bayesian active
learning we must capture both the uncertainty in the model
parameters (to compute the first term), and the implicit
noisiness in the data (to compute the second term).

3.1. Active Learning for the Cold-start Problem

Let i be the index of a new user. We want to make good pre-
dictions for this user using minimal interactions. For this,
we must gain maximal information about the user’s latent
vector ui. In this active learning scenario ui forms the pa-
rameters of interest Θ and all the other model parameters
Ξ \ {ui} are collected into the set of nuisance parameters
Φ. The BALD objective (6) involves the computation of
two terms: the first one can be approximated easily by the
entropy of the approximate predictive distribution (4). The
second term requires the computation of

EQ(ui)H[EQ(Φ)p(r
?
i,j |ui,Φ)] = EQ(ui)H[p(r?i,j |ui)] , (7)

where p(r?i,j |ui) = Φ(ζ(r?i,j)) − Φ(ζ(r?i,j − 1)). Now
ζ(·) is given by ma,?

i,j =
∑h
k=1m

v
j,kui,k and va,?i,j =∑h

k=1 v
v
j,ku

2
i,k because we have conditioned on a particular

ui = (ui,1, . . . , ui,h). Equation (7) includes an intractable
h-dimensional Gaussian integral over ui. We approximate
this integral by Monte Carlo sampling. In particular, we
compute the expectation of p(r?i,j |ui) using a random sam-
ple from Q(ui). Experimentally, this estimate converged
quickly; fewer than 100 samples were required for accu-
rate computation of (6). When computational time is crit-
ical we use the unscented approximation which uses only
2h+1 samples placed at fixed locations (Julier & Uhlmann,
1997). This method is fast, but can generate biased esti-
mates. Empirically, we found that the unscented approx-
imation is sufficiently accurate to identify the most infor-
mative item in most cases, see Section 5.

We use the same method to learn about new items. In this
case we draw samples from Q(vj) for a new item with in-
dex j, where vj is the item’s latent vector.
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4. Related Work
Bayesian ordinal matrix factorization is addressed in Pa-
quet et al. (2012), but their model does not include het-
eroskedasticity nor does it learn the boundary variables B.
Both components yield substantial improvements to pre-
dictive performance (see Section 5). Paquet’s method uses
Gibbs sampling for inference, whereas our EP-VB method
produces accurate and compact approximations that can be
easily stored and manipulated. Heteroskedasticity has been
included in a MF model with a Gaussian likelihood (Laksh-
minarayanan et al., 2011). However, our experiments con-
firm that the Gaussian likelihood yields poor predictions
on rating data. Another alternative for discrete ratings has
been proposed by Marlin & Zemel (2009). This work as-
sumes that each row in the rating matrix R is sampled i.i.d.
from a Bayesian Mixture of Multinomials (BMM) model.
This model is not as expressive or accurate as MF models.

Other probabilistic approaches have been proposed for
cold-start active learning (Boutilier et al., 2002; Jin & Si,
2004; Harpale & Yang, 2008). These methods either max-
imize the expected value of information or compute poste-
rior entropies directly, that is, they use the more expensive
utility function in (5). To reduce computational cost they
approximate (5) or perform approximate updates with sim-
ple models where updates are fast, such as multiple-cause
vector quantizations (Ross & Zemel, 2002), naive Bayes
(Boutilier et al., 2002), the aspect model (Hofmann, 2003)
and flexible mixture models (Si & Jin, 2003). We perform
exact computations of the utility function by using the rear-
rangement in (6). Furthermore, we only need to update our
posterior distribution only after collecting the new data and
not for each possible data entry that can be collected. Alter-
native active selection criterion are investigated in MF with
a Gaussian likelihood (Sutherland et al., 2013), but learn-
ing specific parameters of interest is not addressed. Model-
free strategies have been proposed for active data collection
(Rashid et al., 2002; 2008), where empirical statistics of the
data such as item popularity or rating entropy are used to
select items. These heuristics are computationally cheap,
but perform poorly relative to our model-based approach.

Outside of collaborative filtering, methods for Bayesian ac-
tive learning based on posterior entropy have been widely
studied (Lindley, 1956; MacKay, 1992; Settles, 2010).
However, the entropy computation is often intractable or
expensive and so requires approximations. Recently the
BALD formulation presented in Section 3 has been used
for preference learning (Houlsby et al., 2012). However,
this work makes no distinction between parameters of pri-
mary interest and nuisance parameters, that is, they have
Φ = ∅. This distinction is particularly important in the
cold-start setting. For example, when a new user arrives,
we would like to learn quickly about their corresponding

latent vector but we already have ample information about
the items in the system and so do not want to waste actively
selected data learning about these items further.

Like BALD, methods such as maximum entropy sampling
or margin sampling (Campbell et al., 2000) are cheaper to
compute than Equation (5). However, unlike BALD, these
methods fail to discriminate between predictive uncertainty
and inherent noise in the data.

5. Experiments
We evaluate our new model and active learning strategy on
a diverse collection of rating datasets: i) MovieLens100K
and MovieLens1M: two collections of ratings of movies;
ii) MovieTweets: movie ratings obtained from Twitter; iii)
Webscope: ratings of songs; iv) Jester: ratings of jokes; v)
Book: ratings of books; vi) Dating: ratings from an on-
line dating website and vii) IPIP: ordinal responses to a
psychometrics questionnaire. All the matrix entries in IPIP
are observed, the other datasets have many missing entries.
Descriptions, links to the data, and our pre-processing steps
are in the supplementary material. We first evaluate the pre-
dictive accuracy of our model against a number of state-of-
the-art alternatives. We then investigate the performance of
our method for cold-start active learning.

5.1. Comparison to Other Models for Rating Data

We compare our model for heteroskedastic ordinal matrix
factorization (HOMF) against the following methods: i) the
homoskedastic model with an ordinal likelihood in Paquet
et al. (2012) (Paquet); ii) a method for robust Bayesian ma-
trix factorization (RBMF) based on a Gaussian likelihood
which includes heteroskedastic noise (Lakshminarayanan
et al., 2011); iii) the Bayesian mixture of multinomials
model (BMM) (Marlin & Zemel, 2009); and iv) a ma-
trix factorization model like RBMF but with homoskedas-
tic noise (BMF). We directly evaluate the improvements in
predictive performance produced in HOMF from both con-
sidering heteroskedasticity and learning the boundary vari-
ables B. For these evaluations we first compare to OMF,
a homoskedastic version of HOMF, where the variance pa-
rameters γrow

i are all constrained to be equal to each other
(similarly for the γcol

j ). Secondly, HOMF-NoB uses fixed
boundary parameters bj rather than learning them for each
item. Finally, OMF-NoB is a homoskedastic version of
HOMF that does not learn B. For all models we fix the
latent dimension to h = 10.

We split the available ratings for each dataset randomly
into a training and a test set with 80% and 20% of the
ratings respectively. Each method was adjusted using the
entries in the training set and then evaluated using predic-
tive log-likelihood on the corresponding test set. The entire
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Table 1. Average test log likelihood. Bold typeface denotes the
best method and those statistically indistinguishable.

Method HOMF OMF HOMF OMF Paquet RBMF BMF BMM
-NoB -NoB

Books -1.415 -1.436 -1.507 -1.439 -1.427 -1.545 -1.544 -1.622
Dating -0.867 -0.906 -0.890 -1.028 -1.009 -1.045 -1.140 -0.948
IPIP -1.096 -1.140 -1.131 -1.189 -1.188 -1.194 -1.225 -1.270
Jest -1.238 -1.306 -1.240 -1.320 -1.320 -1.312 -1.368 -1.290
ML1M -1.136 -1.165 -1.141 -1.177 -1.170 -1.173 -1.210 -1.324
ML100K -1.203 -1.234 -1.208 -1.243 -1.232 -1.238 -1.277 -1.493
MTweet -0.956 -0.991 -0.984 -1.025 -1.012 -1.014 -1.077 -1.115
WebSc. -1.207 -1.253 -1.209 -1.257 -1.236 -1.529 -1.532 -1.298

1 2 3 4 5 6 7 8

BMF
BMM
RBMF
OMF−NoB

HOMF
HOMF−NoB

OMF
Paquet

Figure 2. Average rank of each method across all the datasets.

procedure, including dataset partitioning, was repeated 20
times.

Table 1 contains the test log-likelihoods and Figure 2 sum-
marizes the performance of each algorithm. The proposed
model, HOMF, outperforms all the other methods in all
datasets. Significance is assessed with a paired t-test. The
likelihood function for ordinal data is more appropriate
for ratings than the Gaussian likelihood; HOMF and Pa-
quet outperform RBMF and BMF. Furthermore, predictive
performance is improved by modeling heteroskedasticity
across rows and across columns since HOMF outperforms
OMF and Paquet, and RBMF outperforms BMF. Learning
the biases also results in substantial improvements to the
performance of our model. Finally, the matrix factorization
models (HOMF, Paquet, RBMF and BMF) usually outper-
form the mixture model BMM.

5.2. Cold-start Active Learning

We selected 2000 users and 1000 items (up to the maxi-
mum available) with the most ratings from each dataset.
This provided the active sampling strategies with the largest
possible pool of data to select from. We partitioned the data
randomly into three sets: training, test and pool. For this,
we sampled 75% of the users and added all of their rat-
ings to the training set. These represented the ratings for
the users that were already in the system. Each of the re-
maining 25% test users were initialized with a single item,
adding that rating to the training set. For each test user we
sampled three ratings and added these to the test set. The
remaining ratings were added to the pool set. Figure 4 illus-
trates this set-up. We also simulated new items arriving to
the system. In this case the setup was identical except that
the roles of the users and items were interchanged. We de-
note the new-users and new-items experiments by append-
ing -U and -I to the dataset names respectively.

HOMF was adjusted using the available ratings in the train-
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Figure 4. Experimental setup for cold-start active learning. The
squares depict available ratings. Red squares form the training
set. These are all the ratings for those users already in the system
and one rating per test user. Green squares form the test set. The
remaining hollow squares form the pool set for the test users. Note
that most ratings are missing.

ing set. Then, during each iteration of active learning, a
single rating was selected from the pool set for each test
user using active learning. The selected ratings were then
added to the training set and HOMF was incrementally re-
adjusted using the new training set. We evaluated the sec-
ond term in (6) using Monte Carlo sampling from Q with
100 samples. As alternatives to BALD we considered ran-
dom sampling (Rand), maximum entropy sampling (En-
tropy) and a model-free version of Entropy that selects the
item whose empirical distribution of ratings in the train-
ing data has the greatest entropy (Emp-Ent). After each
active sample was selected, we computed the predictive
log-likelihood on the test set. The entire procedure was
repeated 25 times.

Active Learning Strategies Figure 3 shows the learning
curves with each strategy for each new-user experiment.
The curves for the new-item experiments are in the sup-
plementary material. Table 2, left hand columns, sum-
marizes the results with the test log-likelihood after draw-
ing 10 samples from the pool for each test user or item.
With HOMF, BALD yields the best (or joint best) predic-
tions in all but one cases. Both the model based and em-
pirical entropy sampling algorithms often perform poorly
because they ignore the inherent noisiness of the users or
items. Note that in most datasets, there are only a few rat-
ings available for most users. This means that BALD is
restricted to sampling from a limited pool set. In particu-
lar, Book, MovieTweets and Webscope are the most sparse,
with only 2, 3 and 5% of ratings available, respectively.
Unsurprisingly, BALD exhibits smaller performance gains
on these datasets. In practice, in these domains most users
would be able to provide ratings for a larger number of
items; they may watch a new movie, listen to a song, read
a book, etc. Consequently, in practice we would expect
to see larger performance gains as in the denser datasets,
IPIP and Jester. This assumption may not always hold, for
example, in dating recommendation a user may not follow
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Figure 3. Predictive log likelihood after each round of active sampling for each algorithm.

Table 2. Log-likelihood after receiving 10 samples. Underlining indicates the top performing active sampling algorithms for each model
and bold denotes the best overall method. The bottom row gives the number of datasets that each strategy yields the best (or joint best)
performance with each model.

Heteroscedastic (HOMF) Homoscedastic (OMF) BMM
Dataset BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand
Book-U -2122 -2129 -2129 -2126 -2146 -2149 -2150 -2147 -2405 -2418 -2413 -2411
Dating-U -1214 -1239 -1241 -1248 -1217 -1230 -1235 -1244 -1234 -1309 -1305 -1255
IPIP-U -1944 -1977 -1960 -1967 -1945 -1978 -1964 -1973 -1964 -1988 -1983 -1987
Jester-U -2051 -2095 -2070 -2064 -2080 -2119 -2100 -2099 -2041 -2075 -2054 -2045
MLens100k-U -918 -928 -926 -920 -926 -927 -929 -926 -989 -1001 -997 -988
MLens1M-U -1831 -1843 -1844 -1835 -1840 -1850 -1854 -1846 -1877 -1899 -1898 -1879
MTweets-U -1467 -1475 -1475 -1471 -1503 -1508 -1508 -1503 -1608 -1624 -1622 -1613
Webscope-U -1837 -1869 -1869 -1846 -1882 -1898 -1903 -1880 -1951 -1984 -1970 -1958
Book-I -2038 -2039 -2037 -2038 -2095 -2094 -2094 -2095 -2186 -2198 -2202 -2195
Dating-I -1630 -1720 -1655 -1612 -1672 -1722 -1684 -1643 -1603 -1691 -1631 -1602
IPIP-I -319 -325 -339 -329 -325 -325 -339 -330 -335 -347 -346 -339
Jester-I -99 -99 -99 -100 -102 -102 -101 -102 -104 -107 -106 -104
Mlens100k-I -1085 -1103 -1095 -1099 -1110 -1112 -1111 -1113 -1160 -1186 -1171 -1170
Mlens1M-I -1831 -1843 -1844 -1835 -1840 -1850 -1854 -1846 -1877 -1899 -1898 -1879
MTweets-I -1470 -1479 -1475 -1476 -1519 -1520 -1520 -1520 -1605 -1617 -1613 -1608
Webscope-I -1837 -1869 -1869 -1846 -1882 -1898 -1903 -1880 -1951 -1984 -1970 -1958
Wins / 16 15 1 2 7 15 7 5 12 16 1 2 12

any recommendation and provide a rating. In this case, the
probability of receiving a rating from the user should be
accounted for.

In cold start learning, it is crucial to elicit useful infor-
mation from the very first sample. The average number
of queries required to achieve the same predictive perfor-
mance as from a single active sample chosen by BALD is
1.85 with Ent, 1.83 with Emp, and 1.59 with random sam-
pling. This means that on average around 60% more ran-
dom samples are required to gain the same performance as
the first sample selected by BALD.

Heteroskedasticity vs. Homoskedasticity We ran each
active learning strategy with our homoskedastic model
OMF and with the homoskedastic method BMM, see Table
2. With these homoskedastic models active learning sig-

nificantly outperforms random sampling on fewer datasets
than with HOMF. This demonstrates that accurate esti-
mates of the intrinsic noisiness of the data are required to
unlock the full potential of Bayesian active learning. Fig-
ure 5 presents example learning curves on MovieTweets-
I, where the difference in relative performance of BALD
versus Rand when using HOMF and OMF is large. One
can see that BALD provides much faster learning than the
other strategies with HOMF, but all strategies are indis-
tinguishable with OMF. This indicates that some users in
this dataset provide highly noisy and unpredictable ratings.
HOMF is able to model this and elicit ratings only from the
useful, low noise users.

We also evaluated each model in terms of RMSE, see Ta-
ble 2 in the supplementary material. In this case, the
best model is OMF, very closely followed by HOMF. Note
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Figure 5. Comparison of active learning strategies when using
HOMF and OMF with the MovieTweets-I dataset.

that the ranking of these two methods was the opposite in
Table 1. The reason for this is that RMSE focuses only
on the predictive mean and ignores the predictive variance.
Modeling heteroskedasticity largely affects the predictive
variance, but barely changes the predictive mean. There-
fore, OMF and HOMF are expected to perform similarly
under the RMSE metric. Nevertheless, in cold-start active
learning HOMF with BALD performs best overall, see Ta-
ble 4 in the supplementary material. This is because, al-
though heteroskedasticity does not assist in the final evalu-
ation under the RMSE metric, it is still important to enable
BALD to find the informative ratings.

5.2.1. SPEEDING UP THE COMPUTATION OF BALD

In online settings, the time available for selecting the most
informative matrix entries may be limited. We can re-
duce the cost of BALD by making approximations when
computing the second term in the utility function in Equa-
tion (6), EQ(ui)H[p(r?i,j |ui)], as described in Section 3.1.
We evaluate the accuracy of three approximations: Monte
Carlo (MC) sampling, the unscented approximation, and
evaluating the integral with a delta function located at the
mode of Q. We are interested in finding the most informa-
tive item, so we evaluate the estimation error using fraction
information loss, measured as

maxj Î(j)− Î(arg maxj I(j))

maxj Î(j)
, (8)

where I(j) is given by (6) evaluated on item j using the
approximation and Î(j) is a gold standard obtained using
MC with a separate set of 1000 samples. The results are
averaged over all test users. The loss across all datasets
(±1 s.d.) from MC with 100 samples, the unscented ap-
proximation and the posterior mode approximation were
0.017 ± 0.007, 0.035 ± 0.031 and 0.136 ± 0.073, respec-
tively. Figure 6 depicts the loss as a function of the num-
ber of evaluations of H[p(r?i,j |ui)] on Movielens100k and
Webscope. Results on the other datasets are similar and
are in the supplementary material. With MC the integral
converges rapidly, the loss falls below 5% with fewer than
50 samples on all datasets. The unscented approximation
requires only 2h + 1 evaluations, and in most cases yields
a better estimate than MC with this number of samples.
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Figure 6. Information loss (8) from approximations to
EQ(ui)H[p(r?i,j |ui)] versus the number of samples drawn
fromQ. Vertical bars indicate the 10th and 90th percentiles.

In practice, we found no statistical difference in predictive
performance when running the experiments using the un-
scented approximation or MC with 100 samples. We there-
fore recommend the unscented approximation as an effi-
cient solution for systems with computational constraints.

6. Conclusions
We have proposed new a framework for cold-start learning
based on a Bayesian active learning strategy that learns as
much as possible about new entities (users or items) from
minimal user interactions. To achieve strong performance
we have proposed a matrix factorization model that takes
into account the ordinal nature of rating data and incorpo-
rates different levels of noise across the rows and columns
of a rating matrix. This model uses hierarchical priors
to provide additional robustness to fixing hyper-parameter
values. With this model we perform efficient Bayesian ac-
tive learning by extending a new framework for computing
information gain (BALD) to collaborative filtering, where
we only want to learn optimally about user (or item) spe-
cific model parameters. This approach removes the require-
ment to re-compute the parameter posterior many times per
active sample, and hence permits us to use our relatively
complex matrix factorization model. Our model generates
state-of-the-art predictions on rating data, and when com-
bined with BALD yields strong performance in cold-start
active learning from the very first sample.

This work addresses learning about a new entity as quickly
as possible. An important extension for real-world systems
is to trade-off exploration and exploitation, balancing infor-
mation gain with recommending a user their most favored
items. Possible extensions to this setting include incorpo-
rating active search (Garnett et al., 2011) or strategies from
Bandit Theory into our framework.
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