JMLR: Workshop and Conference Proceedings 21:54-68, 2012 The 11th ICGI

Clearing Restarting Automata and Grammatical Inference*

Peter Cerno PETERCERNO@GMAIL.COM
Department of Computer Science

Charles University, Faculty of Mathematics and Physics

Malostranské nam. 25, 118 00 PRAHA 1, Czech Republic

Editors: Jeffrey Heinz, Colin de la Higuera and Tim Oates

Abstract

Clearing and subword-clearing restarting automata are linguistically motivated models of
automata. We investigate the problem of grammatical inference for such automata based
on the given set of positive and negative samples. We show that it is possible to identify
these models in the limit. In this way we can learn a large class of languages. On the other
hand, we prove that the task of finding a clearing restarting automaton consistent with a
given set of positive and negative samples is NP-hard, provided that we impose an upper
bound on the width of its instructions.

Keywords: grammatical inference, clearing restarting automata, subword-clearing restart-
ing automata, formal languages.

1. Introduction

Restarting automata (Jancar et al., 1995) were introduced as a tool for modeling some
techniques used for natural language processing. In particular they are used for analysis by
reduction which is a method for checking (syntactical) correctness or non-correctness of a
sentence. While restarting automata are quite general (see Otto (2006) for an overview),
they still lack some properties which could facilitate their wider use. One of their drawbacks
is, for instance, the lack of some intuitive way how to infer their instructions.

Clearing restarting automata were introduced in Cerno and Mraz (2009, 2010) as a new
restricted model of restarting automata which, based on a limited context, can only delete a
substring of the current content of its tape. The model is motivated by the need for simpler
definitions and simultaneously by aiming for efficient machine learning of such automata.
In Cerno and Mréz (2010) it was shown that this model is effectively learnable from positive
samples of reductions and that in this way it is even possible to infer some non-context-
free languages. Here we introduce a more general model, called subword-clearing restarting
automata, which, based on a limited context, can replace a substring z of the current content
of its tape by a proper substring of z. In this paper we focus on the grammatical inference
of clearing and subword-clearing restarting automata from the given set of positive and
negative samples.

*

This work was partially supported by the Grant Agency of Charles University under Grant-No.
272111/A-INF/MFF and by the Czech Science Foundation under Grant-No. P103/10/0783 and Grant-
No. P202/10/1333.

© 2012 P. Cerno.

GRAMMATICAL INFERENCE FOR cl-RA

The used inference algorithm is inspired by strictly locally testable languages (Mc-
Naughton, 1974; Zalcstein, 1972). The idea of strictly locally testable languages rests in the
assumption that in order to verify the membership of the given input word we only need
to verify all the local parts of this word. Unfortunately the class of strictly locally testable
languages is only a subclass of regular languages, which limits their wider use. Our models
work in a similar local way. The main difference is that our automata can locally modify
the content of their input tape by using rewriting instructions. The inference algorithm
itself is responsible only for deciding, which rewriting instructions are justified, based on
the given set of positive and negative samples. In the first phase, the algorithm uses the
set of positive samples to infer all possible instruction candidates. In the second phase,
it uses the set of negative samples for filtering out all “bad” instructions that violate the
so-called error preserving property (i.e. instructions that allow a reduction from a negative
sample to a positive sample). The output is the set of all surviving instructions. We show
that, under certain assumptions, this algorithm runs in a polynomial time and can infer
all clearing and subword-clearing restarting automata in the limit. In contrast with this
result we show that the task of finding a clearing restarting automaton consistent with the
given set of positive and negative samples is NP-hard, provided that we impose an upper
bound on the width of instructions. This result resembles the famous result of Gold (1978)
who showed that the construction of a minimum state automaton consistent with the given
data is, in general, computationally difficult. Indeed, for every n-state finite automaton
there exists an equivalent clearing restarting automaton that has the width of instruction
bounded from above by O(n) (Cerno and Mréz, 2010).

Although clearing and subword-clearing restarting automata have their roots in restart-
ing automata, we will study them from the perspective of the so-called string-rewriting
systems. Our approach is reminiscent of the delimited string-rewriting systems introduced
in Eyraud et al. (2007), which are expressive enough to define a nontrivial class of languages
containing all regular languages and some context-free languages. Eyraud et al. (2007) pre-
sented a novel algorithm LARS (Learning Algorithm for Rewriting Systems) which identifies
a large subclass of these languages in a polynomial time. In fact, a simplified version of
LARS (de la Higuera, 2010) identifies any delimited string-rewriting system in the limit. The
main difference between delimited string-rewriting systems and clearing (subword-clearing)
restarting automata is that delimited string-rewriting systems use a specific order relation
over the set of all terms and rules in order to make always only one single rule eligible for
application for any given input string. This makes them an efficient (often linear) parsing
device for strings with the membership problem decidable in a polynomial time. Our mod-
els, on the other hand, are nondeterministic and do not use any ordering. We also added
an important concept of contexts into the definitions of our models by using the so-called
context rewriting systems as a common framework for all our models. Although our infer-
ence algorithm is able to identify most of the languages presented in Eyraud et al. (2007),
the exact relationship between the corresponding classes of languages is not clear at all.

The paper has the following structure. Section 2 introduces the used automata models.
The new learning algorithm for identification of clearing and subword-clearing restarting
automata in the limit from positive and negative samples is proposed in Section 3. In
Section 4 we show that the task of finding a clearing restarting automaton consistent with a
given set of positive and negative samples is NP-hard under the constraint that there is an

55

CERNO

upper bound on the width of instructions. Conclusions are presented in Section 5. Because
of the page limit we omit some of the proofs and refer the interested reader to the technical
report Cerno (2012). An implementation of the inference algorithm can be found on the
following website: http://code.google.com/p/clearing-restarting-automata/.

2. Theoretical Background

We use the standard notation from the theory of automata and formal languages. As our
reference concerning this field we use the monograph Hopcroft and Ullman (1969).

In the following we define our central concept, called context rewriting systems, which
will serve us as a framework for clearing and subword-clearing restarting automata and
other similar models.

Definition 1 (Cerno and Mréaz (2010)) Let k be a positive integer. A k-context rewrit-
ing system (k-CRS for short) is a system M = (X,T',I), where ¥ is an input alphabet, T' O 3
is a working alphabet not containing the special symbols & and $, called sentinels, and I is
a finite set of instructions of the form (x,z — t,y), where x is called the left context,
v € LOy =Tk U {¢} - TSF1 y is called the right context, y € RCy = TF UT<F=1. {8} and
z — t is called the instruction-rule, z,t € T'*. The width of the instruction i = (x,z — t,y)
is |i] = |zztyl.

A word w = uzv can be rewritten into utv (denoted as uzv by utv) if and only if there
exists an instruction i = (x,z — t,y) € I such that x is a suffix of ¢ -u and y is a prefic
of v-$. We often underline the rewritten part of the word w, and if the instruction i is
known we use l—g\l/[) instead of s, i.e. uzv I—S\Z/I) wtv. The relation by C I x I'™ is called
the rewriting relation.

Letl € {\,¢}-T*, and r e T - {\,$}. A word w = uzv can be rewritten in the context
(I,7) into utv (denoted as uzv Fp; utv in the context (I,r)) if and only if there exists an
instruction i = (x,z — t,y) € I, such that x is a suffix of - w and y is a prefix of v - r.
Unless told otherwise, we will use the standard context (I,7) = (¢, $).

The language associated with M is defined as L(M) = {w € ¥* | w F}; A}, where 3,
is the reflexive and transitive closure of Fyr. Note that, by definition, A € L(M).

The characteristic language associated with M is defined as Lo(M) = {w € I'"" | w 3,
A}, Similarly, by definition, A € Lo(M). Obviously, L(M) = Lo(M) N X*.

Remark 2 We also include a special case k = 0 in Definition 1. In this case we define
LCy = RCy = {\}, and the rest of the definition remains the same.

Observe that A € L(M) holds for each k&-CRS M = (X,T',I). In the following, we call
two languages L1, Ly C ¥* equivalent if Ly N X+ = Ly N YT, We simply ignore the empty
word in this setting. The implicit acceptance of the empty word can be easily avoided by a
slight modification of the definition of context rewriting systems, but in principle, we would
not get a more powerful model.

All £-CRS’s have the following basic property.

Lemma 3 (Error Preserving Property, Cerno and Mraz (2010)) Let M = (X,T,1)
be a k-CRS and u,v be two words over I'. If u b3, v and u g L(M), then v & L(M).

56

http://code.google.com/p/clearing-restarting-automata/

GRAMMATICAL INFERENCE FOR cl-RA

Context rewriting systems are very similar to the so-called string-rewriting systems
(Book and Otto, 1993). A string-rewriting system S on 3 consists of finitely many pairs
of strings from X*, called rewrite rules, which are written (I — r). The reduction relation
=75 on X* induced by S is the reflexive and transitive closure of the single-step reduction
relation =gs= {(ulv,urv) | (I — r) € S,u,v € ¥*}. For a string u € X*, if there exists a
string v such that u =g v holds, then w is called reducible modulo S. Otherwise, if such a
string does not exist, then wu is called irreducible modulo S. By IRR(S) we denote the set
of all irreducible strings modulo S. It is easy to see that IRR(S) is a regular language. A
string-rewriting system is called length-reducing if |I| > |r| for each rule (I — r) € S.

String-rewriting systems play a central role in the broad concept of the so-called Mc-
Naughton families (Beaudry et al., 2003). A language L C ¥* is called McNaughton language
if there exists a finite alphabet I' strictly containing 3, a finite string-rewriting system S on
I, strings t1,t2 € (I'\X)*NIRR(S) and a letter Y € (I'\ X)NIRR(S) such that, for all w € ¥*:
w € L & tywty =% Y. Here the symbols of ¥ are terminals, while those of I' \ ¥ can be
seen as nonterminals. The language L is said to be specified by the four-tuple (S,t;,t2,Y)
and this fact will be expressed as L = L(S,t1,t2,Y). By placing various restrictions on the
string-rewriting systems used we obtain different families of languages.

In this paper we follow a similar approach, but instead of using general strings t1,ts €
(T'\ X)* we use only the single letters t; = ¢, to = $, called the sentinels, and instead of
the symbol Y we use the empty word. It is easy to see that context rewriting systems can
be simulated by string-rewriting systems. Indeed, suppose that M = (X,T,1) is a k-CRS
and Y ¢ I'. Let us define a string-rewriting system S(M) = {(zzy — =xty) | (z,z —
t,y) € I} U{(¢$,Y)}. Apparently, L(M) = L(S(M),¢,$,Y). This basically allows us to
extend most of the terminology concerning string-rewriting systems also to context rewriting
systems. We say, for instance, that a k-CRS M is length-reducing if the reduction relation
— r of the string-rewriting system S = S(M) is length-reducing.

Since general k-CRS can simulate any type 0 grammar (according to the Chomsky
hierarchy (Hopcroft and Ullman, 1969)), we consider only length-reducing k-CRS in this
paper. The first model we introduce is called clearing restarting automaton which is a
k-CRS such that ¥ = I' and all its instruction-rules are of the form z — A\, where z € X7.

Definition 4 (Cerno and Mraz (2010)) Let k be a nonnegative integer. A k-clearing
restarting automaton (k-cl-RA for short) is a k-CRS M = (3,3,1) (or M = (X,1I), for
short), where for each instruction i = (x,z — t,y) € [: z € T andt = \. Since t is always
the empty word, we use the notation i = (x, z,y).

U

Remark 5 Speaking about a k-cl-RA M we use “automata terminology,” e.g. we say that
M accepts a word w if w € L(M). By definition, each k-cl-RA accepts \. If we say that a
k-cl-RA M recognizes (or accepts) a language L, we always mean that L(M) = LU {\}.

Example 1 Let M = (X,1) be a 1-cl-RA with ¥ = {a,b} and I consisting of the following
two instructions:

(1) (a,ab,d),
(2) (¢,ab,9).

57

CERNO

Then we have aaaabbbb +) aaabbb 17 aabb -2 ab -2 X which means that aaaabbbb -,
A. So the word aaaabbbb is accepted by M. It is easy to see that M recognizes the language
L(M) = {a™" | n > 0}.

Clearing restarting automata are studied in Cerno and Mréz (2010). We only mention
that they can recognize all regular languages, some context-free languages and even some
non-context-free languages.

Here we propose yet another model called subword-clearing restarting automaton, which
can be useful in some grammatical inference scenarios.

Definition 6 Let k be a nonnegative integer. A k-subword-clearing restarting automaton
(k-scl-RA for short) is a k-CRS M = (X,X%,1), where for each instruction i = (z,z —
t,y) € I: 2 € X" and t is a proper subword of z.

Subword-clearing restarting automata are strictly more powerful than clearing restarting
automata. They can, for instance, recognize the language {a"cb” | n > 0} U {\}, which lies
outside the class of languages accepted by clearing restarting automata. However, they still
cannot recognize all context-free languages. (Consider e.g. the language {ww® | w € £*}).

3. Learning Schema

In this section we introduce a learning schema for clearing and subword-clearing restarting
automata, which can be used to identify any hidden target model in the limit from pos-
itive and negative samples. In the following, the term automaton refers primarily to the
clearing and subword-clearing restarting automaton, but the presented ideas can be easily
generalized to other similar models obtained from context rewriting systems.

An input for our problem consists of two finite sets of words over an alphabet X: the set
of positive samples ST and the set of negative samples S~. Our goal is to find an automaton
M, such that: ST C L(M) and S™NL(M) = 0. We assume that STNS™ =0 and X\ € ST.

Without further restrictions, the task becomes trivial even for clearing restarting au-
tomata. Just consider the set of instructions I = {(¢,w,$) | w € ST,w # A}. Trivially,
L(M) = ST, where M = (3, I). Therefore, in the following we impose an upper limit [> 1
on the width of instructions and a specific length k > 0 of contexts for the instructions of
the resulting automaton. Note, that if we can effectively enumerate all automata satisfying
these restrictions then the identification in the limit from positive and negative samples can
be easily deduced from the classical positive result of Gold on the identification in the limit
of the class of primitive recursive languages (see e.g. Lange et al. (2008) for a nice survey
on learning indexed families of recursive languages). Nevertheless, we propose Algorithm 1,
which, under certain conditions, works in a polynomial time.

Algorithm 1 deserves some explanation. First, the function Assumptions(S™,1, k) returns
some set of instruction candidates. Let us assume, for a moment, that this set already
contains all instructions of the hidden target automaton. Then in Cycle 2 we gradually
remove each instruction that allows a reduction from a negative sample to a positive sample
(such instruction violates the error preserving property from Lemma 3). In Step 5 we
remove redundant instructions and in Step 6 we check if the remaining set of instructions
is consistent with the given input set of positive and negative samples. In other words, we

58

© W N O R W N

GRAMMATICAL INFERENCE FOR cl-RA

Algorithm 1: Learning schema Infer(S*, S, 1, k)

Input: The set of positive ST and negative S~ samples over 3, STNS™ =0, A € ST. The
maximal width of instructions [> 1. The length of contexts of instructions k£ > 0.
Output: An automaton consistent with (ST, S7), or Fail.
® <« Assumptions(ST, 1, k);
while Jw_ € S, wy € ST, p € 1 w_ P w, do
| @2\ {¢);
end
¢ «+ Simplify(®);
if Consistent(®, ST, S™) then
‘ return Automaton with the set of instructions ®;
end
Fail;

check if (1) for all wy € ST :wy F5 X and (2) for all w_ € S~ : w_ I/ A. The condition
(1) always holds, if we assume that in Step 1 we already have all instructions of the hidden
target automaton. However, the condition (2) may fail. Therefore, the success of the above
algorithm, depends both on the initial assumptions obtained in Step 1, and on the given set
of positive and negative samples. Nevertheless, we will show that if we have a reasonable
implementation of the function Assumptions, then there is always a set of positive samples
Sar and a set of negative samples S, such that the above schema returns a correct solution
for all sets of positive samples ST D SO+ and negative samples S 2 S consistent with the
hidden target automaton.

The time complexity of Algorithm 1 depends both on the time complexity of the function
Assumptions in Step 1 and on the time complexity of the simplification procedure and the
consistency check in Steps 5 and 6. There are correct implementations of the function
Assumptions (both for clearing and subword-clearing restarting automata) that run in a
polynomial time. In fact, they run in a linear time, if the maximal width of instructions [
and the length of contexts k is considered to be a fixed constant. If the function Assumptions
runs in a polynomial time then also the size of the set ® is polynomial (with respect to the
size of the input) and therefore also Cycle 2 runs in a polynomial time. It is also possible
to implement the function Simplify so that it runs in a linear time with respect to the size
of ®, provided that both the maximal width of instructions [and the length of contexts k
are considered to be fixed constants. Algorithm 2 shows a possible implementation of the
function Simplify both for clearing and subword-clearing restarting automata.

Unfortunately, it is an open problem, whether the consistency check can be done in a
polynomial time (both for clearing and subword-clearing restarting automata). But from the
point of view of the identification in the limit, we can completely omit both the simplification
step and the consistency check, because they do not affect the correctness of the inference
algorithm. In the limit, the algorithm always returns a correct solution.

In the following Definition 7 we define precisely what we mean by the term correct
implementation of the function Assumptions.

59

N O O W N =

CERNO

Algorithm 2: Implementation of Simplify(®)

Input: The set of instructions &.
Output: The simplified set of instructions W.
U« 0
foreach ¢ = (z,z — t,y) € ® in some fixed order do
if 2 1/, t in the context (z,y) then
‘ VU VU{(r,z—t,y)};
end
end
return U;

Definition 7 We call a function Assumptions correct with respect to the model of clearing
restarting automata (correct with respect to k-cl-RA, for short), if the following holds:

1. For every set ST C ¥* the set of instructions ® = Assumptions(S™,1, k) is finite.
Moreover, for every instruction (x,z,y) € ® : © € LCk,y € RCY, |z] > 0, |zzy| < L.

2. For every k-cl-RA M = (X,1), with the maximal width of instructions bounded from
above by | > 1, there exists an equivalent k-c-RA N = (3,J), J C I, and a finite
set S§ C L(N) = L(M), such that for every ST 2 Sf the following holds: J C
Assumptions(S™, 1, k).

The reason why we consider an equivalent automaton N in the second condition and do
not state the above definition directly by using M is because M could contain also some
useless instructions, i.e. instructions that M would never use in any accepting computation.
We cannot expect from the function Assumptions to give us such useless instructions.

It is easy to see that similar definitions can be formulated also for other models, e.g.
subword-clearing restarting automata. In the following we show some examples of functions
Assumptions that are correct with respect to k-cl-RA.

Example 2 The most trivial implementation of the function Assumptions is to return all
possible instructions with the width bounded from above by . It follows trivially that such a
function is correct. However, the number of such instructions is in general exponential with
respect to [, therefore such a function would be of little interest in real applications.

Example 3 Here we define two sample functions Assumptions correct with respect to k-cl-RA.

1. Assumptions; (ST, k) = {(z,2,y) | * € LCk,y € RCy,|z| > 0,]zzy| < | and
Jwy,we € ST : w2y is a subword of cun$ and xy is a subword of wo$}.

The basic intuition behind this function is the assumption that if both patterns xzy and
xy occur in the set of positive samples, then it is somehow justified to clear the word
z based on the context (x,y). Note that the more we increase the length of contexts k
the smaller (or equal) number of patterns we will find. The contexts serve here as a
safety cushion against the inference of incorrect instructions.

60

GRAMMATICAL INFERENCE FOR cl-RA

2. Assumptions o (ST, 1, k) = {(z,2,y) | * € LCk,y € RCy,|z| > 0,|zzy] < | and
Jwy,we € ST 1wy = azf,we = aff, z is a suffiz of ¢ and y is a prefiz of 3$}.

This condition is even more restrictive than the previous one. It basically says that
the instruction (x,z,y) is justified only in the case when there are positive samples
wi,wy € ST such that we can obtain wo from wy by using this instruction.

Both of these functions can be computed in a polynomial time with respect to size(S™) =
> wes+ |w]. In fact, if [and k are fixed constants, then these functions can be computed
in a linear time, since we need to consider only subwords of length bounded from above by
the constant [. (See the technical report Cerno (2012) for the implementation details).

In the following we prove the correctness of all functions Assumptions from Example 3
with respect to Definition 7. Since Assumptions (ST, k,1) C Assumptions(S*, k,1), we
only need to prove the correctness of the more restrictive function Assumptions,. The
correctness of the less restrictive function Assumptions,; follows immediately. Let M =
(3,1) be any k-cl-RA with instructions of width at most [> 1, and let N = (X, J) be any
minimal k-cl-RA with respect to |J| equivalent with M such that J C I. The minimality of N
implies that for every instruction ¢ € J there is a word wg € L(IV) such that the instruction
¢ is used in every accepting computation wg 3 A. Without the loss of generality we may
assume that the instruction ¢ must be used in the first step of an accepting computation for
the word wg. (Note that there may also be some other instructions applicable to wg, but

they definitely do not lead to any accepting computation). Let us fix for every ¢ € J some

accepting computation wg }_S\d;) wy By A Now define Sq = Uges{wg, wy}. Apparently

S§ C L(N). Moreover, we can easily see that Si contains enough words to justify all
instructions ¢ € J, i.e. J C Assumptionsg,(Sy, 1, k). The correctness follows easily from
the monotonicity of the function Assumptions s with respect to S* and the set inclusion
relation. In general, however, size(Sy) is not polynomially bounded by size(N), i.e. it may
happen that for some instructions ¢ € J the length of the word wy, is at least exponentially
large with respect to the size of N, where the size of N = (3, J) is the sum of widths of all
its instructions, size(N) = . ; |il.

The above examples can be easily extended to the model of k-scl-RA — instead of patterns
zzy and zy we would consider the patterns xzy and zty, where t is a proper subword of z.
We would basically get the same results as in the case of k-cl-RA.

In the following Theorem 8 we state our first positive result concerning the grammatical
inference of clearing restarting automata. This theorem and its proof can be easily extended
to subword-clearing restarting automata and other similar models.

Theorem 8 Let a function Assumptions be correct with respect to k-cl-RA. Then, for every
k-cl-RA M = (X,1), with instructions of width at most | > 1, there exists a finite set of
positive samples SO+ and a finite set of negative samples Sy consistent with M such that
for every finite set of positive samples ST D Sar and every finite set of negative samples
ST D Sy consistent with M the algorithm Infer(S™,S™,1, k) will succeed and return an
equivalent automaton k-c-RA N = (X, J) such that L(N) = L(M).

Proof Let M = (X, I) be any k-cl-RA with instructions of width at most { > 1. According to
Definition 7, there exist J C I and Si” C L(M) such that k-c-RA N = (X, J) is equivalent

61

CERNO

to M and for each St D S it holds J C Assumptions(S*,1, k). We will show how to
construct a finite set of negative samples Sy such that the algorithm Infer(S*, 57,1, k) will
always succeed and return an automaton equivalent to N for every finite set of positive
and negative samples ST D Sar , 57 2 5, consistent with N. Let ® denote the set of
all instructions (z,z,y) such that z € LCy,y € RCy, |z| > 0,|zzy| < I. We say that the
instruction ¢ € ® is bad if there exist w_ ¢ L(N),w; € L(N) : w_ F® w,. We say that
the instruction ¢ is disabled by (S5, Sy) if Jw_ € Sy, w4 € SF : w— H®) w, . Now consider
the following Algorithm 3:

Algorithm 3: Extension of Samples (Sg, Sy)

Sy« 0;

while 3 bad instruction ¢ € ® such that ¢ is not disabled by (Sy , Sy) do
Let w_ ¢ L(N),w; € L(N) : w_ F® w,;
S e 85 U {ws):
Sy < Sy Uf{w_};

end

Every added pair wy,w_ effectively disables at least one instruction from ®, so the
Algorithm 3 is definitely finite. Now consider any finite set of positive samples ST DO Sar
and any finite set of negative samples S~ O S, consistent with V. If we run the algorithm
Infer(ST,S™,1, k), then in Step 1 we obtain some set of instructions covering all instruc-
tions from J. Note that no instruction from J is bad. In the following cycle the algorithm
gradually removes all bad instructions. After this cycle we are left with correct instructions
including all instructions from J, so the resulting automaton is apparently equivalent to the
automaton NV, and therefore also to the original target automaton M. |

Example 4 Consider the 1-c-RA M = ({a,b},{(¢,ab,$), (a,ab,b)}) recognizing the lan-
guage L(M) = {a™b" | n > 0} (see Ezample 1). Let us take ST = {)\, ab,aabb}. First,
we would like to estimate the set of instructions ® = Assumptions;(ST,1,k) for k = 1
and | = 6 (see Example 3 for definition). The set of all subwords of the delimited posi-
tive samples ¢ST$ is: SWT = {\, ¢, a, b, $, ¢$, ¢a, aa, ab, bb, b$, ¢aa, cab, aab, abb,
ab$, bb$, ¢ab$, ¢aab, aabb, abb$, ¢aabb, aabb$, caabb$}. An instruction (x,z,y), where
x € LCy = {a,b, ¢}, y € RCy = {a,b,$}, |z| > 0 and |xzy| < I, is justified, according
to the definition of Assumptions., if and only if both zzy,zy € SWT. Thus, only the
following reductions are justified: ¢aa F ¢a, aab = ab, abb = ab, bb$ - b$, cab$ F ¢&$,
aabb = ab, ¢aabb$ b ¢$. Therefore Assumptions,(S1,1,k) = {(¢,a,a), (a,a,b), (a,b,b),
(0,0,9), (¢,ab,9), (a,ab,b), (¢,aabb,$)}. Apparently, all instructions of M are included.
However, the following instructions are bad: (¢,a,a), (a,a,b), (a,b,b), (b,b,8). We can
disable them easily by taking S~ = {aab,abb}. We do not need to add anything else to ST,
so the function Infer(S*, S~ 1, k) will correctly output the automaton N = ({a, b}, {(¢, ab,$),
(a,ab,b)}), which is equivalent to the hidden target automaton M. The function Simplify
removed the instruction (&, aabb,$) from the inferred automaton as it can be simulated by
the remaining two instructions.

62

GRAMMATICAL INFERENCE FOR cl-RA

We should emphasize, that the set S~ = {aab,abb} used in Example 4 is not big
enough to guarantee the properties expressed in Theorem 8. If we take, for instance,
a bigger set of positive samples, such as St = {\, ab,aabb,aaabbb} then the function
Assumptions;; (ST,1, k) would give us a set of instructions containing a bad instruction
(a,aa, b) not disabled by the pair (S*,S~). However, it can be shown that the following
sets of positive and negative samples: Sj = {a™" | 0 < n < 6} and S; = {aab, abb,
aaab, abbb, aaaab, aaabb, aabbb, abbbb, aaaaab, aaaabb, aabbbb, abbbbb, aaaaabb, aabbbbb,
aaaaaabb, aabbbbbb} satisfy the properties of Theorem 8, for k =1 and | = 6.

Also note that if we used the function Assumptions,, in Example 4 instead of the function
Assumptions,;; (see Example 3 for definition) we would need no negative samples at all.

In the following Example 5 we show how the inference algorithm can be used also for a
more general subword-clearing restarting automata.

Example 5 Consider the 1-scl-RA M = ({a,b, c},{(a,acb — ¢,b), (¢, ach,$)}) recognizing
the language L(M) = {a"cb" | n > 0} U {A}. (We use the abbreviation (x, z,y) instead of
(x,z = Ny)). This language cannot be recognized by any clearing restarting automaton,
therefore we have to use the inference algorithm for subword-clearing restarting automata.
We will use the following function Assumptions: Assumptions,.;; (ST, 1, k) :== {(z,2 — t,y) |
x € LCy,y € RCy,|z| > 0,|zzty] < I, t is a proper subword of z and Jwi,ws € ST :
xzy is a subword of ¢wi$ and xty is a subword of ¢we$}. It can be shown (similarly as
in Example 3) that this function is correct with respect to the model of subword-clearing
restarting automata. Let us take ST = {\,ach,aacbb}. Then Assumptions,;(ST,l, k) =
{(¢,a,a), (a,a,c), (b,b,8), (¢,b,d), (¢,aa — a,c), (a,ac — ¢,b), (¢,bb —b,9), (a,cb — ¢,b),
(¢,ach,$), (a,ach — ¢,b)}, where k =1 and | = 6. In this case, there are only two correct
instructions: (¢,acb,$) and (a,ach — ¢,b). In order to filter all the other bad instructions,
the following set of negative samples is sufficient: S~ = {aach, acbb}.

Similarly as in Example 4, the set S™ = {aacb, acbb} is not big enough to guaran-
tee the correctness of the inference algorithmin in all cases. However, it can be shown
that the following sets of positive and negative samples: Sa' = {\, acb, aacbb, aaacbbb,
aaaacbbbb, aaaaacbbbbb, aaaaaacbbbbbb} and S, = {aach, acbb, aaach, acbbb, aaaacd, aaacbb,
aacbbb, acbbbb, aaaaach, aaaacbb, aacbbbb, acbbbbb, aaaaacbb, aaaacbbb, aaacbbbb, aacbbbbb,
aaaaaachb, aaaaachbb, aaacbbbbb, aacbbbbbb} meet our criteria stated in Theorem 8 (modi-
fied for the model of subword-clearing restarting automata), for K =1 and | = 6.

In the following Example 6 we illustrate how to execute an active learning approach for
the inference of a more realistic language of simplified arithmetical expressions.

Example 6 Our goal is to infer a model of a subword-clearing restarting automaton recog-
nizing the language of simplified arithmetical expressions over the alphabet ¥ = {a,+, (,)},
where the letter a is used as a placeholder for any variable or numeric value. Correct arith-
metical expressions are, for instance: a + (a+a), (a +a), ((a)) etc., whereas the following
expressions are all incorrect: a+,)a, (a+ a etc. For the sake of readability, we omit many
cumbersome details, e.g. we do not list all the inferred instructions etc. We fix the length
of contexts to k =1 and the maximal width of instructions to l = 6. Let us start with some
initial set of positive and negative samples Sfr and Sy, as in Table 1.

63

CERNO

Table 1: The Initial Set of Positive and Negative Samples.

Positive Samples Sfr ‘ Negative Samples S|

a (a) ((a4+a) |+ a+ ++ (+)+ +Ha
a+ta ((@) a+(a+a)| (a +(C (C) (a
a+a+a (a+a) (a+a)+al]) a) +) (O)))a

These samples give us a good initial essence of what the correct arithmetical expressions
might look like. The function Assumptions,.;(S7,1,k) (see Ezample 5 for definition) gives
us altogether 64 instruction candidates, where only two of them: [¢,(,a] and [a,),$] will
be filtered out due to the set of negative samples. The resulting automaton My (our first
hypothesis) is consistent with the given input set of positive and negative samples Sf and
ST, and contains exactly 21 instructions after simplification (see Table 2). Note that here
we use square brackets [and | instead of parentheses to border the instructions.

Table 2: The Instructions of the Resulting Automaton M; After Simplification.

[(; (, al (¢, ((] [+ Gal D)8 la))] a,),+] (¢, a,$]
(¢, (Gal ¢ (a—=a+] [a,)),8] [),+a98] [a,+a,8] [a,+a,)] [a,+a,+]
[+.a) 2 a,8] [Gat,al ¢at,(¢at,a] [+,04,0] [¢(a),8] ¢ (a) = a8

Let us generate some expressions recognized by this automaton My. The following Table 3
lists the set of all expressions recognized by My up to length 5.

Table 3: The Set of Expressions Recognized by Mj.

(
E(a) (((a a)+a atata a

As we can see, there are both correct and incorrect arithmetical expressions (we have
highlighted all the correct ones). Note that the automaton was able to recognize even some
correct arithmetical expressions that it had not seen before, e.g. a+ (a). Our next step will
be to add the incorrect arithmetical expressions to the set of negative samples. Let S;r = Sfr
and let S, be the set of all negative samples in S| extended by the incorrect arithmetical
expressions from Table 3. The inference algorithm returns on the input (S;,S;,l,k:) a
consistent automaton Ms having 16 instructions after simplification.

Up to length 5, the automaton My recognizes only correct arithmetical expressions. How-
ever, it recognizes also some incorrect arithmetical expressions beyond this length, e.g. the
following expressions: ((a +a), (a+a)), a+ (a+a and a + a) + a.

64

GRAMMATICAL INFERENCE FOR cl-RA

Again, let S; = Sy and let Ss be the set of all negative samples in Sy extended by
the above four incorrect arithmetical expressions. This time the inference algorithm returns
on the input (S5, S5 ,1,k) a consistent automaton Ms having 12 instructions (see Table 4)
that recognizes only correct arithmetical expressions. This can be verified easily by observing
that every single instruction of the automaton Ms preserves the correctness when applied to
a correct arithmetical expression.

Table 4: The Instructions of the Resulting Automaton M3 After Simplification.

(¢, a, 8] D:+a,8] a,+a,8] [a,+a,)]
la, +a, +] [(; a+,a] ¢, a+, (] ¢, a+, a]
[+,a+.a] [(,(a) 2 a,)] [¢(a),8] [¢(a) = a,d]

Unfortunately, the automaton is not complete yet. It does not recognize, for instance,
the following correct arithmetical expression: a + (a + (a)). This time we would need to
extend the set of positive samples. We will not do it because our goal was only to sketch the
principles of the active learning. We only mention that if we had chosen the maximal width
of instructions to be | = 5 then we would not have been able to infer any subword-clearing
restarting automaton recognizing the language of correct arithmetical expressions, because
stmply there is no such automaton.

4. Negative Results

In this section we show that, in general, the task of finding a consistent clearing restarting
automaton with the given set of positive and negative samples is NP-hard, provided that
we impose an upper bound on the width of instructions. First, we prove this result for the
simplest case of 0-clearing restarting automata.

Theorem 9 Letl > 2 be a fized integer. Consider the following task: We are given a finite
set of positive and negative samples: ST, S7, STNS™ =0, A € ST. Our task is to find a
0-cl-RA M = (X, 1) consistent with ST and S~ such that the width of instructions of M is
at most l. This task is NP-complete.

Proof Consider a 3-SAT formula ¢ = A}, C;, where clause C; = £;1 V {2 V {; 3, and

li1,4;2,¢; 3 are literals having pairwise different variables, for all ¢ = 1,2,...,n. Let) =
{a1,a2,...,an,} be the set of all variables occurring in . In the following, we specify a
finite set of positive samples ST and a finite set of negative samples S—, ST NS~ = 0,

A € ST, such that the following holds: the formula ¢ is satisfiable if and only if there exists
a 0-cl-RA M = (X, 1) consistent with ST and S, such that the width of instructions of M
is bounded from above by I.

Our alphabet will be ¥ = QU Q, where Q = {@; | a; € Q}, and QN Q = . First
set ST := {A},S™ := 0. For each clause C; = ¢;1 V {;2 V {; 3 add the negative sample
we, = 01 Cio Ui 5 to the set of negative samples S~. (We define @ = a for all a €). For
each variable a € Q) add the following positive samples: wa' = (aa)!, w{r =d, w; =a to

the set of positive samples ST. Finally, for each a € add all words w € {a,d}gl, such

65

CERNO

that |w|, > 1 and |w|z > 1, to the set of negative samples S~. Note that, for fixed [, there
is only finite number of such words for every a € ¥. Thus the size of the constructed set of
positive and negative samples is, in fact, linear with respect to the size of the formula 1.
(=) Suppose that 1 is satisfiable, i.e. there exists an assignment v : Q — {0,1} such
that v*(C;) = 1 for all i € {1,2,...,n}, where v* denotes the natural extension of v to
formulas. We will construct a 0-c-RA M = (X,1) consistent with S* and S~, and with
instructions of width at most [. Let I = Ij U Iz, where I} = {(A\,a,\) | a € Q : v(a) =
JUu{Na@A) | a € Q:ov) =0} and I = {(\d,\),\a@,\) | a € Q) Itcan be
easily observed that, for each literal £ € QU Q : £y A < v(f) = 1, or equivalently:
0y A< v(f) = 0. Therefore no negative sample we, = liq lio €3, for i =1,2,....n,
can be reduced to the empty word A by using the instructions from I;, because otherwise it
would mean that v(¢; 1) = v({;2) = v(£;3) = 0. As the literals used in wg, have all pairwise
different variables, no instruction from I, can be applied to it. Therefore, the resulting

automaton M cannot reduce any negative sample of the form wg, = lix lia U3 to the

empty word A. Moreover, all positive samples of the form war = (aﬁ)l, wf =al, w; =a

can be reduced to the empty word A. For each a € 2 there is either the instruction (A, a, A),
or the instruction (A,@,\) in I;. Therefore, we can always reduce the positive sample
wg = (a@)’ either to the word a', or @'. After that we can use one of the instructions in I
to reduce it further to the empty word A. Therefore, for each a € Q: (aa)" Fy A, and also
trivially a' Fas A, and @ ks A. Finally, for each a € Q the word w € {a,a}<!, such that
|w|g > 1 and |w|g > 1, cannot be reduced to the empty word A. This is because there is
only one of the instructions: (A, a, A), (A, @, \) available in I, and we will never be able to
use any of the instructions: (X,a’,\), (A, @, \) from Iy, since |wl|, < I and |w|g < I.

(<) Now suppose that there exists a 0-cl-RA M = (3, I) consistent with ST and S~
such that the width of instructions of M is bounded from above by [. We will show that v
is satisfiable, i.e. we will construct an assignment v : — {0, 1} such that v*(C;) = 1 for
all © € {1,2,...,n}. First observe, that for each a € Q: either (\,a,\) € I, or (A\,a,\) € 1.
Consider the positive sample wg = (a@)' € ST. We know that (aa)! H;; A\. Let ¢ € I be
the first instruction used in any such accepting computation. The instruction ¢ is of the
form (X, z,\), where z is a subword of the word (a@)’. However, the only allowed options
here are ¢ € {(\,a,), (N, @, \)}, because if |z| > 1, then we would immediately get that
|zla > 1, |zl > 1, and thus also z € S~, which is a contradiction to z H®) X. Moreover,
both instructions (A,a,\) and (A,@,A) cannot be in I simultaneously, because it would
mean that aa F3, A, where aa € S~. Now, for each a € Q let v(a) =1 if (A, a,\) € I, and
let v(a) = 01if (A\,a,\) € I. For each clause C; = £; 1 V {; 2 V {; 3 we have a negative sample
wg, = m E l;3 € S7. Therefore, m Har A or E Har A or E M A, which is equivalent
tov(fi1) =1orv(¢;2) =1 or v(f;3) = 1. This means that 1) is satisfiable.

It remains to be shown that the task of finding a 0-cl-RA M = (X, I) consistent with the
given input set of positive and negative samples (ST, S7), such that the width of instruc-
tions of M is bounded from above by [, is in NP. In Cerno and Mraz (2010) it was shown
that every 1-cl-RA can be transformed in a polynomial time to an equivalent context-free
grammar. Therefore, the membership problem for 0-cl-RA and 1-cl-RA is also decidable
in a polynomial time. The next question is, how many instructions do we need? It turns
out that the number of instructions can be bounded from above by size(S*) = >, o+ wl,
because for every positive sample wy € ST the accepting computation wi Fj,; A uses at

66

GRAMMATICAL INFERENCE FOR cl-RA

most |w,| many instructions. Therefore, we can first nondeterministically guess the set of
instructions, and then verify in a polynomial time the consistency with the given input set
of positive and negative samples. |

Theorem 9 can be generalized to cover all clearing restarting automata.

Theorem 10 Let k > 1 and | > 4k + 4 be fized integers. We are given finite sets of
positive and negative samples: ST, 87, STNS™ =0, A € ST. Our task is to find a k-cl-RA
M = (X, 1) consistent with ST and S~ , such that the width of instructions of M is bounded
from above by . This task is NP-complete for k =1 and NP-hard for k > 1.

Proof See the technical report Cerno (2012). [|

It should be pointed out that if we do not impose any upper bound [on the max-
imal width of instructions, then the task is easily decidable in a polynomial time for
any k > 0. Suppose that ST = {wy,ws,...,w,}. For k = 0 just take the instructions
I ={(\wi,\), (A wa, A), ..., (A wy, A)} and verify (in a polynomial time) the consistency
with negative samples S~. For k > 1 the task is even more trivial, just take the instructions

I={(¢w,$), (¢, wy8),..., (¢ w,,$)} and verify that ST NS~ =0 and A € ST.

5. Conclusion

We have shown that it is possible to identify any clearing and subword-clearing restarting
automaton in the limit, which implies that we can learn a large class of languages in this
way. On the other hand, the task of finding a clearing restarting automaton consistent
with the given set of positive and negative samples is NP-hard, provided that we impose
an upper bound on the width of instructions. This result resembles the famous result of
Gold (1978) who showed that the question of whether there is a finite automaton with at
most n states which agrees with a given list of input/output pairs is NP-complete. Indeed,
for every n-state finite automaton there is an equivalent clearing restarting automaton
that has the width of instructions bounded from above by O(n) (Cerno and Mréz, 2010).
Without an upper bound the task becomes trivially solvable in a polynomial time both
for finite automata and clearing restarting automata. However, it is an open problem,
whether similar negative results hold also for other more powerful models, such as subword-
clearing restarting automata. It would be also interesting to investigate the complexity of
membership and equivalence queries for these models and to study grammatical inference
for other related models.

Acknowledgments

I would like to thank Friedrich Otto and Frantisek Mraz for their support and careful
proofreading of almost all revisions of this paper and for all suggestions and advices that
significantly contributed to the quality of this paper.

67

CERNO

References

M. Beaudry, M. Holzer, G. Niemann, and F. Otto. Mcnaughton families of languages.
Theoretical Computer Science, 290(3):1581 — 1628, 2003.

Ronald V Book and Friedrich Otto. String-rewriting systems. Springer-Verlag, New York,
NY, USA, 1993.

Peter Cerno. Clearing restarting automata and grammatical inference. Technical Report
1/2012, Charles University, Faculty of Mathematics and Physics, Prague, 2012. URL
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf.

Peter Cerno and Frantisek Mraz. Clearing restarting automata. In Henning Bordinh, Rudolf
Freund, Markus Holzer, Martin Kutrib, and Friedrich Otto, editors, Workshop on Non-
Classical Models for Automata and Applications (NCMA), volume 256 of books@ocg.at,
pages 77-90. Osterreichisches Computer Gesellschaft, 2009.

Peter Cerno and Frantisek Mraz. Clearing restarting automata. Fundamenta Informaticae,
104(1):17-54, 2010.

Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, New York, NY, USA, 2010.

Rémi Eyraud, Colin de la Higuera, and Jean-Christophe Janodet. Lars: A learning algo-
rithm for rewriting systems. Machine Learning, 66:7-31, 2007.

E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37:302-320, 1978.

John E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
Addison-Wesley, Reading, 1969.

Petr Jancar, Frantisek Mraz, Martin Platek, and Jorg Vogel. Restarting automata. In
Horst Reichel, editor, FCT’95, volume 965 of LNCS, pages 283-292, Dresden, Germany,
August 1995. Springer.

Steffen Lange, Thomas Zeugmann, and Sandra Zilles. Learning indexed families of recursive
languages from positive data: A survey. Theor. Comput. Sci., 397(1-3):194-232, May
2008.

Robert McNaughton. Algebraic decision procedures for local testability. Theory of Com-
puting Systems, 8:60-76, 1974.

Friedrich Otto. Restarting automata. In Zoltan Esik, Carlos Martin-Vide, and Victor
Mitrana, editors, Recent Advances in Formal Languages and Applications, volume 25 of
Studies in Computational Intelligence, pages 269-303. Springer, Berlin, 2006.

Yechezkel Zalcstein. Locally testable languages. J. Comput. Syst. Sci, 6(2):151-167, 1972.

68

http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf

	Introduction
	Theoretical Background
	Learning Schema
	Negative Results
	Conclusion

