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In the field of reinforcement learning (Sutton and Barto, 1998; Kaelbling et al., 1996),
agents interact with an environment to learn how to act to maximize reward. Two different
kinds of environment models dominate the literature—Markov Decision Processes (Put-
erman, 1994; Littman et al., 1995), or MDPs, and POMDPs, their Partially Observable
counterpart (White, 1991; Kaelbling et al., 1998). Both consist of a Markovian state space
in which state transitions and immediate rewards are influenced by the action choices of the
agent. The difference between the two is that the state is directly observed by the agent in
MDPs whereas agents in POMDP environments are only given indirect access to the state
via “observations”.

This small change to the definition of the model makes a huge difference for the difficulty
of the problems of learning and planning. Whereas computing a plan that maximizes reward
takes polynomial time in the size of the state space in MDPs (Papadimitriou and Tsitsiklis,
1987), determining the optimal first action to take in a POMDP is undecidable (Madani
et al., 2003). The learning problem is not as well studied, but algorithms for learning
to approximately optimize an MDP with a polynomial amount of experience have been
created (Kearns and Singh, 2002; Strehl et al., 2009), whereas similar results for POMDPs
remain elusive.

A key observation for learning to obtain near optimal reward in an MDP is that in-
ducing a highly accurate model of an MDP from experience can be a simple matter of
counting observed transitions between states under the influence of the selected actions.
The critical quantities are all directly observed and simple statistics are enough to reveal
their relationships. Learning in more complex MDPs is a matter of properly generalizing the
observed experience to novel states (Atkeson et al., 1997) and can often be done provably
efficiently (Li et al., 2011).

Inducing a POMDP, however, appears to involve a difficult “chicken-and-egg” problem.
If a POMDP’s structure is known, it is possible to keep track of the likelihood of occu-
pying each Markovian state at each moment of time while selecting actions and making
observations, thus enabling the POMDP’s structure to be learned. But, if the POMDP’s
structure is not known in advance, this information is not available, making it unclear how
to collect the necessary statistics. Thus, in many ways, the POMDP induction problem has
elements in common with grammatical induction. The hidden states, like non-terminals,
are important for explaining the structure of observed sequences, but cannot be directly
detected.

Several different strategies have been used by researchers attempting to induce POMDP
models in the context of reinforcement learning. The first work that explicitly introduced
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the POMDP model and algorithms for learning them came from Chrisman and McCallum
in the 1990s (Chrisman, 1992; McCallum, 1993, 1994, 1995). They explored a variety of
approaches beginning with Expectation-Maximization (EM). EM is an extremely natural
approach to this problem as a POMDP is essentially a controlled Hidden Markov Model
(HMM) and EM is one of the best studied approaches to learning in HMMs (Rabiner, 1989).
However, the tendency of EM to get trapped in local optima led to considering instance-
based approaches as an alternative. While showing some promise, none of these approaches
has been broadly deployed.

A series of papers in the 2000s attempted to improve on these earlier results by changing
the nature of the model being learned. Sutton and colleagues hypothesized that a state
representation based solely on observables could avoid the problem of learning parameters
on purely unobservable quantities. They introduced predictive state representations, or
PSRs (Littman et al., 2002; Singh et al., 2003, 2004), showed they could capture all of
the environments representable by POMDPs and evaluated several local search algorithms
for inducing PSRs from data. While PSR learning algorithms seem to be more consistent
than algorithms based on EM, the set of learnable environments in practice appears to be
roughly the same.

Some more recent work observed that different POMDPs exhibit different size represen-
tations. A POMDP that is very complicated to write down in the learner’s target represen-
tation is unlikely to be learned effectively. On the other hand, systematic enumeration and
testing of models in order of increasing complexity of representation (Walsh and Littman,
2007; Zhang et al., 2012) allows POMDPs to be induced in time exponential in the size
of its representation. This class of algorithms is an advance over earlier work because it
provides a global search method that cannot become stuck in local optima. However, the
exponential running time guarantees that the method cannot be applied beyond the tiniest
problems.

In spite of the many insights of this community of researchers, POMDP induction re-
mains a very challenging problem.
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