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Abstract

Using a well-known industrial case study from the verification literature, the bounded re-
transmission protocol, we show how active learning can be used to establish the correctness
of protocol implementation I relative to a given reference implementation R. Using active
learning, we learn a model MR of reference implementation R, which serves as input for a
model based testing tool that checks conformance of implementation I to MR. In addition,
we also explore an alternative approach in which we learn a model MI of implementation
I, which is compared to model MR using an equivalence checker. Our work uses a unique
combination of software tools for model construction (Uppaal), active learning (LearnLib,
Tomte), model-based testing (JTorX, TorXakis) and verification (CADP, MRMC). We
show how these tools can be used for learning these models, analyzing the obtained results,
and improving the learning performance.

1. Introduction

The behavior of software systems can often be specified using finite state machine models.
These models provide an overview of software systems, by describing the way in which
they react to different inputs, and when they produce which output. Unfortunately, the
construction of finite state machine descriptions is often omitted during software develop-
ment (Walkinshaw et al., 2010). An alternative to constructing these models manually,
is to use software model synthesis (or system identification/learning, or process discov-
ery/mining) tools in order to derive them automatically from data (Cook and Wolf, 1998).
This data typically consists of execution traces, i.e., sequences of operations, function calls,
user interactions, or protocol primitives, which are produced by the system or its surround-
ing environment. Intuitively, software model synthesis tries to discover the logical structure
(or model) underlying these sequences of events. This can be seen as a grammatical infer-
ence problem in which the events are modeled as the symbols of a language, and the goal
is to find a model for this language.
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Figure 1: Use of automata learning to establish conformance of implementations. The
learners interact with the implementations in order to construct models, which
are then subsequently used for model-based testing and equivalence checking.

The model we use in this paper is a Mealy machine, which is a deterministic finite state
automaton (DFA) variant with alternating input and output symbols, see, e.g., (Sudkamp,
2006). The Mealy machine model is popular for specifying the behavior of reactive systems
and communication protocols. DFAs and Mealy machines are simple models and in some
cases they will not be able to represent or identify all the complex behaviors of a software sys-
tem. Some more powerful models with identification algorithms include: non-deterministic
automata (Yokomori, 1993; Denis et al., 2000), probabilistic automata (Clark and Thollard,
2004; Castro and Gavaldà, 2008), Petri-nets (van der Aalst, 2011), timed automata (Verwer,
2010; Grinchtein et al., 2006), I/O automata (Aarts and Vaandrager, 2010), and Büchi au-
tomata (Higuera and Janodet, 2004). Despite their limited power, DFA and Mealy machine
learning methods have recently been used to learn different types of complex systems such
as web-services (Bertolino et al., 2009), X11 windowing programs (Ammons et al., 2002),
network protocols (Cui et al., 2007; Antunes et al., 2011; Comparetti et al., 2009), and java
programs (Walkinshaw et al., 2007; Dallmeier et al., 2006; Mariani et al., 2011).

In this paper, we make use of Mealy machine learning methods in order to establish
the correctness of protocol implementations relative to a given reference implementation
(which we assume to be correct). In software engineering, a reference implementation is,
in general, an implementation of a specification to be used as a definite interpretation for
that specification: as a standard against which all other implementations are measured.
A reference implementation is usually developed concurrently with the specification and
the software test suite. In addition to serving as a reference for future implementations, it
helps to discover errors and ambiguities in a software specification, and demonstrates that
the specification is actually implementable. To the best of our knowledge, this is a novel
application area of grammatical inference. Moreover, it is a promising one since reference
implementations are in existance for many real-world software systems.
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Figure 1 illustrates how we may use model synthesis for establishing conformance of pro-
tocol implementations relative to a given reference implementation. Using a state machine
synthesis tool, we first actively (query) learn a state machine model MR of the reference
implementation R (using, e.g., (Raffelt et al., 2009)). Now, given another implementation
I, there are basically two things we can do. The first approach is that we provide MR as
input to a model based testing tool (see, e.g., (Belinfante, 2010)). This tool will then use
MR to generate test sequences and apply them to implementation I in order to establish the
conformance of I to the learned model MR, i.e., whether they implement the same behavior.
The model based testing tool will either output “pass”, meaning that the tool has not been
able to find any deviating behaviors, or it will output “fail” together with an execution trace
that demonstrates the difference between I and MR. The second, more ambitious approach,
is to use the learning tool to learn a model MI of the other implementation I, and then
use an equivalence checker (see, e.g., (Garavel et al., 2011)) to check the behavioral equiv-
alence of MR and MI . The equivalence checker will either output “yes”, meaning that the
two models are equivalent, or “no” together with a trace that demonstrates the difference
between the two models. In the latter case, we check whether this trace also demonstrates
a difference between the corresponding implementations R and I. If not, we have obtained
a counterexample for one of the two models, which we may feed to the learner in order to
obtain a more refined model MR of R or MI of I.

We investigate the feasibility of the above approach using a well-known benchmark case
study from the verification literature: the bounded retransmission protocol (Helmink et al.,
1994; D’Argenio et al., 1997) (see Section 2). The bounded retransmission protocol is a
variation of the classical alternating bit protocol (Bartlett et al., 1969) that was developed
by Philips Research to support infrared communication between a remote control and a
television. We constructed an implementation of the protocol, to which we refer as the
reference implementation, and 6 other faulty variations of the reference implementation.
Our aim is to combine active Mealy machine learning methods with model-based testing
(see Section 3) in order to quickly discover the behavioral differences between these vari-
ations and the reference. To this aim, we make use of several state-of-the-art tools from
grammatical inference, software testing, and formal verification (see Section 4). We show
how these tools can be used for learning models of the bounded retransmission protocol
(Section 5), analyzing the obtained results, and improving the performance of the learning
methods (Section 6). Our main contribution is demonstrating how active learning can be
used in an industrial setting by combining it with software verification and testing tools,
and showing how these tools can also be used to analyze and improve the results of learning.

2. The BRP Implementation and Its Mutants

The bounded retransmission protocol (BRP) (Helmink et al., 1994; D’Argenio et al., 1997)
is a variation of the well-known alternating bit protocol (Bartlett et al., 1969) that was
developed by Philips Research to support infrared communication between a remote control
and a television. In this section, we briefly recall the operation of the protocol, and describe
the reference implementation and the 6 mutant implementations.

The bounded retransmission protocol is a data link protocol which uses a stop-and-wait
approach known as ‘positive acknowledgement with retransmission’: after transmission of
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Figure 2: Reference implementation of the BRP sender. The input symbols start with I,
the output symbols start with O. In addition to symbols, the transitions contain
value checks (or guards, ==, <, >) and assignments (=).

a frame the sender waits for an acknowledgement before sending a new frame. For each
received frame the protocol generates an acknowledgement. If, after sending a frame, an
acknowledgement fails to appear, the sender times out and retransmits the frame. An
alternating bit is used to detect duplicate transmission of a frame.

Figure 2 illustrates the operation of our reference implementation of the sender of the
BRP. Actually, the reference implementation that we used is a Java executable that was
generated automatically from this diagram (represented as a Uppaal xml file, see Section 4).
The sender protocol uses the following inputs and outputs:

• Via an input IREQ(m1,m2,m3), the upper layer requests the sender to transmit a
sequence m1 m2 m3 of messages. For simplicity, our reference implementation only
allows sequences of three messages, and the only messages allowed are 0 and 1. When
the sender is in its initial state INIT, an input IREQ(m1,m2,m3) triggers an output
OFRAME(b1, b2, b3,m), otherwise it triggers output ONOK.

• Via an output OFRAME(b1, b2, b3,m), the sender may transmit a message to the re-
ceiver. Here m is the actual transmitted message, b1 is a bit that is 1 iff m is the first
message in the sequence, b2 is a bit that is 1 iff m is the last message in the sequence,
and b3 is the alternating bit used to distinguish new frames from retransmissions.
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• Via input IACK the receiver acknowledges receipt of a frame and via input ITIMEOUT
the sender is informed that a timeout has occurred, due to the loss of either a frame or
an acknowledgement message. When the sender is in state WA (“wait for acknowledge-
ment”), an input IACK or ITIMEOUT triggers either an output OFRAME(b1, b2, b3,m)
or an output OCONF(i). If the sender is not in state WA, ONOK is triggered.

• Via an output OCONF(i), the sender informs the upper layer about the way in which
a request was handled:

– i = 1: the request has been dispatched successfully,

– i = 0: the request has not been dispatched completely,

– i = 2: the request may or may not have been handled completely; this situation
occurs when the last frame is sent but not acknowledged.

An output OCONF occurs when either all three messages have been transmitted suc-
cessfully, or when a timeout occurs after the maximal number of retransmissions.

Note that, within the state machine of Figure 2, inputs and outputs strictly alternate. Thus
it behaves like a Mealy machine. The state machine maintains variables msg1, msg2 and
msg3 to record the three messages in the sequence, a Boolean variable toggle to record the
alternating bit, an integer variable n to record the number of messages in the sequence that
have been acknowledged, and an integer variable rn that records the number of times a
message has been retransmitted. Each message is retransmitted at most 5 times.

We consider the following six mutants of the reference implementation of the sender:

1. Whereas the reference implementation only accepts a new request in the INIT state,
mutant 1 also accepts new requests in state WA. Whenever mutant 1 receives a new
request, the previous request is discarded and the sender starts handling the new one.

2. Whereas in the reference implementation each message is retransmitted at most 5
times, mutant 2 retransmits at most 4 times.

3. Whereas in the reference implementation the alternating bit is only toggled upon
receipt of an acknowledgement, mutant 3 also toggles the alternating bit when a
timeout occurs.

4. In mutant 4 the first and last control bit for the last message are swapped.

5. Mutant 5 outputs an OCONF(0) in situations where the reference implementation
outputs OCONF(2).

6. If the first and the second message are equal then mutant 6 does not transmit the
third message, but instead retransmits the first message.

Since input and output messages still alternate, all of these BRP mutants still behave as
Mealy machines. For all BRP implementations, we consider the inputs: IREQ(m1,m2,m3),
IACK, and ITIMEOUT, where m1,m2, and m3 can be either 0 or 1. Thus, the input alphabet
consists of 10 input symbols: 8 different IREQ inputs, one IACK input, and one ITIMEOUT
input. We also have the following outputs: ONOK, OFRAME(b1, b2, b3,m), and OCONF(i),
where 0 ≤ i ≤ 2, i.e., 20 output symbols. In the next section, we discuss how to connect
these implementations to an active Mealy machine learner and a model-based testing tool.
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3. Active learning and model-based testing

Active learning of software systems Active learning or query learning is a learning
setting in which the learner can ask questions (queries) to a teacher (an oracle). In our case,
this teacher is a black-box (proprietary) software system that we would like to analyze, for
instance in order to determine whether its implementation is compatible with our own.
By providing this software system with inputs, and reading the generated outputs, we can
try to determine (reverse engineer) its inner workings. With some modifications (Margaria
et al., 2004), we can apply the well-known L∗ DFA learning algorithm (Angluin, 1987) to
this data in order to learn a Mealy machine model.

However, since black-box software systems are unable to answer equivalence queries, we
approximate them using randomly generated membership queries (Angluin, 1987). Thus,
for every equivalence query, we generate many strings, for each we ask a membership query,
and if an output is different from the output generated by the model, we return this string
as a counterexample. If no such string is found, we have some confidence that the model is
correct and the more strings we test, the higher this confidence.

Model Based Testing Systematic testing of software plays an important role in the
quest for improved software quality. Testing, however, turns out to be an error-prone,
expensive, and time-consuming process. Model-based testing (MBT) is one of the promising
technologies to meet the challenges imposed on software testing (Utting and Legeard, 2007).
When using MBT, a system under test (SUT) is tested against a formal description, or a
model, of the SUT’s behavior. Such a model serves as a precise and complete specification of
what the SUT should do, and, consequently, is a good basis for the algorithmic generation
of test cases. MBT makes testing faster and less error-prone: millions of test events can
be automatically generated from the model, and subsequently executed against the SUT,
after which the results can also be automatically analyzed. Due to the inherent limitations
of testing, such as the limited number of tests that can be performed in the available time,
testing can never be complete: testing can only show the presence of errors, not their
absence. Yet, MBT is a rigorous method for providing confidence, though no certainty,
that the behavior of the SUT complies with its model.

MBT approaches differ in the kind of models that they use, e.g., state-based models,
pre- and post-conditions, timed automata or functional programs, and in the algorithms
they use to generate test cases. In this paper we concentrate on two state-based methods:
Mealy Machines and labeled transition systems (LTS). The testing approach using Mealy
Machines assumes that the SUT is modeled as a deterministic, fully-specified Mealy Machine
where each transition is labeled with an (input,output) pair (Lee and Yannakakis, 1996). In
the LTS approach, a model is a possibly non-deterministic, possibly infinite-state, possibly
not input-enabled labeled transition system, where a label is either an input to the SUT
or an output. Compliance between an SUT and an LTS model is formally defined by an
implementation relation called ioco (Tretmans, 2008a).

In Mealy Machine- as well as LTS-based testing labels, i.e., inputs and outputs, needs
not be atomic; they can be structured, containing data parameters. A straightforward way
to deal with parameterized labels is to “flatten” them by expanding parameters towards all
their (finitely many) possible values, so that a standard Mealy Machine or LTS, respectively,
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is again obtained. A more sophisticated method is to deal with them in a symbolic way
and to lift test generation to the symbolic level (Frantzen et al., 2006).

In this paper, we use MBT at two different places. Firstly, as explained in the introduc-
tion, MBT is used to test the compliance of an implementation I with a learned model MR

of the reference implementation R. This involves a straightforward application of MBT.
The only difference with the standard use of MBT is that the the model MR is learned in-
stead of manually developed. The second occurrence of MBT is more hidden, and concerns
the use of MBT to perform the approximate equivalence queries occurring in the learning
process. As explained above, an equivalence query in active learning aims to answer the
question whether a hypothesized learned model is a correct model of the SUT. Since the
SUT is a black-box, we can use MBT as an intelligent approach to approximate this query:
test cases are generated from the hypothesized model M ′I and executed on the SUT I in
order to get confidence that the hypothesized model M ′I is correct.

4. Tools

In this article, we use a unique combination of learning, testing and verification tools. In
this section, we briefly introduce the tools that we have used, and the translations between
model representations that we have implemented.

Uppaal The model-checker Uppaal (Behrmann et al., 2004) is one of the best known
model checkers today. It is based on timed automata (Alur and Dill, 1994) and can be used
to test logical properties of these systems, extended with integer variables, structured data
types, and channel synchronizations between automata. In this article, we use the Uppaal
GUI as an editor for extended finite state machines (EFSM). Uppaal models, represented as
.xml files, can be translated to the corresponding implementations, encoded as Java .jar

files, and to Labeled Transition Systems (LTSs), represented using the .aut format.

LearnLib The LearnLib automata learning tool (Raffelt et al., 2009) is an active learning
tool for Mealy machines or DFAs based on the L∗ algorithm. It contains many optimizations
that reduce the amount of queries asked by L∗, implements multiple learning strategies, and
includes different ways to generate membership queries. The LearnLib tool was used by the
winning team in the 2010 Zulu DFA active learning competition (Combe et al., 2010). We
use LearnLib as the basic active learning tool. The models learned by LearnLib are Mealy
machines, represented as .dot files. A small script converts Mealy machines in .dot format

to Labeled Transition Systems in .aut format by splitting each transition q
i/o−−→ q′ into a

pair of two consecutive transitions q
i−→ q′′ and q′′

o−→ q′.

CADP Construction and Analysis of Distributed Processes (CADP) (Garavel et al., 2011)
is a comprehensive toolbox for verifying models of concurrent systems, i.e., models consisting
of multiple concurrent processes that together describe the overall system behavior. Relying
on action-based semantic models, it offers functionalities covering the entire design cycle
of concurrent systems: specification, simulation, rapid prototyping, verification testing,
and performance evaluation. CADP is used in this paper to check equivalence (strong
bisimulation) of labeled transition systems represented as .aut files.
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JTorX JTorX (Belinfante, 2010) is an update of the model-based testing tool TorX (Tret-
mans and Brinksma, 2003). TorX is a model-based testing tool that uses labeled transition
systems to derive and execute tests (execution traces) based on ioco (Tretmans, 2008b).
Using on-line testing, JTorX can easily generate and execute tests consisting of more than
1 000 000 test events. JTorX is easier to deploy and uses a more advanced version of ioco.
We use JTorX to establish conformance of mutant implementations to a model of the ref-
erence implementation, represented as an .aut file.

MRMC The Markov Reward Model Checker (MRMC) (Katoen et al., 2011) is a proba-
bilistic model checker, which can be used to check the probability that a logical statement
(such as a system breakdown) occurs in a given continuous- or discrete-time Markov chain,
with or without reward functions. We use MRMC to compute the probability of reaching
certain states in an implementation within a certain number of steps in a setting where
inputs are generated randomly. We wrote a small script that converts LTSs in .aut format
to DTMCs in .tra/.lab format, which are accepted as input by MRMC.

TorXakis TorXakis (Mostowski et al., 2009) is another extension of the TorX model-based
testing tool. In addition to the testing algorithms, TorXakis uses symbolic test generation
to deal with structured data, i.e., symbols with data parameters (Frantzen et al., 2005),
where TorX and JTorx use flattening. By exploiting the structure of input actions, TorXakis
is able to find certain counterexamples much faster than LearnLib and JTorX.

Tomte Tomte (Aarts et al., 2012) is a tool that aims to bridge the gap between active
learning tools such as LearnLib and real software systems. Tomte uses and learns abstrac-
tions in order to map the extended finite state machine world of software systems into
the Mealy machine world of active learning tools such as LearnLib. It then uses such a
learning tool to learn an abstract Mealy machine, which is later transformed back into an
EFSM. Currently, it supports learning abstractions for equality of parameter values. By
exploiting the structure of states and actions, Tomte is able to construct — for one of the
implementations — models much faster than LearnLib.

5. Experiments

In this section, we report on the experiments that we did using LearnLib and JTorX to
establish conformance of the six mutant implementations to the reference implementation.

Learning BRP models In order to learn models of the reference implementation and
its mutants, we connect the implementations, which serve as SUT, to the LearnLib tool. In
order to approximate the equivalence queries, we used the LearnLib test suite with randomly
generated test traces containing 100 to 150 inputs.

The results of the inference of the reference implementation and the six mutants are
shown in Table 1. For every implementation, we list the number of states in the learned
model, as well as the total number of membership queries (MQ) and the time needed to
construct the final hypothesis. Moreover, we list the total number of test traces generated
for approximating equivalence queries (EQ) and the time needed to find all counterexamples.
Note that these numbers and times do not include the last equivalence query, in which no
counterexample has been found. All times mentioned are rounded down, e.g., 00:00:00 refers
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RefImp Mut1 Mut2 Mut3 Mut4 Mut5 Mut6

# states 156 156 128 156 156 156 136
# MQ 23448 21868 19247 21878 23448 23448 20448

time MQ 00:15:39 00:14:33 00:12:52 00:14:36 00:15:39 00:15:39 00:13:39
# EQ 5 2262 5 5 5 5 5

time EQ 00:00:00 00:01:47 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

Table 1: Learning statistics for the BRP reference implementation and mutants 1-6

rn5 rn7 rn10 rn15 rn20 rn22

vr0-1 # states 156 212 295 436 576 Not possible
# MQ 23448 36102 47414 74189 121069 to learn correct

time MQ 00:15:39 00:24:07 00:31:41 00:49:51 01:24:07 model within
# EQ 5 77 299 11527 152185 5 hours

time EQ 00:00:00 00:00:03 00:00:14 00:09:07 02:01:00

rn4 rn5 rn6

vr0-2 # states 340 418 Not possible
# MQ 345170 436477 to learn correct

time MQ 03:50:12 04:52:42 model within
# EQ 11 30 5 hours

time EQ 00:00:00 00:00:01

Table 2: Learning statistics for reference implementation

to < 500 ms. Using CADP, we verified that all the learned models indeed are correct, i.e.,
equivalent to the Uppaal models described in Section 2.

If we take a closer look at Table 1, we observe some interesting peculiarities. First, the
number of equivalence queries for mutant 1 is much higher than for the other implemen-
tations. The reason for this is that mutant 1 also accepts new requests in state WA. This
makes it much harder to find a counterexample that produces an OCONF(0) or OCONF(2)
output, since this requires six successive ITIMEOUT inputs without intermediate IREQ in-
puts. However, the probability that LearnLib selects (uniformly at random) six successive
ITIMEOUT inputs in a row is low, since each time ITIMEOUT only has a 10% chance of
being selected. This issue will be analyzed in more detail in Section 6. Second, the numbers
for mutant 2 are slightly smaller than for the other implementations. The reason for this
is that in mutant 2 the maximal number of retransmissions is smaller: 4 instead of 5. The
size of the model and the times required for constructing and testing hypotheses (explored
in the next section) all depend on the maximal number of retransmissions.

More learning experiments Besides the maximal value of the retransmission counter,
also changes in the domain of message parameters m1,m2, and m3 will influence the learning
results for the different implementations. Therefore, we run some additional experiments for
different parameter settings of the reference implementation and mutant 1 (the behavior of
mutants 2-6 is similar to that of the reference implementation). We evaluate how LearnLib
performs for different maximal values for the retransmission counter rn. Moreover, we
investigate what happens when we allow three possible values for each message parameter.
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rn2 rn3 rn4 rn5 rn6 rn7

vr0-1 # states 72 100 128 156 184 Not possible
# MQ 9386 13025 17954 21868 27643 to learn correct

time MQ 00:06:13 00:08:39 00:11:56 00:14:33 00:18:24 model within
# EQ 12 133 1183 2262 270809 5 hours

time EQ 00:00:00 00:00:06 00:00:56 00:01:47 03:35:28

vr0-2 # states 184 262 340 Not possible
# MQ 170796 243177 325433 to learn correct

time MQ 01:53:53 02:42:19 03:37:06 model within
# EQ 21 4634 23993 5 hours

time EQ 00:00:00 00:03:36 00:18:49

Table 3: Learning statistics for mutant 1

counterexample output expected

Mut1 IR(0,0,0) IR(0,0,0) OF(1,0,0,0) ONOK()
Mut2 IR(0,0,0) IT() IT() IT() IT() IT() OCONF(0) OF(1,0,0,0)
Mut3 IR(0,0,0) IT() OF(1,0,1,0) OF(1,0,0,0)
Mut4 IR(0,0,0) IA() IA() OF(1,0,0,0) OF(0,1,0,0)
Mut5 IR(0,0,0) IA() IA() IT() IT() IT() IT() IT() IT() OCONF(0) OCONF(2)
Mut6 IR(0,0,1) IA() IA() OF(0,1,0,0) OF(0,1,0,1)

Table 4: Equivalence checking of mutant models and reference implementation (IT =
ITIMEOUT, IR = IREQ, IA = IACK, OF = OFRAME).

Table 2 and 3 show the results of learning models of the reference implementation and
mutant 1 using different maximal numbers of retransmission and different value ranges for
the messages m1,m2, and m3. Increasing the number of messages leads to a sharp growth
of the time required to construct a hypothesis, whereas increasing the maximal number
of retransmissions leads to a fast growth of the time required to find counterexamples for
incorrect hypotheses. For mutant 1, the time needed for testing increases so fast that if the
maximal number of retransmissions is 7 and there are 2 messages, no correct model can be
learned within 5 hours. Also in the case where the maximal number of retransmissions is
5 and there are 3 messages, LearnLib is not able to construct a correct model for mutant
1 within 5 hours. This is not surprising, because in both cases the probability to select a
counterexample is even lower than for mutant 1 in Table 1.

Conformance checking We compare the two conformance testing methods described
in the introduction. We only consider the models with at most 5 retransmissions and 2
different messages.

The first method used the CADP equivalence checker to compare the models MI that
we learned for the mutant implementations I with the model MR learned for the reference
implementation R.1 For each of the mutants, CADP quickly found a counterexample trace
illustrating the difference between the models of the mutant and the model of the reference
implementation. The counterexamples found by CADP are depicted in Table 4.

1. Essentially the same counterexamples were also found using the JTorX ioco checker.
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Mut1 Mut2 Mut3 Mut4 Mut5 Mut6

test steps 11 397 8 28 1937 127
time 00:00:02 00:00:17 00:00:01 00:00:02 00:01:21 00:00:07

Table 5: Conformance testing with learned reference model and mutant implementations

The second method used the model MR of the reference implementation R as input for
the JTorX model based testing tool and the mutant implementations I as SUTs. Test steps
were executed until a counterexample was found. Again, JTorX found a counterexample
for each of the mutant implementations. The number of test steps (every step is one input
or output) and the running times of the experiments are shown in Table 5. The resulting
counterexamples are rather long sequences and are therefore not shown in the table.

When we compare the computation times from Table 1 and Table 5, we see that model
based testing based on a model of the reference implementation is by far the fastest method
for finding bugs in implementations. Learning models of proposed implementations takes
more time but also provides more information in the form of a learned model. Such learned
models could, for instance, be used for model checking analysis.

6. Further analysis and improvements

MRMC In our experiments, the most effective technique available in LearnLib for ap-
proximating equivalence queries turned out to be random testing. In order to analyze the
effectiveness of this method, we may compute the probabilities of reaching certain states
within a certain number of transitions, by translating the Mealy machine of the teacher
(the system under test) into a discrete time Markov chain (DTMC). This DTMC has the
same states as the Mealy machine, and the probability of going from state q to state q′ is
equal to the number of transitions from q to q′ in the Mealy machine divided by the total
number of inputs. Through analysis of this DTMC, the MRMC model checker can compute
the probability of finding certain counterexamples within a given time.

Using MRMC we computed that for the reference implementation with up to 7 retrans-
missions the probability of reaching, within a single test run of 125 steps, a state with an
outgoing OCONF(0) transition is 0.0247121. This means the probability of reaching a state
with an outgoing OCONF(0) transition within 75 test runs is 0.847. This result explains why
LearnLib needed 77 test runs to learn a correct model of this system (see Table 2). Using
MRMC, we also computed that for the version of mutant 1 with up to 7 retransmissions
the probability of reaching, within 125 steps, a state with an outgoing OCONF(0) transition
is only 0.0000010. This result explains why LearnLib was not able to learn a correct model
of this system within 5 hours.

TorXakis As explained above, the probability of finding a counterexample for mutant 1
is related to the probability of reaching a state with an outgoing OCONF(0) or OCONF(2)
transition. This probability is very low, because it requires a test sequence with (rn +
1) consecutive ITIMEOUT inputs. Since LearnLib treats any possible instantiation of
IREQ(m1,m2,m3) as a separate input, an increase of vr therefore leads to a dramatic
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rn5 rn7

vr0-1 (#test symbols, st. dev) (1785, 1921) (19101, 22558)

vr0-2 (#test symbols, st. dev) (2991, 2667) (18895, 15158)

vr0-9 (#test symbols, st. dev) (3028, 3199)

Table 6: Equivalence query statistics for TorXakis.

rn5 rn6 rn7 rn8 rn9 rn10 rn12 rn15

# states 38 44 50 56 62 68 80 Not possible
# MQ 750 999 1086 1389 1532 1893 2478 to learn

time MQ 00:00:28 00:00:38 00:00:43 00:00:55 00:01:01 00:01:16 00:01:39 correct model
# EQ 3 3 261 261 261 2332 5482 within

time EQ 00:00:18 00:00:17 00:00:29 00:00:29 00:00:28 00:04:07 00:09:43 5 hours

Table 7: Mutant 1: Learning statistics using Tomte on vr0-∞

reduction of the probability of selecting ITIMEOUT. We investigate how using TorXakis for
answering equivalence queries influences this drop in learning performance.

Table 6 summarizes the results obtained with TorXakis when testing mutant 1 against
the hypothesized LearnLib model for rn7, vr0 − 1 and rn5, vr0 − 2. These hypothesized
models are incorrect but LearnLib did not manage to detect a counterexample. In addition,
the results for the scenarios rn5, vr0− 1, rn5, vr0− 9, and rn7, vr0− 2 are presented. The
numbers in Table 6 are the average lengths of the test runs, measured in test symbols (both
input and output), until a discrepancy between the model and mutant 1 was detected. The
average is taken over 10 different random test runs. It can be noted that there is a large
variation in the lengths depending on the random selections.

TorXakis is able to detect counterexamples for the incorrect hypothesized models for
rn7, vr0−1, and for rn5, vr0−2. TorXakis achieves this by treating the message parameters
symbolically, so that ITIMEOUT, ACK, and IREQ inputs have an equal probability of being
selected, i.e., 1

3 . Combined with the fact that TorXakis generates one very long test case,
it is able to find a counterexample for the scenario rn7, vr0− 1 within reasonable time.

Tomte Through the use of counterexample abstraction refinement, Tomte is able to learn
models for a restricted class of extended finite state machines in which one can test for
equality of data parameters, but no operations on data are allowed. The current version
of Tomte requires that only the first and the last occurrence of parameters of actions is
remembered. As a result, Tomte can only learn models for instances of mutant 1, where
each IREQ input overwrites previous occurrences of the message parameters. For these
instances, however, Tomte outperforms LearnLib with several orders of magnitude. Table 7
gives an overview of the statistics for learning mutant 1 with Tomte. Since in Tomte the
entire range of message values for mutant 1 is abstracted into a single equivalence class,
Tomte needs far fewer queries than LearnLib (cf. Table 3). Work is underway to extend
Tomte so that it can also learn the BRP reference implementation and the other mutants.
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7. Conclusion

We show how to apply active state machine learning methods to a real-world test-case:
conformance testing implementations of the bounded retransmission protocol (BRP). To the
best of our knowledge, this use of active learning methods is entirely novel. We demonstrate
how to make this application work by combining active learning algorithms with tools from
verification (an equivalence checker, CADP) and testing (a model-based test tool, JTorX).

A nice property of the BRP is that it contains two parameter values (the number of
retransmissions rn and the range of message values vr), which can be increased to obtain
increasingly complex protocols. This makes it an ideal test-case for state machine learning
methods because it allows us to discover the limits of their learning capabilities. We investi-
gated these limits on testing the conformance of six mutant implementations with respect to
a given reference implementation. The state-of-the-art LearnLib active learning tool quickly
runs into trouble when learning one of these mutant implementations. This case was ana-
lyzed separately using a probabilistic model checker (MRMC), and based on this analysis
we suggested two ways of improving the performance of the active learning method: using a
state-of-the-art model-based test tool (TorXakis) for evaluation of equivalence queries, and
using a new learning method based on abstraction refinement (Tomte).
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