JMLR: Workshop and Conference Proceedings 21:249-253, 2012 The 11th ICGI

Treba: Efficient Numerically Stable EM for PFA

Mans Hulden MHULDEN@EMAIL.ARIZONA.EDU
Ikerbasque (Basque Science Foundation)

Abstract

Training probabilistic finite automata with the EM/Baum-Welch algorithm is computation-
ally very intensive, especially if random ergodic automata are used initially, and additional
strategies such as deterministic annealing are used. In this paper we present some opti-
mization and parallelization strategies to the Baum-Welch algorithm that often allow for
training of much larger automata with a larger number of observations. The tool, treba,
which implements the optimizations, is available open-source and its results were used to
participate in the PAutomaC PFA/HMM competition.

Keywords: EM, Baum-Welch, probabilistic automata, deterministic annealing.

1. Introduction

Treba is a basic tool for training and decoding probabilistic finite automata (PFA), in par-
ticular with variants of the EM/Baum-Welch algorithm.! The main design goals have been
efficiency, numerical stability, and good parallelization of the learning algorithms. The EM
algorithm requires some care in implementation and different implementation choices can
produce tenfold differences in execution speed within the same implementation languages
and hundredfold differences in execution speed across languages®. This, and the fact that
open-source implementations of EM for PFSA are unavailable, have motivated this effort
for a simple, generic, parallel implementation in the spirit of UNIX command-line tools.
The tool is written in C and was originally designed to provide a strong EM baseline for
the PAutomaC PFA/HMM learning competition (Verwer et al., 2012). In the following, we
discuss some of the implementation choices, particularly from the point of view of efficiency
as well as report on its participation in PAutomaC.

2. Features
Treba is a command line utility that contains the following features:
e PFA training (Baum-Welch, Viterbi), decoding, generation, and likelihood calculation.

e Various strategies to escape local optima of EM, including deterministic annealing
(Rose, 1998), random restarts, and random initialization with various automaton
topologies.

e Re-estimation algorithms with a fully concurrent implementation.

1. http://treba.googlecode.com
2. See e.g. the comparison between 11 implementations of the algorithm done by Aurélien Garivier at
http://perso.telecom-paristech.fr/~garivier/code/index.php

© 2012 M. Hulden.

http://treba.googlecode.com
http://perso.telecom-paristech.fr/~garivier/code/index.php

HULDEN

3. Baum-Welch for PFSA

Treba implements a straightforward EM/Baum-Welch training for PFA with some aug-
mentations and exceptions as discussed below. The Baum-Welch algorithm for PFA is
conceptually slightly more straightforward than for HMMs as we need not worry about sep-
arate emission and transition probabilities. We refer the reader to de la Higuera (2010) for
a detailed exposition of the algorithm in a PFA context, and for situations where training
occurs with multiple observation sequences.

3.1. Deterministic annealing

Deterministic annealing (Rose, 1998) is a strategy whereby a globally concave function is
first maximized, then gradually changed into a more non-concave function which is opti-
mized progressively. In a Baum-Welch context, this is often implemented by including in
the formulas a mutable parameter 8 representing how much weight is given to the training
observations (Smith and Eisner, 2004). Re-estimation can then be performed as:

tgS q) = [expected count(q = ¢')]?

[expected count(q = Q)]?

During training, the 8 parameter is initialized to a low value (= 0), and is increased by
some predefined amount each time EM converges, until 5 = 1, when the above equation
equals that of standard EM.

3.2. Parallellization

The Baum-Welch algorithm is eminently parallellizable with very few bottlenecks for con-
current implementation. In general, two straightforward options exist as to the choice of
parallellization. Assuming a standard trellis representation of the states visited at each step
in time, the necessary forward, backward, and re-estimation steps can be parallellized in
this trellis-filling task with respect to the different states since at the states in the column
representing time ¢ + 1 depend only on the contents of the trellis at time ¢. Another op-
tion when training on multiple observations (as is needed for PAutomaC), is to launch n
stand-alone threads where each separately updates the estimates based on ¢/n observations,
where ¢ is the number of observations used for training. Treba is parallelized according to
the latter scheme, and in principle allows an unlimited number of threads to be launched.

3.3. Numerical instability

The foremost practical implementation issue arising with the Baum-Welch algorithm is
that of numerical instability (Rabiner, 1989). In calculating a large number of conditional
probabilities, numerical underflow occurs very quickly as the values of the terms involved
decrease exponentially. This is usually addressed in one of two ways: (1) scaling up the
terms periodically to prevent underflow as probabilities are multiplied (as is documented in
Rabiner (1989)), or, (2) performing all calculations in log space.

While the log space solution has the advantage of simplicity, in particular in a con-
current implementation of the algorithm, it itself entails efficiency and numerical stability

250

TREBA: EFFICIENT NUMERICALLY STABLE EM ror PFA

problems. The crux of calculating the necessary terms in log space in Baum-Welch lies in
the addition step in the forward, backward, and the E-step of Baum-Welch where proba-
bilities need to be summed. Assuming log space values of x and y, we need to calculate
log(exp(x) + exp(y)). This is in practice calculated by the simpler x + log(exp(y — z) + 1).
However, at this point two problems present themselves. Firstly, evaluating logarithms and
exponentiations is very costly compared with simple additions or probabilities, which would
be the equivalent operation if the scaling approach is chosen. Secondly, as y — x gets very
small, numerical stability issues arise in the evaluation of log(exp(y — z) + 1). In fact, if
IEEE 754 single-precision floating points are used in conjunction with the standard C math
library implementations of log and exp, Baum-Welch is numerically unreliable.> With dou-
ble precision floating points, numerical accuracy is maintained until y — z ~ —40, which
is usually sufficient for practical purposes. However, using library functions for evaluating
the addition in log space results in that roughly 80% of the running time of Baum-Welch
is spent on evaluating logs and exponentials. This is clearly the reason why some authors
have reported the log approach to be, while simpler to implement, much slower in practice
(Mann, 2006).

3.4. Efficiency concerns: fast logspace summation

The fact that we can express probability addition in

log space by x +log(exp(y —x)+1) (where y —x can

. . A [-w,0] [-60,-60+w]
effectively be assumed to be in the range [—54, 0], as
we can swap x and y if y > z) offers various options 1 2.94x 1077 4.63 x 107
for speeding up the calculation.? The obvious choice /2 497x1077 121 x107%
is to approximate log(exp(z)+1) with a lookup table 1/4 7.94x107" 347 x 107
in the range [—54, 0], perhaps with linear interpola- 1/8 1.24x 107" 1.03 x 107
tion between lookup steps. However, as we will see 116 1.95x 107" 3.17 x 10~
below, this type of table lookup becomes drastically 1/32 3.05x 1071 481 x10~%
inefficient because of CPU caching issues if the table
is to be large enough to not cause undue errors in the Table 1: Maximum error in 4th
approximation. Instead, we have chosen to perform order minimax polyno-
a polynomial approximation of log(exp(z) + 1). The mial approximation of

coefficients of the polynomial were calculated for var-
ious intervals using the Remez exchange algorithm
(Remez, 1934). After experiments with speed and
accuracy tradeoffs, we settled for a 4th-order poly-
nomial approximation. In practice, we have chosen

log(exp(z) +
on interval

range.

1) depending

width and

to use interval sizes between 1/32 and 1, the accuracy of which are listed in table 1.

4. Evaluation

Table 2 shows a timing comparison of some implementations of EM, all running the first
PAutomaC competition problem with randomly initialized ergodic automata/HMMs of var-

3. It is for this reason many mathematics libraries have a special function loglp() to evaluate log(1+x).
4. The range is motivated by the fact that if the difference between = and y is larger than —53.52, the value
of the expression becomes smaller than a 64-bit floating point machine epsilon 2753 ~ 1.11 x 10716,

251

HULDEN

|Q| treba(MM) treba(LUT) treba(mathlib) Ref HMM PAutomaC baseline

(C++) (python)
5 0.15s 0.24s 0.50s 4.79s 29.6s
10 0.61s 0.83s 2.06s 17.34s 99.4s
20 2.43s 3.39s 8.72s 75.48s 339.11s

Table 2: Time taken per EM iteration of various implementations.

ious sizes.” All implementations were run single-threaded. For treba, we've included the
minimax log summing implementation, a lookup table implementation (size 20,000), and the
standard math library implementation. For comparison, Dekang Lin’s C++ implementation
of Baum-Welch for HMMs is included,® as well as the PAutomaC baseline, implemented in
Python.

5. PAutomaC

Treba participated in the PAutomaC competition with EM-trained randomly initialized
ergodic automata of various sizes: 5, 20, and 40 states. As is seen from table 3,7 using
perhaps even larger initial automata could have improved the results (larger ones were not
calculated because of time constraints).®

5.1. Interpolating the test set

In addition to training the automata on the test set, a second training version was created
where both the provided test sets and training sets were used for training, though with a
twist. Since the test set had been stripped of duplicate words, we expanded the test set
with an EM-like algorithm to estimate the number of duplicates in the original test set to
avoid skewing the counts in favor of less frequent words. In effect, we create a new test set
iteratively by calculating the ezpected number of occurrences (E-step) for each word in the
test set based on how many times it occurred in the training set and test sets put together,
and then modifying (M-step) the test set, adding occurrences to reflect the new estimate,
ie.

C(wi)T'r+Te

(E-step) é(w;)Te = S (w)T ITe

(M-step) c(w;)T® = Round(é(w;))

This attempt to reconstruct the original duplicate-containing test set to glean new in-
formation is of course a general strategy that can be used together with any subsequent
learning approach.’

5. On a 2.8MHz Intel Core 2 Duo.

. http://webdocs.cs.ualberta.ca/~1lindek/hmm.htm

7. The perplexity values given in table 3 are all non-interpolated (trained only on the training data) because
of the natural unreliability of perplexity scores when the test set itself is used for training.

8. A 40-state automaton takes roughly an hour to train until log likelihood convergence (A < 0.1)

9. For example, expanding the test set as above and using a simple trigram model consistently yielded
better results than the baseline trigram approach provided by the PAutomaC competition, which also
used the test set for training, but without any reconstruction of “missing duplicates.”

=)

252

http://webdocs.cs.ualberta.ca/~lindek/hmm.htm

TREBA: EFFICIENT NUMERICALLY STABLE EM ror PFA

References

C. de la Higuera. Grammatical inference: learning automata and grammars. Cambridge
University Press, 2010.

T. P. Mann. Numerically stable hidden Markov model implementation. Ms. Feb, 21. 2006.,
2006.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEFE, 77(2):257-286, 1989.

E. Y. Remez. Sur la détermination des polynémes d’approximation de degré donnée. Comm.
Soc. Math. Kharkov, 10:41-63, 1934.

K. Rose. Deterministic annealing for clustering, compression, classification, regression, and
related optimization problems. Proceedings of the IEEE, 86(11):2210-2239, 1998.

N. A. Smith and J. Eisner. Annealing techniques for unsupervised statistical language
learning. In Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, page 486. Association for Computational Linguistics, 2004.

S. Verwer, Rémi Eyraud, and Colin de la Higuera. PAutomaC: a PFA/HMM learning
competition. In ICGI 2012, 2012.

Appendix A. Appendix

Problem # Number of states
5 20 40

1 -9585 -9029 -8866
2 -6685 -6190 -6149
3 -6904 -6358 -6276
4 -0620 -4666 -4527
5 -8962 -4784 -4785
6 -11719 -8369 -7915
7 -7521 4877 4727
8 -8801 -7833 -T7283
9 -13761 -6547 -5578
10 -16234 -14810 -12794

Table 3: Perplexity scores for the 10 first PAutomaC problems for various automata sizes.
All automata are intialized randomly, and are fully connected.

253

	Introduction
	Features
	Baum-Welch for PFSA
	Deterministic annealing
	Parallellization
	Numerical instability
	Efficiency concerns: fast logspace summation

	Evaluation
	PAutomaC
	Interpolating the test set

	Appendix

