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Abstract

A Bayesian manner which marginalizes transition probabilities can be generally applied to
various kinds of probabilistic finite state machine models. Based on such a Bayesian man-
ner, we implemented and compared three algorithms: variable-length gram, state merging
method for PDFAs, and collapsed Gibbs sampling for PFAs. Among those, collapsed Gibbs
sampling for PFAs performed the best on the data from the pre-competition stage of PAu-
tomaC, although it consumes large computation resources.
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1. Introduction

The data used in PAutomaC were generated by various kinds of probabilistic finite state
machines such as HMMs, PDFAs, Markov chains, all of which can be seen as special cases
of PFAs. We implemented and compared methods which marginalize out state transition
probabilities to infer such machines.

Several powerful inference methods for HMMs have been proposed and used for many
applications. Since it is difficult to marginalize out state transition probabilities and sum
up them with respect to hidden variables at the same time, some approximation technique
is required. Collapsed Gibbs sampling (CGS) is a Bayesian method which samples hidden
variables after marginalizing out parameters, and is thought as one of the best choices for
HMM inference (Gao and Johnson, 2008). We applied CGS to PFA inference.

For PDFAs, we implemented a state-merging algorithm based on such Bayesian manner.
We also implemented an inference algorithm for a variable-length gram model, which can
be regarded as a special type of PDFAs.

Based on the scores obtained by executing those methods on the data sets given in the
pre-competition stage of PAutomaC, we conclude that CGS performs the best.

2. Preliminaries

We conveniently assume that the sentences in a sample is jointed into a single sentence
separated by a terminal symbol.! Throughout the paper, A denotes the size of the alphabet

1. Although the terminal symbol is specially treated in the actual implementations, the details are largely
ignored in this paper due to the space limit.
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including the terminal symbol, N the number of states and T the length of the jointed
sentence. Let & = a1---ar and z = 21 --- 2741 be generated sequences of symbols and
states from a learning target PFA, respectively, where z is not observable. By &;,; we
denote the transition probability where a state i is followed by a symbol a and a state j.
Note that >, ; &ia,j = 1. Here, we define functions C(-) as
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where 6 (177" ) is the so-called delta function, which equals 1 if 2, = yp forallk =1,...,n
and equals 0 otherwise. That is, C(7) is the number of occurrences of state ¢ in the transition

history z and C(i,a, j) counts the number of transitions from i to j with a symbol a in z.
The probability where a and z are generated is given by
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As determining & uniquely so as to maximize (1) often causes the overfitting problem, ¢
should be treated as some distribution. Let the prior Pr(g) be the product of Dirichlet
distributions with a hyper parameter j, i.e., ¢(3) [[, .y ﬁmj , where ¢(f) is its normalizing
constant and 0 < 8 < 1. Such Pr(§) is called a conjugate prior. If § =1, every £ is equally
likely before samples are given. By marginalizing out &, where Zw- &iaj = 1, we obtain
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where I'(-) is the gamma function.

3. Inference Methods

3.1. State-Merging Algorithms for PDFAs

ALERGIA (Carrasco and Oncina, 1994), which was a baseline algorithm of PAutomaC, con-
structs a PDFA starting from the probabilistic prefix tree acceptor (PPTA) for the training
sample by merging states whose stochastic behaviors are similar. MDI (Thollard et al.,
2000) is a modification of ALERGIA which merges states if it reduces the size of the au-
tomaton and the Kullback-Leibler divergence (KLD) with the initial PPTA is kept small.
Our criterion for merging states is based on the marginal probability: We greedily merge
states if it increases Pr(a). If the model is a PDFA, 7 is uniquely determined by a. Hence,
(2) is rewritten as
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Both C(i) and C(7,a) are changed only when the state i is merged with other states. Thus
it is enough to recalculate such local parts to update Pr(a) at each merging step.
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3.2. Variable-Length N-Grams

Another baseline algorithm of PAutomaC was a 3-gram learner. A typical elaboration of an
n-gram model is a variable-length gram model, which uses grams of different length. The
literature has proposed a variety of criteria for determining the length of a gram to be used.

The criterion of our algorithm EVgram is based on marginal probabilities, which is just
Eq. 3, for a variable-length gram model can be seen as a special case of a PDFA, where
grams begin removed the last symbols correspond to states. We also implemented a variant
of Niesler and Woodland’s (1999) method, whose criterion is based on cross-validation. We
call it CVgram and compared it with our method.

3.3. Collapsed Gibbs Sampling for PFAs

In the case of PFAs, we need to sum up Pr(a,z) with respect to z to calculate Pr(a), for
which, however, no feasible and rigorous technique is known. After marginalizing out &, we
should either sample or use some approximation for z. We focus on a sampling method
in the following. Collapsed Gibbs sampling (CGS) is an algorithm that samples z in the
following manner: Initially z is randomly chosen, and then z; is sequentially and iteratively
changed according to Pr(z; = k | a,z7"), where z™ = 21 -+ 2p_ 12141 2141-

For PFAs, by using I'(z + 1) = zI'(z) for (2), Pr(z; = k,z7%,a) is represented as
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Since Pr(z; = k,z 7%, a)/gi does not depend on k, Pr(z; = k | a,z7") can be calculated as
gkl 22 9i-

Calculation of g requires constant time. The time complexity of CGS for PFAs is
O(NTL), where L is the number of iterations.

After z is sampled multiply, say z1,...,zg, the predictive probability for an unknown
sentence b is estimated as Pr(b | a) ~ £ >, Pr(b | ¢)), where 512 = E i | &, 25) =
(C(iya,7) + B)/(C(i) + AN ). It is known that the distribution of z converges to Pr(z | a)
in the limit (see, e.g., Chap. 11 of (Bishop, 2006)), whereas greedy algorithms such as

Baum-Welch and variational Bayesian methods may converge to a local optimal point.

4. Experiments and Results

We applied the methods proposed in Sec. 3 to the 51 problems of the pre-competition stage
of PAutomaC and computed their scores in accordance with PAutomaC’s official rule.

We set the hyper parameter 5 = 0.5 for the state-merging method (Sec. 3.1), EVgram
and CVgram (Sec. 3.2). Though Niesler and Woodland (1999) proposed to adopt leaving-
one-out cross-validation, CVgram employed 10-fold cross-validation, since scores with finer
fragmentations were worse in preparatory experiments.
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In CGS (Sec. 3.3), although the distribution of z should converge to Pr(z | a) in the limit,
in actual implementations it is hard to decide when the total amount of iterations should
suffice. In our experiments, we sampled z for every 100 iterations between 10,100th iteration
and 20,000th, hence we got S = 100 samples in total. Furthermore, we ran the algorithm
10 times independently. Therefore, our final answer to each problem was calculated as the
average of the probabilities obtained from 1,000 samples. Fig. 1 shows how the scores of
answers calculated from the latest 100 samples of 10 trials vary for different number of
iterations up to 20,000. After 12,000 iterations, respective lines seem flat and close to each
other. Hence 20,000 iterations seem enough. The black and bold line represents the score
of the average answer of those 10 answers. Empirically, the score of averaged answers is
generally better than the average of their scores.

We put before the actual training phase two preparatory phases where N and [ are
determined. As Fig. 2 shows, the best choice for N depends on problems. By 10-fold
cross-validation, we set N to be the value among {10,20,...,90} that gives the largest
probability, where we used 5 = 0.5. After determining N, we selected the best value amongst
{0.01,0.02,0.05,0.1,0.2,0.5} for 5 again by 10-fold cross-validation. The effectiveness of this
process is illustrated in Fig. 3, where the circles indicate the scores by the chosen values.

For respective problems in the pre-competition stage of PAutomaC, one iteration took
about 0.2 to 2.0 seconds, thus 400 to 40,000 seconds for 20,000 iterations. To determine
values of N and 8 among 9 and 6 candidates by 10-fold cross-validation, respectively, one
must run CGS 150 times in total for every problem. With those determined values, we ran
CGS 10 times to obtain a final answer. The computational cost of the entire process was
quite high, so we ran CGS in parallel on a grid computing environment InTrigger? with a
parallel computing processing system GXP Make?.

Among algorithms presented in Sec. 3, CGS performed the best. The average ratio
of its scores against the theoretical minimum scores exceeded 1 by 0.00129. CVgram and
EVgram in Sec. 3.2 and the state merging method in Sec. 3.1 marked 0.00642, 0.00992 and
0.0185, respectively. Fig. 4 compares the scores of those methods on the 51 problems.
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Appendix A. Figures
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