
JMLR: Workshop and Conference Proceedings 29:419–434, 2013 Asian Conference on Machine Learning

Improving Predictive Specificity of
Description Logic Learners by Fortification

An C. Tran tcanvn@gmail.com

Jens Dietrich j.b.dietrich@massey.ac.nz

Hans W. Guesgen h.w.guesgen@massey.ac.nz

Stephen Marsland s.r.marsland@massey.ac.nz

School of Engineering and Advanced Technology

Massey University

Palmerston North 4442, New Zealand.

Editor: Cheng Soon Ong and Tu Bao Ho

Abstract

The predictive accuracy of a learning algorithm can be split into specificity and sensitivity,
amongst other decompositions. Sensitivity, also known as completeness, is the ratio of
true positives to the total number of positive examples, while specificity is the ratio of
true negative to the total negative examples. In top-down learning methods of inductive
logic programming, there is generally a bias towards sensitivity, since the learning starts
from the most general rule (everything is positive) and specialises by excluding some of the
negative examples. While this is often useful, it is not always the best choice: for example,
in novelty detection, where the negative examples are rare and often varied, they may well
be ignored by the learning. In this paper we introduce a method that attempts to remove
the bias towards sensitivity by fortifying the model by computing and then including in
the model some descriptions of the negative data even if they are considered redundant by
the normal learning algorithm. We demonstrate the method on a set of standard datasets
for description logic learning and show that the predictive accuracy increases.

Keywords: predictive accuracy, fortification, description logic learning, specificity, sensi-
tivity

1. Introduction

Machine learning aims to generate general hypotheses to explain sets of observed examples.
While there are various measurements that can be used to assess the predictive power of the
learnt results, the most common measurement is still predictive accuracy, i.e., the number of
correct predictions on the test set divided by the size of the test set. It is often more useful
to split accuracy into two parts, of which there are several alternatives. In machine learning
it is common to consider sensitivity (sometimes known as completeness) and specificity,
which are respectively the ratio of true positives to the total number of positive examples,
and the ratio of true negative to the total number of negative examples. An alternative
way of evaluating our method would have been to use precision and recall as measures.
However, specificity and sensitivity are more suitable for evaluation of our method as their
combination provides a symmetric assessment of both positive and negative examples, par-

c© 2013 A.C. Tran, J. Dietrich, H.W. Guesgen & S. Marsland.

Tran Dietrich Guesgen Marsland

ticularly the true positives and true negatives. Precision and recall are asymmetric in that
they focus only on the positive examples and mostly ignore the negative ones.

Methods of inductive logic learning that perform top-down search start from the most
general statement (everything is positive) and specialise it. This will tend to overestimate
the positive examples, implying a bias towards sensitivity. While this is often a valid
assumption, it is not always the case. For example, consider the case of novelty detection
(also known as one-class classification) where the class of interest is relatively rare, and
possibly widely variable, within the data. In this case, it is common to learn a model
of the normal (positive) data and argue that anything that does not fit that model is
novel (Marsland, 2003). It can be used for applications such as machine fault detection,
inspection applications, medical tests, and security. For novelty detection, a bias towards
recall means insufficient specialisation, which will result in novel datapoints being classified
as normal. However, care does need to be taken to avoid too much of a bias towards
specificity, as this can produce large numbers of false positives (the system ‘crying wolf’),
which quickly lead to the system being ignored and the true positives being missed (Breznitz,
1984).

As another example, consider the actual purpose of an automatic social benefit fraud
detection system. While the government certainly wishes to detect the fraud and make
examples of fraudulent claimants, they will also wish to avoid the bad publicity that false
positives generally cause: missing a few fraudsters does not cost votes, but bad publicity
probably does. For this reason they may prefer their system to be biased away from false
positives, i.e., to have a bias towards specificity.

In this paper we will introduce a method for reducing the bias towards sensitivity and
demonstrate our method on description logic learning (a sub-field of inductive logic pro-
gramming that uses description logics as the representation language (Muggleton, 1991;
Lavrac and Dzeroski, 1994; Muggleton and De Raedt, 1994; Baader et al., 2005)).

Typical top-down learning in description logic learning computes a description of the
positive examples in the training set by successive specialisation of the most general concept.
The negative examples are only used to assist in this specialisation. In this paper we
describe a method that makes more use of the negative data, thus giving a more even
weight to sensitivity and specificity. We use the same learning procedure as for the positive
examples to learn about the negative examples separately, and use this knowledge to fortify
the description of the positive examples. As well as wishing to avoid the sensitivity bias,
another motivation is the expectation that knowing some rules about some of the negative
examples can help to exclude false positives. We demonstrate our approach on a collection
of standard datasets for description logic learning.

Figures 1 and 2 describe the basic idea. They show a learning problem with a training
set of positive (pluses) and negative (minuses) examples. In Figure 1 D is a description of
the positive data, while N1, N2 and N3 are definitions of some of the negative data generated
by some learning algorithm with their coverage are described in Figure 1(a). Notes that
these negative definitions are partial in the sense that each covers only a limited set of the
negative examples. They are called counter-partial definitions in this paper. A possible
prediction model (definition) for the learning problem is C ≡ D u ¬(N1 tN2), as depicted
in Figure 1(b). N3 is not included in the learning result as C is sufficient to accurately
define the positive examples of the learning problem.

420

Improving Predictive Specificity of DL Learners by Fortification

Figure 1: The creation of a prediction model for a learning problem. Pluses (+) and minuses
(–) represent positive and negative examples in training set respectively.

(a) Generation of a prediction model: D
is a description, N1, N2, and N3 are
counter-partial definitions produced by
a learning algorithm.

(b) Prediction model after the combination
and reduction: C ≡ D u ¬(N1 t N2)
describes all the positive examples and
no negative examples.

In Figure 2 the same problem is shown, but with the test set also included (in grey). The
predictive accuracy of the model is based on how well the model explains the training data
and how representative the training set was of the underlying data. Of course, the learning
algorithm does not have access to the test set, and so it can’t be used in the learning; how-
ever, there may be a validation dataset that can be utilised; this will be discussed more later
in the paper. Looking at the region around N3 in the figure, it can be seen that there were
datapoints missing in the training data that meant that the model has not been specialised
far enough by choosing not to include N3: there are a set of four negative examples in the
test set that will be classified as positive. The idea of fortification is to identify that partial
definitions like N3 are required: including some redundant specialisations into the model
can improve results.

Figure 2 suggests that some additional specialisation is useful, but the question is how
much? In the example, adding N3 gained four negative examples at the cost of one positive
example on the test set, but the gain may not be so high: Figure 3 shows two additional
partial definitions of negative concepts (N4 and N5) which either do not help the model
(N4), or even make it worse (N5). Thus, inappropriate choice of fortifiers can decrease the
accuracy.

This overview of the problem has suggested that the requirements of a fortification
strategy are to answer the following questions:

Q1. How to generate candidates for fortification? Fortification candidates are partial de-
scriptions of the negative data that can remove negative examples covered by the
learnt concept.

Q2. How to choose the best candidates for fortification, and how many should there be?
Fortification candidates may have different effects on the fortification. Some descrip-
tions may help to increase the specificity (true negatives) while some others do not.
Moreover, some of them may effect the predictive accuracy badly, i.e. they decrease

421

Tran Dietrich Guesgen Marsland

Figure 2: A prediction scenario of the prediction model in Figure 1. Grey pluses and
minuses represent positive and negative examples in the test set.

C

N3

(a) Prediction model without N3. There
are 4 negative examples covered by C
(bold minuses) that are also covered by
N3. However, N3 was removed by re-
duction as it is redundant in the train-
ing model.

N3

C’

(b) Prediction model with N3. If N3 is in-
cluded in C, 4 covered negative exam-
ples in (a) can be removed from the C
coverage. However, N3 also excludes
one positive example (bold plus) from
C coverage.

Figure 3: Decrease of predictive accuracy caused by inappropriate fortification.

(a) A learning problem with several de-
scriptions produced. An accurate
definition for this learning problem
can be constructed from D,N1 and
N2 : D u ¬(N1 t N2). N3, N4, N5

can be considered as redundant in
the prediction model.

(b) Using N3 for fortification increased
the specificity and accuracy, but us-
ing N4 does not help. Moreover, us-
ing N5 decreases the predictive accu-
racy as it decreases the sensitivity.

422

Improving Predictive Specificity of DL Learners by Fortification

the predictive sensitivity (true positives). Further, in general, the more descriptions
are used for fortification, the more chances there are to increase the specificity, at the
potential cost of sensitivity.

In the rest of this paper we consider possible approaches to answer these questions, and
demonstrate their use on a set of standard datasets for description logic learning.

2. Improving predictive specificity by fortification

2.1. Fortification candidates generation

In this section, we propose a method for generating candidates for fortification. One of the
most important objectives of this method is that it must be general so that it can be used
with common description logic learning algorithms.

A description logic learning problem uses a knowledge base and sets of positive and
negative examples as input and produces one or more descriptions (called definitions) such
that each of them covers all positive examples and no negative examples. An example e is
covered by a concept C w.r.t. a knowledge base K if K |= C(e), where notation |= denotes
the instance checking task defined as follows:

Definition 1 (Instance check) Given a description logic knowledge base K, a concept C
and an individual name a, a is an instance of C w.r.t. K, denoted by K |= C(a), iff for any
models I of K, aI ∈ CI holds.

A description logic knowledge base is constructed based on a vocabulary, which consists
of concept names, role names and individuals, using a set of concept constructors. A concept
name is a common name for a set of objects, e.g. Person, Mother, Father. Roles are
used to describe relationships between objects, e.g hasChild, daughterOf; and objects
are constants that represent objects in the application domain, e.g. tom, mary. Concept
constructors are used to create complex concepts (or concepts in short, or descriptions). A
concept in description logic is a formal definition of a concept (or notation) in the application
domain. For example, the complex concept Woman u ∃ hasChild.Person defines the concept
Mother in the real world in which the notations u and ∃ are the intersection and existential
restriction concept constructors in description logics.

A typical knowledge base consists of two parts: i) a TBox, also called terminology, that
contains the terminological axioms, and ii) an ABox that contain assertions of concepts and
roles. Given two concepts C and D, a terminological axiom has the form of an inclusion
axiom C v D or an equality axiom C ≡ D. An equality axiom (equivalence) is called a
concept definition if its left hand side is an atomic concept. For example, Woman v Person

is an inclusion axiom and Mother ≡ Woman u ∃hasChild.Person is a concept definition.
An assertion has the form of C(a) (concept assertion) or r(a, b) (role assertion), where a, b
are individuals and r is a role name. For example, Woman(mary) is a concept assertion that
states mary is a woman, and hasChild(mary, tom) is a role assertion that states tom is
mary’s child.

More information about description logics can be found in (Baader et al., 2010). A
description logic learning problem can now be defined as follows:

423

Tran Dietrich Guesgen Marsland

Definition 2 (Description logic learning problem) Given a description logic knowl-
edge base K, sets of positive E+ and negative E− examples and a noise value ε ∈ [0, 1] (0
means no noise), a description logic learning problem, denoted by a structure 〈K, (E+, E−), ε〉,
is to compute a set of descriptions X = {C

∣∣ |cover(K, C, E+)| ≥ (|E+| × (1 − ε)) and
|cover(K, C, E−)| = 0}.

Some description logics learning algorithms return only the best solution. This can be
consider a special case of the learning problem described in Definition 2 where X contains
only one definition. However, in practice, they can be modified to be fitted into the above
definition by changing the stopping condition of the algorithms.

The basic idea of fortification is to fortify the learnt concepts using a redundant spec-
ification. This is essentially a further specialisation of the learnt concepts using a set of
descriptions that are expected to be able to cover some negative examples in the test set
(prediction). Therefore, the descriptions used for fortification are actually the definitions
of negative examples generated by a class expression learning algorithm so that they can
predict the negative examples in the test set. A fortification candidates learning problem
can now be defined:

Definition 3 (Fortification candidates learning problem) Given a class expression
learning algorithm L, a learning problem LP = 〈K, (E+, E−)〉, a noise value ε ∈ [0, 1] and
a fortification coverage threshold t ∈ [0, 1], a fortification candidates learning problem is to
find a description C such that |cover(K, C, E+)| ≥ (|E+| × (1− ε)) and cover(K, C, E−) = ∅
and a set of descriptions Y = {D

∣∣ |cover(K, D, E−)| ≥ (|E−|× (1− t)) and cover(K, D, E+)
= ∅} using the learning algorithm L.

In Definition 3, C is the definition of the positive examples of the learning problem
LP produced by L and the descriptions in Y are the candidates for the fortification of the
learnt definition, named the fortifying definitions. Given a general class expression learning
algorithm, a method for learning an additional set of fortifying definitions is described in
Algorithm 1.

The learning problem LP is first passed to the class learning algorithm L to compute the
set of definitions of the positive examples. Then, the set of positive and negative examples
are swapped and passed to the algorithm L again together with the fortification threshold
to compute a set of fortifying definitions. In this step, the fortification threshold is used
as the noise percentage for the swapped learning problem (i.e. the learning problem with
positive and negative examples being swapped). For example, if the fortification threshold
is set to 10%, the learning algorithm can accept descriptions that cover 10% of the positive
examples of the swapped learning problem, i.e. 10% of the negative examples in the original
fortification candidates learning problem. Therefore, this is a constraint on the selection of
the class expression learning algorithm used for learning the fortification candidates.

2.2. Fortification candidate scoring

The aim of fortification candidates scoring is to score the fortifying definitions according
to their potential impact. The scores are then used to rank the fortifying definitions to
support the selection of the most promising fortifying definitions. Therefore, the scoring
implies the ranking of fortification candidates.

424

Improving Predictive Specificity of DL Learners by Fortification

Algorithm 1: Fortification candidates learning – FCandLearning(L,K, E+, E−, ε, t).
Input: a class expression leaning algorithm L, a class expression learning problem

〈K, (E+, E−)〉, a learning noise value ε ∈ [0, 1] (0 means no noise) and a
fortification coverage threshold value t ∈ (0, 1).

Output: a definition C and a set of fortifying definitions X produced by L such that
|cover(K, C, E+)| ≥ (|E+| × (1− ε)) and |cover(K, C, E−)| = 0 and
∀D ∈ X : | cover(K, D, E−) | ≥ (|E−| × (1− t)) and cover(K, D, E+) = ∅.

1 begin
/* perform normal learning to learn the definition for pos. examples */

2 Y = L(K, E+, E−, ε) /* find a set of definitions using L */

3 select a definition C ∈ Y | ∀E ∈ Y : Accuracy(C) ≥ Accuracy(E)

/* learn the fortifying definitions by reversing the sets of examples and

using the threshold t */

4 X = L(K, E−, E+, t)
5 return (C,X)

6 end

A fortifying definition is promising for the fortification if it can help to exclude the
negative examples covered by the learnt concept in the test set (see Figure 4(b)). However,
as the negative examples in the test set are unknown when the learning takes place, a method
for predicting the influence of the fortifying definitions is needed. Fortifying definitions
can be considered as prediction models for the negative examples. Therefore, scoring the
fortifying definitions is basically the estimation of their predictive power. This motivates two
methods for scoring the fortifying definitions. The first is to consider their training coverage
as the factor that represents their predictive power. The second is to use another dataset,
which is disjoint from the training and test sets, to evaluate their predictive power. A
fortifying definition that gives a good prediction power on the validation dataset is expected
to have a similar performance on the test set.

2.2.1. Training coverage scoring

In the first method, the training coverage of the fortifying definitions is used as their score.
This information is the result of the training (learning) process and it is associated with every
fortifying definition. The essential idea behind this method is that the training coverage
potentially implies the generality and the predictive power of the fortifying definitions.
The more general a fortifying definition is, the more chance for it to cover more negative
examples in the test set in comparison with a less general definition.

The biggest advantage of this method is that the coverage is available from the learn-
ing process. Therefore, there is no extra computation required for scoring the fortifying
definitions. In addition, high predictive power of the fortifying definitions (high coverage)
may imply a higher chance for it to cover negative examples in the test set. The score of a
fortifying definition C in this method is defined as follows:

425

Tran Dietrich Guesgen Marsland

score(C) =
|cover(K, C, E−)|

|E−|
This value is actually the training sensitivity of the fortifying definition. Therefore, this

information is associated with each fortifying definition and thus it does not need to be
re-computed. In addition, higher priority is given to short fortifying definitions in the case
where the fortifying definitions have the same coverage on E+. In the top-down approach,
shorter definitions are usually more general than longer ones. Therefore, this factor is used
as a tiebreaker in scoring the fortifying definitions. The training coverage score can now be
defined as:

Definition 4 (Training coverage score) Let LP = 〈K, (E+, E−)〉 be a learning problem,
C a fortifying definition learnt from LP, max fdlength the maximal length of all fortifying
definitions learnt and length(C) a function that returns the length of the definition C. The
score of the fortifying definition C based on the training coverage scoring method is defined
as follows:

TCScore(C) =
|cover(K, C, E−)| ×max fdlength + length(C)

max fdlength× (1 + |E−|)
(1)

The multiplication cover(K, C, E−) with max fdlength in Equation (1) is to ensure the
training coverage is used as the primary criteria and definition length as a tiebreaker when
ranking (sorting) the fortifying definition. The division is used to scale the score into [0, 1]
(the min-max normalisation).

2.2.2. Fortification validation scoring

This scoring method employs the idea of the cross-validation method in machine learning.
In this method, a dataset, called the fortification validation dataset, is used to evaluate the
fortifying definitions to select the most promising ones. This is a labelled dataset, i.e. the
examples are labelled as positive or negative examples, and it is different from the training
dataset.

The fortification validation dataset is used similar to a test set in cross-validation to
measure the metrics that constitute the score of the fortifying definitions. The rationale
behind this method is that we use the fortification validation dataset to simulate a real
scenario for fortification to score the fortifying definitions accordingly to their performance
on this dataset. Therefore, the best fortifying definitions in this step are assumed to have
similar performance in real scenarios.

The main factor in the score of the fortifying definitions is the number of negative exam-
ples that the fortifying definition can remove from the set of negative examples covered by
the learnt concept. The removal of negative examples from the coverage of the learnt con-
cept helps to increase the predictive specificity, which is the main objective of our method.
However, to avoid any decrease in the predictive accuracy, the fortifying definition score is
reduced for each common positive example covered by both the fortifying definitions and
the learnt concept. As in the scoring method based on the training coverage, the definition
length is also used to favour shorter definitions. This factor has a lower weight so it is used

426

Improving Predictive Specificity of DL Learners by Fortification

as a secondary criteria in selecting the most promising fortifying definitions. The score of
a fortifying definition can now be defined:

Definition 5 (Fortification validation score) Let LP = 〈K, (E+, E−)〉 be a learning
problem, Ev a fortification validation dataset that consists of a set of positive examples
E+v and a set of negative examples E−v , C a fortifying definition and D a learnt definition
of LP, length(C) a function that returns the length of the definition C and max fdlength a
maximal length of all fortifying definitions of LP. The score of the fortifying definition C
based on the fortification validation method is defined as follows:

FVScore(C) = λ× |cover(K, C, E−v) ∩ cover(K, D, E−v)|
|E−v |

−α× |cover(K, C, E+v) ∩ cover(K, D, E+v)|
|E+v |

+β ×
(

1− length(C)

max fdlength

)
(2)

λ, α and β in Equation (2) are used to adjust the effect of the three factors on the fortifi-
cation candidate’s score. As the number of negative examples covered by a candidate is the
main factor, λ often has highest value in comparison with α and β. In our implementation,
we chose λ = 1, α = 0.5 and β = 0.1 as the default values.

Besides the above scoring metrics, training coverage may be a useful supplement to
assess the potential of the fortifying definitions, particularly when the fortification validation
dataset is small.

2.2.3. Random score

In this scoring method, the fortifying definition scores are assigned randomly in [0, 1]. This
method is used in the evaluation to illustrate the effect of the above proposed scoring
methods.

2.3. Fortification cut-off point

In this section, a method is proposed to compute a cut-off point in the selection of fortifica-
tion candidates. The cut-off point computation method is used to define a suitable number
of fortifying definitions to fortify the learnt definition.

There may be several ways to estimate the number of fortifying candidates used for
fortification. In this paper, we use the fortification validation datasets to empirically define
the cut-off point. It is defined as the maximal number of fortifying definitions that are
best used to fortify the learnt concepts on the fortification validation datasets. A formal
procedure for identifying the cut-off point based on a fortification validation dataset is
described in Algorithm 2.

2.4. Description logic leaning with fortification

Given the above algorithms, the algorithm for description logic learning with fortification
can now be defined. Basically, the algorithm includes 5 steps and it is described in detail
in Algorithm 3.

427

Tran Dietrich Guesgen Marsland

Algorithm 2: Fortification cut-off point – CutOff(C,X ,K, E+v , E−v).

Input: a learnt concept C, a set of fortifying definitions X , a knowledge base K and a set
of fortification validation dataset (E+v , E−v).

Output: a cut-off point (the number of fortifying definitions will be used for fortification)
1 begin
2 cp = cover(K, C, E+v) /* pos. examples covered by C */

3 cn = cover(K, C, E−v) /* neg. examples covered by C */

4 cutoff = 0 /* cut-off point */

5 foreach fdef ∈ X do
6 cpf = cover(K, fdef, E+v) /* pos. examples covered by fdef */

7 cnf = cover(K, fdef, E−v) /* neg. examples covered by fdef */

8 if (|cpf ∩ cp| / |E+v |) ≥ (|cnf ∩ cn| / |E−v |) then
9 cutoff = cutoff + 1

10 return cutoff

Algorithm 3: Fortification DL learning – FDLLearning(L,K, E+, E−, ε, t, E+v , E−v).

Input: A tuple of L,K, E+, E−, ε, t, E+v as described in Algorithm 1 and a set of fortifying
validation dataset (E+v , E−v).

Output: a fortified learnt definition.
1 begin
2 (C,X) = FCandLearning(L,K, E+, E−), ε, t) /* see Algorithm 1 */

3 score(X) /* see Section 2.2 */

4 sort(X) /* sort the candidates ascendingly based on their score */

5 cut-off = CutOff(C,X ,K, E+v , E−v) /* see Algorithm 2 */

6 C = C u ¬
⊔
Di, ∀Di ∈ X and i ≤ cut-off /* fortify C */

7 return C

8 end

428

Improving Predictive Specificity of DL Learners by Fortification

3. Evaluation

3.1. Experimental design

Currently, there are many description logic learning algorithms developed such as the AL−
QuIn (Lisi and Malerba, 2003), YinYang (Esposito et al., 2004), DL-FOIL (Fanizzi et al.,
2008) and a set of OWL class expression learning algorithms in the DL-Learner framework
(Lehmann, 2010) such as CELOE, OCEL and ELTL. Amongst the existing description
learning algorithms, the learning algorithms in the DL-Learning framework are the most
recently developed and they are well evaluated and compared with the other algorithms.
In general, these algorithms achieved good result in the evaluation. In addition, they are
publicly available and they are implemented in an open framework. Their availability may
benefit the implementation of our approach.

Therefore, in our evaluation, we chose CELOE to implement the fortification strategy.
To evaluate the approach, we used 10-fold cross-validation on 15 learning problems. We
chose the learning problems that vary in: i) size (background knowledge and examples),
ii) length of definition (complexity), and iii) noise property. In addition, these learning
problems are also commonly used in evaluation of sub-symbolic learning algorithms. A
summary of the evaluation learning problems are given in Table 1. The first eleven learning
problems were used to evaluate the DL-Learner framework and other learning algorithms.
Their details can be found in (Lehmann, 2010). The remaining learning problems are
described in (Tran et al., 2012).

The datasets of the learning problems are divided into 10 parts. In each fold, we used 8
parts for training and 1 part for testing. The remaining part is used by the FVScore strategy
to score the fortification candidates. Therefore, for a fair evaluation of the FVScore strategy,
we also performed an additional experiment that used 9 parts of the datasets for training. It
is reported as the Full training result in the experimental results. This result is used to make
an extra comparison for the FVScore strategy. A t-test of the null hypothesis (Tabachnick
et al., 2001) is also used for testing the statistically significant difference between the the
experimental results.

The algorithm package and all learning problems are available at https://code.

google.com/p/parcel-2013/.

3.2. Experimental results

Table 2 shows the experimental result of fortification on the CELOE algorithm. To benefit
the analysis of the experimental results, we divide them into 3 groups. The first group
includes 7 learning problems that have low to medium complexity and the learning algorithm
can find accurate solutions on the training set (i.e. without timeout). The second group
contains high to very high complexity learning problems and the algorithm can also find
accurate solutions on training sets without timeout. The third contains learning problems
for which CELOE could not find accurate solution on the training set, i.e. a timeout
occurred. The complexity of learning problems is approximately estimated based on the
learnt definition length produced by CELOE: i) low: (0, 8]; ii) medium: (8, 15]; iii) high:
(15, 20]; and iv) very high: longer than 20.

429

https://code.google.com/p/parcel-2013/
https://code.google.com/p/parcel-2013/

Tran Dietrich Guesgen Marsland

Table 1: Properties of the learning problems (learning prob.) used in evaluation. OPs and
DPs are short for Object Properties and Data Properties respectively. Number of examples
is given in the form positive/negative examples.

No Learning prob. Classes OPs DPs
Assertions

Examples
Class OP DP

1. Moral 43 0 0 4646 0 0 102/100
2. Forte uncle 3 3 0 86 251 0 23/163
3. Poker 4 6 0 374 1080 0 4/151
4. CarcinoGenesis 142 4 15 22,372 40,666 11,185 182/155
5. Aunt 4 4 0 606 728 0 41/41
6. Brother 4 4 0 606 728 0 43/30
7. Cousin 4 4 0 606 728 0 71/71
8. Daughter 4 4 0 606 728 0 52/52
9. Father 4 4 0 606 728 0 60/60

10. Grandson 4 4 0 606 728 0 30/30
11. Uncle 4 4 0 606 728 0 38/38
12. UCA1 30 4 11 300 200 200 73/77
13. MUBus-1 25 0 12 2675 0 32110 383/2292
14. MUBus-2 25 0 12 6314 0 75766 670/5643
15. MUBus-3 25 0 12 17128 0 205534 1250/15877

For the low and medium complexity learning problems (Group 1 in the result table),
CELOE achieved 100% of accuracy for most of them (5/7 learning problems). For the 5
learning algorithms on which CELOE achieved 100% accuracy, fortification did not reduce
the predictive accuracy of any of them. For the two remaining learning problems, the
improvement on predictive specificity and accuracy was not significant. There was also no
decrease of the predictive sensitivity for the datasets in this group.

In the high and very high complexity learning problems without timeout (Group 2 in the
result table), the effect of the fortification was clearer. On the Aunt dataset, TCScore im-
proved both predictive specificity and accuracy significantly while the improvement made
by FVScore was not significant. However, the predictive accuracy and specificity of the
Cousin learning problem stayed unchanged. Note that CELOE got 100% predictive speci-
ficity on this learning problem. Therefore, no more improvement can be made. On the
remaining dataset, Uncle, the improvement of the predictive specificity and accuracy was
also not statistically significant.

Fortification worked best on learning problems where at least one learning algorithm
timed out (Group 3 in Table 2). This group consists of 5 learning problems. All fortifica-
tion strategies increased the predictive specificity and accuracy for all learning problems.
The t-test at the 95% confidence level suggested that the increasing of both accuracy and
specificity in 4 learning problems is statistically significant. There is no significant decrease
of sensitivity on any dataset.

It is worth noting that the TCScore strategy decreased the predictive sensitivity of the
CarcinoGenesis significantly. However, the predictive accuracy and specificity also increased
significantly. This was caused by the increase in specificity was more significant than the
decrease in sensitivity. The maximal confidence level such that the decrease of sensitivity

430

Improving Predictive Specificity of DL Learners by Fortification

was still significant was about 97.1% while those for the specificity and accuracy were about
99.8% and 98% respectively.

There were several impressive improvements by fortification in the experiments. For
example, in the CarcinoGenesis learning problem, the specificity increased from 0.67 ±
2.11% to 13.46 ± 11.35% by TCScore and to 11.46 ± 8.24% and 8.46 ± 12.13% by FVScore
respectively. Even for the learning problems in which CELOE achieved very high accuracy
such as the Aunt learning problem, fortification also improved the predictive specificity and
accuracy significantly. The predictive accuracy for this learning problem was increased from
95.25 ± 8.45% to 100% which was caused by the increase of the predictive specificity from
90.05 ± 17.07% to 100%.

Using more training data (full training result) produced different results in 7 learning
problems. More training data did not always improve the predictive accuracy. It increased
predictive accuracy in 5 learning problems and decreased predictive accuracy in 2 learning
problems. However, changes of the predictive accuracy in the evaluation were not significant
and it did not influence the t-test result.

Table 2: Fortification experimental results with CELOE (means ± standard deviations of 10
folds). The number following the learning problem name is the cut-off point. The convention
of the t-test result with 95% confidence: i) bold values are statistically significantly higher
than the corresponding No fortification (No fort.) values, ii) italic values are statistically
significantly lower than the corresponding No Fortification values, iii) unformatted values
are not statistically significantly different from the corresponding No Fortification values.
The underlined values are the highest results within the fortification strategies results.

Metric Full training No fort. TCScore FVScore Random

Low and medium complexity learning problems without timeout (Group 1)
Moral (0)

Accu.1 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00
Spec.2 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00
Sens.3 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

Forte (2)
Accu. 98.86 ±2.27 93.10 ±11.95 93.10 ±11.95 95.40 ±7.96 93.10 ±11.95
Spec. 100.00 ±0.00 92.06 ±13.75 92.06 ±13.75 95.24 ±8.25 92.06 ±13.75
Sens. 95.83 ±7.22 95.83 ±7.22 95.83 ±7.22 95.83 ±7.22 95.83 ±7.22

Poker-Straight (1)
Accu. 100.00 ±0.00 98.08 ±3.85 100.00 ±0.00 100.00 ±0.00 98.08 ±3.85
Spec. 100.00 ±0.00 97.92 ±4.17 100.00 ±0.00 100.00 ±0.00 97.92 ±4.17
Sens. 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

Brother (0)
Accu. 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

Daughter (0)
Accu. 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

Father (0)

Continued on next page

1. Predictive accuracy = (|true positives| + |true negatives|) / (|positive examples| + |negative examples|)
2. Specificity = |true negatives|/|negative examples|, where true negatives are uncovered negative examples.
3. Sensitivity = |true positives|/|positive examples|, where true positives are covered positive examples.

431

Tran Dietrich Guesgen Marsland

Table 2 – continued
Metric Full training No fort. TCScore FVScore Random

Accu. 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00
Grandson (0)

Accu. 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00
High and very high complexity learning problems without timeout (Group 2)

Aunt (1)
Accu. 96.50 ±0.00 95.25 ±8.54 100.00 ±0.00 97.75 ±0.00 100.00 ±0.00
Spec. 95.50 ±9.56 90.50 ±17.07 100.00 ±0.00 97.50 ±7.91 100.00 ±0.00
Sens. 97.50 ±7.91 100.00 ±0.00 100.00 ±0.00 98.00 ±6.33 100.00 ±0.00

Cousin (0)
Accu. 99.29 ±2.26 99.29 ±2.26 99.29 ±2.26 99.29 ±2.26 99.29 ±2.26
Spec. 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00
Sens. 98.57 ±4.52 98.57 ±4.52 98.57 ±4.52 98.57 ±4.52 98.57 ±4.52

Uncle (2)
Accu. 95.83 ±6.80 93.33 ±10.97 93.10 ±11.95 95.40 ±7.96 93.10 ±11.95
Spec. 91.67 ±13.61 89.17 ±18.45 92.06 ±13.75 95.24 ±8.25 92.06 ±13.75
Sens. 100.00 ±0.00 97.50 ±7.91 95.83 ±7.22 95.83 ±7.22 95.83 ±7.22

Learning problems with timeout (Group 3)
CarcinoGenesis (8)

Accu. 53.61 ±2.45 54.01 ±1.02 57.55 ±4.91 58.73 ±3.50 55.49 ±3.00
Spec. 47.91 ±2.87 0.67 ±2.11 13.46 ±11.35 11.46 ±8.24 4.54 ±5.33
Sens. 87.71 ±3.97 99.44 ±1.76 95.12 ±6.48 98.89 ±2.34 98.89 ±2.34

UCA1 (1)
Accu. 91.42 ±7.01 90.74 ±8.12 91.41 ±8.62 91.41 ±8.62 90.74 ±8.12
Spec. 83.39 ±13.55 89.64 ±11.60 91.07 ±11.93 91.07 ±11.93 89.64 ±11.60
Sens. 100.00 ±0.00 91.96 ±14.07 91.96 ±14.07 91.96 ±14.07 91.96 ±14.07

MUBus-1 (6)
Accu. 53.61 ±2.45 54.31 ±3.28 68.15 ±2.01 66.84 ±2.96 68.00 ±3.93
Spec. 47.91 ±2.87 48.52 ±3.45 64.66 ±2.25 63.13 ±3.33 64.48 ±4.70
Sens. 87.71 ±3.97 89.02 ±3.89 89.02 ±3.89 89.02 ±3.89 89.02 ±3.89

MUBus-2 (4)
Accu. 14.35 ±0.54 14.35 ±0.54 35.45 ±6.99 35.55 ±9.82 33.31 ±6.74
Spec. 4.18 ±0.60 4.18 ±0.60 27.79 ±7.82 27.89 ±10.98 25.40 ±7.54
Sens. 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

MUBus-3 (4)
Accu. 11.34 ±0.14 11.34 ±0.14 40.18 ±0.95 40.18 ±0.95 26.16 ±5.83
Spec. 4.36 ±0.15 4.36 ±0.15 35.47 ±1.02 35.47 ±1.02 20.34 ±6.28
Sens. 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00 100.00 ±0.00

4. Conclusion

Normal top-down inductive logic programming techniques have an inherent bias towards
sensitivity in their learning approach. While this can be a positive thing, there are also
cases where a more equal treatment of specificity and sensitivity is needed, or even where
specificity should be favoured. In this paper we have introduced a method for doing precisely
this, which we call fortification. We generate partial descriptions of negative examples using

432

Improving Predictive Specificity of DL Learners by Fortification

the standard learning algorithms, and then score these partial definitions in order to choose
which should be added to the model.

We have also provided a method for generating fortifying definitions, two methods for
scoring fortifying definitions and a strategy to compute the cut-off point. Overall, the
experimental results in Table 2 show that our approach improved the predictive accuracy
of most learning problems in the experiment. This means that the predictive accuracy was
increased and the increase of the predictive specificity was higher than the decrease of the
sensitivity (if any).

The fortification experimental results are promising: 9/30 results were above the base-
line, i.e. they are statistically significantly better than the prediction result without fortifi-
cation at 95% confidence. It is worth noting there were 12/30 results in which the predictive
specificity is 100%, i.e. they are impossible to improve the results.

Therefore, this approach is beneficial for class expression learning. The experimental
results suggest that our approach not only ensured a balanced trade-off between the pre-
dictive specificity and the predictive sensitivity, but also achieved promising results. The
gained predictive specificity was higher than the lost predictive sensitivity in most learning
problems. Therefore, the predictive accuracy was increased.

In the two fortification scoring strategies, the TCScore strategy does not require addi-
tional computation and dataset to score the fortification candidates. Therefore, it is suitable
for learning problems that do not have enough additional data for scoring. This strategy is
also suitable for learning problems where the training data contains enough information to
describe the scenario.

Beside the two proposed fortification candidate scoring strategies, Figure 3 also moti-
vates another method for scoring the fortification candidates. The method is based on the
overlap between the learnt concept and the fortifying definitions. Here, the concept over-
lap is used with the following meaning: Two descriptions are overlapped if they cover some
common instances. On the right of Figure 3 is can be seen that if a fortifying definition does
not overlap with the learnt concept, it will not influence the predictive specificity even if it
covers many negative examples. For example, in that figure, N3 can help to exclude some
negative examples covered by the learnt definition C as it covers some common negative
examples (overlapped) with C, but N4, even though it covers some negative examples, does
not influence the predictive specificity as it covers negative examples that are not covered
by the learnt definition (i.e. not overlapped). This method can use both the ABox and
TBox of the knowledge base for scoring the candidates and we plan to investigate it further
in the future.

References

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontology languages
for the semantic web. Mechanizing Mathematical Reasoning, pages 228–248, 2005.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The description logic handbook: Theory, implementation and applications.
Cambridge University Press, 2010.

433

Tran Dietrich Guesgen Marsland

Shlomo Breznitz. Cry wolf: The psychology of false alarms. Lawrence Erlbaum Associates
Hillsdale, NJ, 1984.

Floriana Esposito, Nicola Fanizzi, Luigi Iannone, Ignazio Palmisano, and Giovanni Se-
meraro. Knowledge-intensive induction of terminologies from metadata. The Semantic
Web–ISWC 2004, pages 441–455, 2004.

Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL concept learning in
Description logics. Inductive Logic Programming, pages 107–121, 2008.

Nada Lavrac and Saso Dzeroski. Inductive logic programming: Techniques and applications.
New York, Ellis Horwood, 1994.

Jens Lehmann. Learning OWL Class Expressions. AKA Akademische Verlagesellschaft,
2010.

Francesca A. Lisi and Donato Malerba. Ideal refinement of descriptions in AL-log. Inductive
Logic Programming, pages 215–232, 2003.

Stephen Marsland. Novelty detection in learning systems. Neural Computing Surveys, 3:
157–195, 2003.

Stephen Muggleton. Inductive logic programming. New generation computing, 8(4):295–318,
1991.

Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods.
The Journal of Logic Programming, 19:629–679, 1994.

Barbara G. Tabachnick, Linda S. Fidell, and Steven J. Osterlind. Using multivariate statis-
tics. Allyn and Bacon Boston, 2001.

An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland. Two-way parallel
class expression learning. Journal of Machine Learning Research-Proceedings Track, 25:
443–458, 2012.

434

	Introduction
	Improving predictive specificity by fortification
	Fortification candidates generation
	Fortification candidate scoring
	Training coverage scoring
	Fortification validation scoring
	Random score

	Fortification cut-off point
	Description logic leaning with fortification

	Evaluation
	Experimental design
	Experimental results

	Conclusion

