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Abstract

We study the average cost Linear Quadratic (LQ) control problem with unknown model
parameters, also known as the adaptive control problem in the control community. We
design an algorithm and prove that apart from logarithmic factors its regret up to time T
is O(

√
T ). Unlike previous approaches that use a forced-exploration scheme, we construct a

high-probability confidence set around the model parameters and design an algorithm that
plays optimistically with respect to this confidence set. The construction of the confidence
set is based on the recent results from online least-squares estimation and leads to improved
worst-case regret bound for the proposed algorithm. To the best of our knowledge this is
the the first time that a regret bound is derived for the LQ control problem.

1. Introduction

We study the average cost LQ control problem with unknown model parameters, also known
as the adaptive control problem in the control community. The problem is to minimize the
average cost of a controller that operates in an environment whose dynamics is linear, while
the cost is a quadratic function of the state and the control. The optimal solution is a linear
feedback controller which can be computed in a closed form from the matrices underlying
the dynamics and the cost. In the learning problem, the topic of this paper, the dynamics of
the environment is unknown. This problem is challenging since the control actions influence
both the cost and the rate at which the dynamics is learned, a topic of adaptive control.
The objective in this case is to minimize the regret of the controller, i.e. to minimize the
difference between the average cost incurred by the learning controller and that of the
optimal controller. In this paper, for the first time, we show an adaptive controller and
prove that, under some assumptions, its expected regret is bounded by Õ(

√
T ). We build

on recent works in online linear estimation and adaptive control design, the latter of which
we survey next.
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When the model parameters are known and the state is fully observed, one can use
the principles of dynamic programming to obtain the optimal controller. The version of
the problem that deals with the unknown model parameters is called the adaptive control
problem. The early attempts to solve this problem relied on the certainty equivalence prin-
ciple (Simon, 1956). The idea was to estimate the unknown parameters from observations
and then use the estimated parameters as if they were the true parameters to design a
controller. It was soon realized that the certainty equivalence principle does not necessarily
provide enough information to reliably estimate the parameters and the estimated param-
eters can converge to incorrect values with positive probability (Becker et al., 1985). This
in turn might lead to suboptimal performance.

To avoid non-identification problem, methods that actively explore the environment to
gather information are developed (Lai and Wei, 1982a, 1987; Chen and Guo, 1987; Chen
and Zhang, 1990; Fiechter, 1997; Lai and Ying, 2006; Campi and Kumar, 1998; Bittanti
and Campi, 2006). However, only asymptotic results are proven for these methods. One
exception is the work of Fiechter (1997) who proposes an algorithm for the “discounted”
LQ problem and analyzes its performance in a PAC framework.

Most of the aforementioned methods use forced-exploration schemes to provide the suf-
ficient exploratory information. The idea is to take exploratory actions according to a fixed
and appropriately designed schedule. However, the forced-exploration schemes lack strong
worst-case regret bounds, even in the simplest problems (see e.g. Dani and Hayes (2006),
section 6). Unlike the preceding methods, Campi and Kumar (1998) proposes an algorithm
that uses the Optimism in the Face of Uncertainty (OFU) principle, which goes back to the
work of Lai and Robbins (1985), to deal with the exploration/exploitation dilemma. They
call this the Bet On the Best (BOB) principle. The idea is to construct high-probability
confidence sets around the model parameters, find the optimal controller for each member
of the confidence set, and finally choose the controller whose associated average cost is the
smallest. However, Campi and Kumar (1998) only show asymptotic optimality, i.e. the
average cost of their algorithm converges to that of the optimal policy in the limit. In this
paper, we modify the algorithm and the proof technique of Campi and Kumar (1998) and
extend their work to derive a finite time regret bound. Our work also builds upon on the
works of Lai and Wei (1982b); Dani et al. (2008); Rusmevichientong and Tsitsiklis (2010) in
analyzing the linear estimation with dependent covariates, although we use a more recent,
improved confidence bound (see Theorem 1).

Note that the OFU principle has been applied very successfully to a number of challeng-
ing learning and control situations. Lai and Robbins (1985), who invented the principle,
used it to address learning in bandit problems (i.e., when there is no state) and later this
work was picked up and modified by Auer et al. (2002) to make it work in nonparametric
bandits. The OFU principle has also been applied to learning in finite Markov Decision
Processes, both in a regret minimization (e.g., Bartlett and Tewari 2009; Auer et al. 2010)
and in a PAC-learning setting (e.g., Kearns and Singh 1998; Brafman and Tennenholtz
2002; Kakade 2003; Strehl et al. 2006; Szita and Szepesvári 2010). In the PAC-MDP frame-
work there has been some work to extend the OFU principle to infinite Markov Decision
Problems under various assumptions. For example, Lipschitz assumptions have been used
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by Kakade et al. (2003), while Strehl and Littman (2008) explored linear models. However,
none of these works consider both continuous state and action spaces. Continuous action
spaces in the context of bandits have been explored in a number of works, such as the works
of Kleinberg (2005); Auer et al. (2007); Kleinberg et al. (2008) and in a linear setting by
Auer (2003); Dani et al. (2008) and Rusmevichientong and Tsitsiklis (2010).

2. Notation and conventions

We use ‖ · ‖ and ‖.‖F to denote the 2-norm and the Frobenius norm, respectively. For a
positive semidefinite matrix A ∈ Rd×d, the weighted 2-norm ‖.‖A is defined by ‖x‖2A =
x>Ax, where x ∈ Rd. The inner product is denoted by 〈·, ·〉. We use λmin(A) and λmax(A)
to denote the minimum and maximum eigenvalues of the positive semidefinite matrix A,
respectively. We use A � 0 to denote that A is positive definite, while we use A � 0 to
denote that it is positive semidefinite. We use I{A} to denote the indicator function of event
A.

3. The Linear Quadratic Problem

We consider the discrete-time infinite-horizon linear quadratic (LQ) control problem:

xt+1 = A∗xt +B∗ut + wt+1,

ct = x>t Qxt + u>t Rut,

where t = 0, 1, . . . , ut ∈ Rd is the control at time t, xt ∈ Rn is the state at time t, ct ∈ R is
the cost at time t, wt+1 is the “noise”, A∗ ∈ Rn×n and B∗ ∈ Rn×d are unknown matrices
while Q ∈ Rn×n and R ∈ Rd×d are known (positive definite) matrices. At time zero, for
simplicity, x0 = 0. The problem is to design a controller based on past observations to
minimize the average expected cost

J(u0, u1, . . . ) = lim sup
T→∞

1

T

T∑
t=0

E [ct] . (1)

Let J∗ be the optimal (lowest) average cost. The regret up to time T of a controller which
incurs a cost of ct at time t is defined by

R(T ) =
T∑
t=0

(ct − J∗) ,

which is the difference between the performance of the controller and the performance of the
optimal controller that has full information about the system dynamics. Thus the regret
can be interpreted as a measure of the cost of not knowing the system dynamics.
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3.1. Assumptions

In this section, we state our assumptions on the noise and the system dynamics. In particu-
lar, we assume that the noise is sub-Gaussian and the system is controllable and observable1.
Define

Θ>∗ =
(
A∗ , B∗

)
and zt =

(
xt
ut

)
.

Thus, the state transition can be written as

xt+1 = Θ>∗ zt + wt+1 .

Assumption A1 There exists a filtration (Ft) such that for the random variables (z0, x1),
. . ., (zt, xt+1), the following hold:

(i) zt, xt are Ft-measurable;

(ii) For any t ≥ 0,
E [xt+1|Ft] = z>t Θ∗ ,

i.e., wt+1 = xt+1 − z>t θ∗ is a martingale difference sequence (E [wt+1|Ft] = 0, t =
0, 1, . . .);

(iii) E
[
wt+1w

>
t+1 | Ft

]
= In;

(iv) The random variables wt are component-wise sub-Gaussian in the sense that there
exists L > 0 such that for any γ ∈ R, and index j,

E [exp(γwt+1,j)|Ft] ≤ exp(γ2L2/2) .

The assumption E
[
wt+1w

>
t+1 | Ft

]
= In makes the analysis more readable. However, we

shall show it in Section 4 that it is in fact not necessary. Our next assumption on the
system uncertainty states that the unknown parameter is a member of a bounded set and
is such that the system is controllable and observable. This assumption will let us derive a
closed form expression for the optimal control law.

Assumption A2 The unknown parameter Θ∗ is a member of set S such that

S ⊆ S0 ∩
{

Θ ∈ Rn×(n+d) | trace(Θ>Θ) ≤ S2
}
,

where

S0 =
{

Θ = (A,B) ∈Rn×(n+d) | (A,B) is controllable,

(A,M) is observable, where Q = M>M
}
.

In what follows, we shall always assume that the above assumptions are valid.

1. Controllability and observability are defined in Appendix B
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3.2. Parameter estimation

In order to implement the OFU principle, we need high-probability confidence sets for
the unknown parameter matrix. The derivation of the confidence set is based on results
from Abbasi-Yadkori et al. (2011) that use techniques from self-normalized processes to
estimate the least squares estimation error. Define

e(Θ) = λ trace(Θ>Θ) +

t−1∑
s=0

trace((xs+1 −Θ>zs)(xs+1 −Θ>zs)
>).

Let Θ̂t be the `2-regularized least-squares estimate of Θ∗ with regularization parameter
λ > 0:

Θ̂t = argmin
Θ

e(Θ) = (Z>Z + λI)−1Z>X, (2)

where Z and X are the matrices whose rows are z>0 , . . . , z
>
t−1 and x>1 , . . . , x

>
t , respectively.

Theorem 1 Let (z0, x1), . . . , (zt, xt+1), zi ∈ Rn+d, xi ∈ Rn satisfy the linear model As-
sumption A1 with some L > 0, Θ∗ ∈ R(n+d)×n, trace(Θ>∗ Θ∗) ≤ S2 and let F = (Ft) be the
associated filtration. Consider the `2-regularized least-squares parameter estimate Θ̂t with
regularization coefficient λ > 0 (cf. (2)). Let

Vt = λI +
t−1∑
i=0

ziz
>
i

be the regularized design matrix underlying the covariates. Define

βt(δ) =

nL√2 log

(
det(Vt)

1/2 det(λI)−1/2

δ

)
+ λ1/2 S

2

. (3)

Then, for any 0 < δ < 1, with probability at least 1− δ,

trace((Θ̂t −Θ∗)
>Vt(Θ̂t −Θ∗)) ≤ βt(δ).

In particular, P (Θ∗ ∈ Ct(δ), t = 1, 2, . . . ) ≥ 1− δ, where

Ct(δ) =
{

Θ ∈ Rn×(n+d) : trace
{

(Θ− Θ̂t)
>Vt(Θ− Θ̂t)

}
≤ βt(δ)

}
.

3.3. The design of the controller

Let (A,B) = Θ ∈ S0, where S0 is defined in Assumption A2. Then there is a unique solution
P (Θ) in the class of positive semidefinite symmetric matrices to the Riccati equation

P (Θ) = Q+A>P (Θ)A−A>P (Θ)B(B>P (Θ)B +R)−1B>P (Θ)A.
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Under the same assumptions, the matrix A+ BK(Θ) is stable, i.e. its norm-2 is less than
one, where

K(Θ) = −(B>P (Θ)B +R)−1B>P (Θ)A

is the gain matrix (Bertsekas, 2001). Further, by the boundedness of S, we also obtain the
boundedness of P (Θ) (Anderson and Moore, 1971). The corresponding constant will be
denoted by D:

D = sup {‖P (Θ)‖ | Θ ∈ S} . (4)

The optimal control law for a LQ system with parameters Θ is

ut = K(Θ)xt, (5)

i.e., this controller achieves the optimal average cost which satisfies J(Θ) = trace(P (Θ))
(Bertsekas, 2001). In particular, the average cost of control law (5) with Θ = Θ∗ is the
optimal average cost J∗ = J(Θ∗) = trace(P (Θ∗)).

We assume that the bound on the norm of the unknown parameter, S, and the sub-
Gaussianity constant, L, are known:

Assumption A3 Constants L and S in Assumptions A1 and A2 are known.

The algorithm that we propose implements the OFU principle as follows: At time t, the
algorithm chooses a parameter Θ̃t from Ct(δ) ∩ S such that

J(Θ̃t) ≤ inf
Θ∈Ct(δ)∩S

J(Θ) +
1√
t

and then uses the optimal feedback controller (5) underlying the chosen parameter. In
order to prevent too frequent changes to the controller (which might harm performance),
the algorithm changes controllers only after the current parameter estimates are significantly
refined. The details of the algorithm are given in Algorithm 1.

4. Analysis

In this section we give our main result together with its proof. Before stating the main
theorem, we make one more assumption in addition to the assumptions we made before.

Assumption A4 The set S is such that ρ := sup(A,B)∈S ‖A+BK(A,B)‖ < 1. Further,
there exists a positive number C such that C = supΘ∈S ‖K(Θ)‖ <∞.

Our main result is the following theorem:
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Inputs: T, S > 0, δ > 0, Q, L, λ > 0.
Set V0 = λI and Θ̂0 = 0.
(Ã0, B̃0) = Θ̃0 = argminΘ∈C0(δ)∩S J(Θ).
for t := 0, 1, 2, . . . do

if det(Vt) > 2 det(V0) then
Calculate Θ̂t by (2).
Find Θ̃t such that J(Θ̃t) ≤ infΘ∈Ct(δ)∩S J(Θ) + 1√

t
.

Let V0 = Vt.
else

Θ̃t = Θ̃t−1.
end if
Calculate ut based on the current parameters, ut = K(Θ̃t)xt.
Execute control, observe new state xt+1.
Save (zt, xt+1) into the dataset, where z>t = (x>t , u

>
t ).

Vt+1 := Vt + ztz
>
t .

end for

Table 1: The proposed adaptive algorithm for the LQ problem

Theorem 2 For any 0 < δ < 1, for any time T , with probability at least 1 − δ, the regret
of Algorithm 1 is bounded as follows:

R(T ) = Õ
(√

T log(1/δ)
)
,

where the constant hidden is a problem dependent constant.2

Remark 3 The assumption E
[
wt+1w

>
t+1|Ft

]
= In makes the analysis more readable. Alter-

natively, we could assume that E
[
wt+1w

>
t+1|Ft

]
= G∗ and G∗ be unknown. Then the optimal

average cost becomes J(Θ∗, G∗) = trace(P (Θ∗)G∗). The only change in Algorithm 1 is in
the computation of Θ̃t, which will have the following form:

(Θ̃t, G̃) = argmin
(Θ,G)∈Ct

J(Θ),

where Ct is now a confidence set over Θ∗ and G∗. The rest of the analysis remains identical,
provided that an appropriate confidence set is constructed.

The least squares estimation error from Theorem 1 scales with the size of the state and
action vectors. Thus, in order to prove Theorem 2, we first prove a high-probability bound
on the norm of the state vector. Given the boundedness of the state, we decompose the
regret and analyze each term using appropriate concentration inequalities.

2. Here, Õ hides logarithmic factors.
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4.1. Bounding ‖xt‖

We choose an error probability, δ > 0. Given this, we define two “good events” in the
probability space Ω. In particular, we define the event that the confidence sets hold for
s = 0, . . . , t,

Et = {ω ∈ Ω : ∀s ≤ t, Θ∗ ∈ Cs(δ/4) } ,

and the event that the state vector stays “small”:

Ft = {ω ∈ Ω : ∀s ≤ t, ‖xs‖ ≤ αt }

where

αt =
1

1− ρ

(
η

ρ

)n+d
[
GZ

n+d
n+d+1

T βt(δ/4)
1

2(n+d+1) + 2L

√
n log

4nt(t+ 1)

δ

]
,

η = 1 ∨ sup
Θ∈S
‖A∗ +B∗K(Θ)‖ ,

ZT = max
0≤t≤T

‖zt‖ ,

G = 2

(
2S(n+ d)n+d+1/2

U1/2

)1/(n+d+1)

,

U =
U0

H
,

U0 =
1

16n+d−2(1 ∨ S2(n+d−2))
,

and H is any number satisfying3

H >

(
16 ∨ 4S2M2

(n+ d)U0

)
,

where

M = sup
Y≥0

(
nL

√
(n+ d) log

(
1+TY/λ

δ

)
+ λ1/2S

)
Y

.

In what follows, we let E = ET and F = FT . First, we show that E ∩ F holds with high
probability and on E ∩ F , the state vector does not explode.

Lemma 4 P (E ∩ F ) ≥ 1− δ/2.

The proof is in Appendix D. It first shows that
∥∥∥(Θ∗ − Θ̃t)

>zt

∥∥∥ is well controlled except

for a small number of occasions. Given this and proper decomposition of the state update
equation, we can prove that the state vector xt stays smaller than αt. Notice that αt itself
depends βt and ZT , which in turn depend on xt. Thus, we need one more step to have a
bound on ‖xt‖.

3. We use ∧ and ∨ to denote the minimum and the maximum, respectively.
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Lemma 5 For appropriate problem dependent constants C1 > 0, C2 > 0 (which are inde-
pendent of t, δ, T ), for any t ≥ 0, it holds that I{Ft}max1≤s≤t ‖xs‖ ≤ Xt, where

Xt = Y n+d+1
t

and

Yt
def
= (e ∨ λ(n+ d)(e− 1) ∨ 4(C1 log(1/δ) + C2 log(t/δ)) log2(4(C1 log(1/δ) + C2 log(t/δ))) .

Proof Fix t. On Ft, X̂t := max0≤s≤t ‖xs‖ ≤ αt. With appropriate constants, this implies
that

x ≤ D1

√
βt(δ) log(t)x

n+d
n+d+1 +D2

√
log

t

δ
,

or

x ≤

(
D1

√
βt(δ) log(t) +D2

√
log

t

δ

)n+d+1

, (6)

holds for x = X̂t. Let Xt be the largest value of x ≥ 0 that satisfies (6). Thus,

Xt ≤

(
D1

√
βt(δ) log(t) +D2

√
log

t

δ

)n+d+1

, (7)

Clearly, X̂t ≤ Xt. Because βt(δ) is a function of log det(Vt), (7) has the form of

Xt ≤ f(log(Xt))
n+d+1. (8)

Let at = X
1/(n+d+1)
t . Then, (8) is equivalent to

at ≤ f(log an+d+1
t ) = f((n+ d+ 1) log at).

Let c = max(1,max1≤s≤t ‖as‖). Assume that t ≥ λ(n + d). By the construction of Ft,
Lemma 10, tedious, but elementary calculations, it can then be shown that

c ≤ A log2(c) +Bt, (9)

where A = G1 log(1/δ) and Bt = G2 log(t/δ). From this, further elementary calculations
show that the maximum value that c can take on subject to the constraint (9) is bounded
from above by Yt.

4.2. Regret Decomposition

From the Bellman optimality equations for the LQ problem, we get that (Bertsekas, 1987)[V.
2, p. 228–229]

J(Θ̃t) + x>t P (Θ̃t)xt = min
u

{
x>t Qxt + u>Ru+ E

[
x̃uTt+1P (Θ̃t)x̃

u
t+1

∣∣∣Ft]}
= x>t Qxt + u>t Rut + E

[
x̃utTt+1P (Θ̃t)x̃

ut
t+1

∣∣∣Ft] ,
9
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where x̃ut+1 = Ãtxt + B̃tu+ wt+1 and (Ãt, B̃t) = Θ̃t. Hence,

J(Θ̃t) + x>t P (Θ̃t)xt = x>t Qxt + u>t Rut

+ E
[
(Ãtxt + B̃tut + wt+1)>P (Θ̃t)(Ãtxt + B̃tut + wt+1)

∣∣∣Ft]
= x>t Qxt + u>t Rut + E

[
(Ãtxt + B̃tut)

>P (Θ̃t)(Ãtxt + B̃tut)
∣∣∣Ft]

+ E
[
w>t+1P (Θ̃t)wt+1

∣∣∣Ft]
= x>t Qxt + u>t Rut + E

[
(Ãtxt + B̃tut)

>P (Θ̃t)(Ãtxt + B̃tut)
∣∣∣Ft]

+ E
[
x>t+1P (Θ̃t)xt+1

∣∣∣Ft]
− E

[
(A∗xt +B∗ut)

>P (Θ̃t)(A∗xt +B∗ut)
∣∣∣Ft]

= x>t Qxt + u>t Rut + E
[
x>t+1P (Θ̃t)xt+1

∣∣∣Ft]
+ (Ãtxt + B̃tut)

>P (Θ̃t)(Ãtxt + B̃tut)

− (A∗xt +B∗ut)
>P (Θ̃t)(A∗xt +B∗ut),

where in the one before last equality we have used xt+1 = A∗xt + B∗ut + wt+1 and the
martingale property of the noise. Hence,

T∑
t=0

J(Θ̃t) +R1 =
T∑
t=0

(
x>t Qxt + u>t Rut

)
+R2 +R3,

where

R1 =
T∑
t=0

{
x>t P (Θ̃t)xt − E

[
x>t+1P (Θ̃t+1)xt+1

∣∣∣Ft]} , (10)

R2 =

T∑
t=0

E
[
x>t+1(P (Θ̃t)− P (Θ̃t+1))xt+1

∣∣∣Ft] , (11)

and

R3 =

T∑
t=0

(
(Ãtxt+ B̃tut)

>P (Θ̃t)(Ãtxt+ B̃tut)− (A∗xt+B∗ut)
>P (Θ̃t)(A∗xt+B∗ut)

)
. (12)

Thus, on E ∩ F ,

T∑
t=0

(x>t Qxt + u>t Rut) =
T∑
t=0

J(Θ̃t) +R1 −R2 −R3

≤ TJ(Θ∗) +R1 −R2 −R3 + 2
√
T ,

where the last inequality follows from the choice of Θ̃t and the fact that on E, Θ∗ ∈ Ct(δ)).
Thus, on E ∩ F ,

R(T ) ≤ R1 −R2 −R3 + 2
√
T . (13)

In the following subsections, we bound R1, R2, and R3.
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4.3. Bounding I{E∩F}R1

We start by showing that with high probability all noise terms are small.

Lemma 6 With probability 1− δ/8, for any k ≤ T , ‖wk‖ ≤ Ln
√

2n log(8nT/δ).

Proof From sub-Gaussianity Assumption A1, we have that for any index 1 ≤ i ≤ n and
any time k,

|wk,i| ≤ L
√

2 log(8/δ) .

Thus, with probability 1− δ/8, for any k ≤ T , ‖wk‖ ≤ Ln
√

2n log(8nT/δ).

Lemma 7 Let R1 be as defined by (10). With probability at least 1− δ/2,

I{E∩F}R1 ≤ 2DW 2

√
2T log

8

δ
+ n

√
B′δ,

where W = Ln
√

2n log(8nT/δ) and

B′δ =
(
v + TD2S2X2(1 + C2)

)
log

(
4nv−1/2

δ

(
v + TD2S2X2(1 + C2)

)1/2)
.

Proof Let ft−1 = A∗xt−1 +B∗ut−1 and Pt = P (Θ̃t). Write

R1 = x>0 P (Θ̃0)x0 − x>T+1P (Θ̃T+1)xT+1

+
T∑
t=1

(
x>t P (Θ̃t)xt − E

[
x>t P (Θ̃t)xt|Ft−1

] )
.

Because P is positive semi-definite and x0 = 0, the first term is bounded by zero. The
second term can be decomposed as follows

T∑
t=1

(
x>t Ptxt − E

[
x>t Ptxt|Ft−1

] )
=

T∑
t=1

f>t−1Ptwt

+

T∑
t=1

(
w>t Ptwt − E

[
w>t Ptwt|Ft−1

] )
.

We bound each term separately. Let v>t = f>t−1Pt and

G1 = I{E∩F}
T∑
t=1

v>t wt = I{E∩F}
T∑
t=1

n∑
i=1

vk,iwk,i =
n∑
i=1

I{E∩F}
T∑
t=1

vk,iwk,i.

11
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Let MT,i =
∑T

t=1 vk,iwk,i. By Theorem 16, on some event Gδ,i that holds with probability
at least 1− δ/(4n), for any T ≥ 0,

M2
T,i ≤ 2R2

(
v +

T∑
t=1

v2
t,i

)
log

4nv−1/2

δ

(
v +

T∑
t=1

v2
t,i

)1/2
 = Bδ,i.

On E∩F , ‖vt‖ ≤ DSX
√

1 + C2 and thus, vt,i ≤ DSX
√

1 + C2. Thus, onGδ,i, I{E∩F}M2
t,i ≤

B′δ. Thus, we have G1 ≤
∑n

i=1

√
B′δ,i on ∩ni=1Gδ,i, that holds w.p. 1− δ/4.

Define Xt = w>t Ptwt −E
[
w>t Ptwt|Ft−1

]
and its truncated version X̃t = XtI{Xt≤2DW 2}.

Define G2 =
∑T

t=1Xt and G̃2 =
∑T

t=1 X̃t. By Lemma 14,

P

(
G2 > 2DW 2

√
2T log

8

δ

)
≤ P

(
max

1≤t≤T
Xt ≥ 2DW 2

)
+ P

(
G̃2 > 2DW 2

√
2T log

8

δ

)
.

By Lemma 6 and Azuma’s inequality, each term on the right hand side is bounded by δ/8.
Thus, w.p. 1− δ/4,

G2 ≤ 2DW 2

√
2T log

8

δ

Summing up the bounds on G1 and G2 gives the result that holds w.p. at least 1− δ/2,

I{E∩F}R1 ≤ 2DW 2

√
2T log

8

δ
+ n

√
B′δ.

4.4. Bounding I{E∩F} |R2|

We can bound I{E∩F} |R2| by simply showing that Algorithm 1 rarely changes the policy,
and hence most terms in (11) are zero.

Lemma 8 On the event E ∩ F , Algorithm 1 changes the policy at most

(n+ d) log2

(
1 + TX2

T (1 + C2)/λ
)

times up to time T .

Proof If we have changed the policy K times up to time T , then we should have that
det(VT ) ≥ λn+d2K . On the other hand, we have

λmax(VT ) ≤ λ+

T−1∑
t=0

‖zt‖2 ≤ λ+ TX2
T (1 + C2),

12
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where C is the bound on the norm of K(.) as defined in Assumption A4. Thus, it holds
that

λn+d2K ≤ (λ+ TX2
T (1 + C2))n+d.

Solving for K, we get

K ≤ (n+ d) log2

(
1 +

TX2
T (1 + C2)

λ

)
.

Lemma 9 Let R2 be as defined by Equation (11). Then we have

I{E∩F} |R2| ≤ 2DX2
T (n+ d) log2

(
1 + TX2

T (1 + C2)/λ
)
.

Proof On event E ∩ F , we have at most K = (n + d) log2

(
1 + TX2

T (1 + C2)/λ
)

policy
changes up to time T . So at most K terms in the summation (11) are non-zero. Each term
in the summation is bounded by 2DX2

T . Thus,

I{E∩F} |R2| ≤ 2DX2
T (n+ d) log2

(
1 + TX2

T (1 + C2)/λ
)
.

4.5. Bounding I{E∩F} |R3|

The summation
∑T

t=0

∥∥∥(Θ∗ − Θ̃t)
>zt

∥∥∥2
will appear in the analysis while bounding |R3|. So

we first bound this summation, whose analysis requires the following two results.

Lemma 10 The following holds for any t ≥ 1:

t−1∑
k=0

(
‖zk‖2V −1

k
∧ 1
)
≤ 2 log

det(Vt)

det(λI)
.

Further, when the covariates satisfy ‖zt‖ ≤ cm, t ≥ 0 with some cm > 0 w.p.1 then

log
det(Vt)

det(λI)
≤ (n+ d) log

(
λ(n+ d) + tc2

m

λ(n+ d)

)
.

The proof of the lemma can be found in Abbasi-Yadkori et al. (2011).

Lemma 11 Let A ∈ Rm×m and B ∈ Rm×m be positive semi-definite matrices such that
A � B. Then, we have

sup
X 6=0

∥∥X>AX∥∥
‖X>BX‖

≤ det(A)

det(B)
.

13
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The proof of this lemma is in Appendix C.

Lemma 12 On E ∩ F , it holds that

T∑
t=0

∥∥∥(Θ∗ − Θ̃t)
>zt

∥∥∥2
≤ 16

λ
(1 + C2)X2

TβT (δ/4) log
det(VT )

det(λI)
.

Proof Consider timestep t. Let st = (Θ∗ − Θ̃t)
>zt. Let τ ≤ t be the last timestep when

the policy is changed. So st = (Θ∗ − Θ̃τ )>zt. We have

‖st‖ ≤
∥∥∥(Θ∗ − Θ̂τ )>zt

∥∥∥+
∥∥∥(Θ̂τ − Θ̃τ )>zt

∥∥∥ . (14)

For all Θ ∈ Cτ ,∥∥∥(Θ− Θ̂τ )>zt

∥∥∥ ≤ ∥∥∥V 1/2
t (Θ− Θ̂τ )

∥∥∥ ‖zt‖V −1
t

(Cauchy-Schwartz inequality)

≤
∥∥∥V 1/2

τ (Θ− Θ̂τ )
∥∥∥√ det(Vt)

det(Vτ )
‖zt‖V −1

t
(Lemma 11)

≤
√

2
∥∥∥V 1/2

τ (Θ− Θ̂τ )
∥∥∥ ‖zt‖V −1

t
(Choice of τ)

≤
√

2βτ (δ/4) ‖zt‖V −1
t
, (λmax(M) ≤ trace(M) for M � 0)

Applying the last inequality to Θ∗ and Θ̃τ , together with (14) gives

‖st‖2 ≤ 8βτ (δ/4) ‖zt‖2V −1
t
.

Now, by Assumption A4 and the fact that Θ̃t ∈ S we have that

‖zt‖2V −1
t
≤ ‖zt‖

2

λ
≤

(1 + C2)X2
T

λ
.

It follows then that

T∑
t=0

‖st‖2 ≤
8

λ
(1 + C2)X2

TβT (δ/4)
T∑
t=0

(‖zt‖2V −1
t
∧ 1)

≤ 16

λ
(1 + C2)X2

TβT (δ/4) log
det(VT )

det(λI)
. (Lemma 10).

Now, we are ready to bound R3.

Lemma 13 Let R3 be as defined by Equation (12). Then we have

I{E∩F} |R3| ≤
8√
λ

(1 + C2)X2
TSD

(
βT (δ/4) log

det(VT )

det(λI)

)1/2√
T .

14
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Proof We have that

I{E∩F} |R3| ≤ I{E∩F}
T∑
t=0

∣∣∣∣∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥2
−
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥2
∣∣∣∣ (Tri. ineq.)

≤ I{E∩F}

(
T∑
t=0

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥− ∥∥∥P (Θ̃t)
1/2Θ>∗ zt

∥∥∥)2
)1/2

(C.-S. ineq.)

×

(
T∑
t=0

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥+
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥)2
)1/2

≤ I{E∩F}

(
T∑
t=0

∥∥∥P (Θ̃t)
1/2(Θ̃t −Θ∗)

>zt

∥∥∥2
)1/2

(Tri. ineq.)

×

(
T∑
t=0

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥+
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥)2
)1/2

≤ 8√
λ

(1 + C2)X2
TSD

(
βT (δ/4) log

det(VT )

det(λI)

)1/2√
T . ((4), L. 12)

Now we are ready to prove Theorem 2.

4.6. Putting Everything Together

Proof [Proof of Theorem 2] By (13) and Lemmas 7, 9, 13 we have that with probability at
least 1− δ/2,

I{E∩F}(R1 −R2 −R3) ≤ 2DX2
T (n+ d) log2

(
1 + TX2

T (1 + C2)/λ
)

+ 2DW 2

√
2T log

8

δ
+ n

√
B′δ

+
8√
λ

(1 + C2)X2
TSD

(
βT (δ/4) log

det(VT )

det(λI)

)1/2√
T .

Thus, on E ∩ F , with probability at least 1− δ/2,

R(T ) ≤ 2DX2
T (n+ d) log2

(
1 + TX2

T (1 + C2)/λ
)

+ 2DW 2

√
2T log

8

δ
+ n

√
B′δ

+
8√
λ

(1 + C2)X2
TSD

(
βT (δ/4) log

det(VT )

det(λI)

)1/2√
T .

Further, on E ∩ F , by Lemmas 5 and 10,

log detVT ≤ (n+ d) log

(
λ(n+ d) + T (1 + C2)X2

T

λ(n+ d)

)
+ log detλI.
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Plugging in this gives the final bound, which, by Lemma 4, holds with probability 1− δ.
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Appendix A. Tools from Probability Theorem

Lemma 14 Let X1, . . . , Xt be random variables. Let a ∈ R. Let St =
∑t

s=1Xs and
S̃t =

∑t
s=1XsI{Xs≤a}. Then it holds that

P (St > x) ≤ P
(

max
1≤s≤t

Xs ≥ a
)

+ P
(
S̃t > x

)
.

Proof

P (St ≥ x) ≤ P
(

max
1≤s≤t

Xs ≥ a
)

+ P
(
St ≥ x, max

1≤s≤t
Xs ≤ a

)
≤ P

(
max
1≤s≤t

Xs ≥ a
)

+ P
(
S̃t ≥ x

)
.

Theorem 15 (Azuma’s inequality) Assume that (Xs; s ≥ 0) is a supermartingale and
|Xs −Xs−1| ≤ cs almost surely. Then for all t > 0 and all ε > 0,

P (|Xt −X0| ≥ ε) ≤ 2 exp

(
−ε2

2
∑t

s=1 c
2
s

)
.

Theorem 16 (Self-normalized bound for vector-valued martingales) Let (Fk; k ≥
0) be a filtration, (mk; k ≥ 0) be an Rd-valued stochastic process adapted to (Fk), (ηk; k ≥ 1)
be a real-valued martingale difference process adapted to (Fk). Assume that ηk is condition-
ally sub-Gaussian with constant R. Consider the martingale

St =

t∑
k=1

ηkmk−1
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and the matrix-valued processes

Vt =
t∑

k=1

mk−1m
>
k−1, V t = V + Vt, t ≥ 0,

Then for any 0 < δ < 1, with probability 1− δ,

∀t ≥ 0, ‖St‖2V −1
t
≤ 2R2 log

(
det(V t)

1/2 det(V )−1/2

δ

)
.

Appendix B. Controllability and Observability

Definition 1 (Bertsekas (2001)) A pair (A,B), where A is an n × n matrix and B is
an n× d matrix, is said to be controllable if the n× nd matrix

[B AB . . . An−1B]

has full rank. A pair (A,C), where A is an n× n matrix and C is an d× n matrix, is said
to be observable if the pair (A>, C>) is controllable.

Appendix C. Proof of Lemma 11

Proof [Proof of Lemma 11]

We consider first a simple case. Let A = B + mm>, B positive definite. Let X 6= 0
be an arbitrary matrix. Using the Cauchy-Schwartz inequality and the fact that for any
matrix M ,

∥∥M>M∥∥ = ‖M‖2, we get∥∥∥X>mm>X∥∥∥ =
∥∥∥m>X∥∥∥2

=
∥∥∥m>B−1/2B1/2X

∥∥∥2
≤
∥∥∥m>B−1/2

∥∥∥2 ∥∥∥B1/2X
∥∥∥2
.

Thus, ∥∥∥X>(B +mm>)X
∥∥∥ ≤ ∥∥∥X>BX∥∥∥+

∥∥∥m>B−1/2
∥∥∥2 ∥∥∥B1/2X

∥∥∥2

=

(
1 +

∥∥∥m>B−1/2
∥∥∥2
)∥∥∥B1/2X

∥∥∥2

and so ∥∥X>AX∥∥
‖X>BX‖

≤ 1 +
∥∥∥m>B−1/2

∥∥∥2
.

We also have that

det(A) = det(B +mm>) = det(B) det(I +B−1/2m(B−1/2m)>) = det(B)(1 + ‖m‖2B−1),

thus finishing the proof of this case.
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More generally, if A = B+m1m
>
1 + · · ·+mt−1m

>
t−1 then define Vs = B+m1m

>
1 + · · ·+

ms−1m
>
s−1 and use∥∥X>AX∥∥

‖X>BX‖
=

∥∥X>VtX∥∥
‖X>Vt−1X‖

∥∥X>Vt−1X
∥∥

‖X>Vt−2X‖
. . .

∥∥X>V2X
∥∥

‖X>BX‖
.

By the above argument, since all the terms are positive, we get∥∥X>AX∥∥
‖X>BX‖

≤ det(Vt)

det(Vt−1)

det(Vt−1)

det(Vt−2)
. . .

det(V2)

det(B)
=

det(Vt)

det(B)
=

det(A)

det(B)
,

the desired inequality.

Finally, by SVD, if C � 0, C can be written as the sum of at most m rank-one matrices,
finishing the proof for the general case.

Appendix D. Bounding ‖xt‖

We show that E ∩ F holds with high probability.

Proof [Proof of Lemma 4] Let Mt = Θ∗ − Θ̃t. On event E, for any t ≤ T we have that

trace

(
M>t

(
t−1∑
s=0

λI + zsz
>
s

)
Mt

)
≤ βt(δ/4).

Since λ > 0 we get that,

trace

(
t−1∑
s=0

M>t zsz
>
s Mt

)
≤ βt(δ/4).

Thus,
t−1∑
s=0

trace(M>t zsz
>
s Mt) ≤ βt(δ/4).

Since λmax(M) ≤ trace(M) for M � 0, we get that

t−1∑
s=0

∥∥∥M>t zs∥∥∥2
≤ βt(δ/4).

Thus, for all t ≥ 1,

max
0≤s≤t−1

∥∥∥M>t zs∥∥∥ ≤ βt(δ/4)1/2 ≤ βT (δ/4)1/2. (15)

Choose

H >

(
16 ∨ 4S2M2

(n+ d)U0

)
,
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where

U0 =
1

16n+d−2(1 ∨ S2(n+d−2))
,

and

M = sup
Y≥0

(
nL

√
(n+ d) log

(
1+TY/λ

δ

)
+ λ1/2S

)
Y

.

Fix a real number 0 ≤ ε ≤ 1, and consider the time horizon T . Let π(v,B) and π(M,B) be
the projections of vector v and matrix M onto subspace B ⊂ R(n+d), where the projection
of matrix M is done column-wise. Let B ⊕ {v} be the span of B and v. Let B⊥ be the
subspace orthogonal to B such that R(n+d) = B ⊕ B⊥.

Define a sequence of subspaces Bt as follows: Set BT+1 = ∅. For t = T, . . . , 1, initialize
Bt = Bt+1. Then while

∥∥π(Mt,B⊥t )
∥∥
F
> (n + d)ε, choose a column of Mt, v, such that∥∥π(v,B⊥t )

∥∥
F
> ε and update Bt = Bt ⊕ {v}. After finishing with timestep t, we will have∥∥∥π(Mt,B⊥t )

∥∥∥ ≤ ∥∥∥π(Mt,B⊥t )
∥∥∥
F
≤ (n+ d)ε. (16)

Let TT be the set of timesteps at which subspace Bt expands. The cardinality of this set,
m, is at most n+ d. Denote these timesteps by t1 > t2 > · · · > tm. Let i(t) = max{1 ≤ i ≤
m : ti ≥ t}.

Lemma 17 For any vector x ∈ Rn+d

Uε2(n+d) ‖π(x,Bt)‖2 ≤
i(t)∑
i=1

∥∥∥M>ti x∥∥∥2
,

where U = U0/H.

Proof Let N = {v1, . . . , vm} be the set of vectors that are added to Bt during the expansion
timesteps. By construction, N is a subset of the set of all columns of Mt1 ,Mt2 , . . . ,Mti(t) .
Thus, we have that

i(t)∑
i=1

∥∥∥M>ti x∥∥∥2
≥ x>(v1v

>
1 + · · ·+ vmv

>
m)x.

Thus, in order to prove the statement of the lemma, it is enough to show that

∀x, ∀j ∈ {1, . . . ,m},
j∑

k=1

〈vk, x〉2 ≥
ε4

H

ε2(j−2)

16j−2(1 ∨ S2(j−2))
‖π(x,Bj)‖2 , (17)

where Bj = span(v1, . . . , vj) for any 1 ≤ j ≤ m. We have Bm = Bt. We can write
vk = wk + uk, where wk ∈ Bk−1, uk ⊥ Bk−1, ‖uk‖ ≥ ε, and ‖vk‖ ≤ 2S.

The inequality (17) is proven by induction. First, we prove the induction base for j = 1.
Without loss of generality, assume that x = Cv1. From condition H > 16, we get that

16−1H(1 ∨ S−1) ≥ 1.
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Figure 1: The geometry used in the inductive step. v = vl+1 and B = Bl.

Thus,

ε2 ≥ ε2

16−1H(1 ∨ S−1)
.

Thus,

C2 ‖v1‖4 ≥
ε2C2 ‖v1‖2

16−1H(1 ∨ S−1)
,

where we have used the fact that ‖v1‖ ≥ ε. Thus,

〈v1, x〉2 ≥
ε4

H

ε−2

16−1(1 ∨ S−2)
‖π(x,B1)‖2 ,

which establishes the base of induction.

Next, we prove that if the inequality (17) holds for j = l, then it also holds for j = l+1.
Figure 1 contains all relevant quantities that are used in the following argument.

Assume that the inequality (17) holds for j = l. Without loss of generality, assume that
x is in Bl+1, and thus ‖x‖ = ‖π(x,Bl+1)‖. Let P ⊂ Bl+1 be the 2-dimensional subspace that
passes through x and vl+1. The 2-dimensional subspace P and the l-dimensional subspace
Bl can, respectively, be identified by l − 1 and one equations in Bl+1. Because P is not a
subset of Bl, the intersection of P and Bl is a line in Bl+1. Let’s call this line L. The line
L creates two half-planes on P . Without loss of generality, assume that x and vl+1 are on
the same half-plane (notice that we can always replace x by −x in (17)).

Let 0 ≤ β ≤ π/2 be the angle between vl+1 and L. Let 0 < λ < π/2 be the orthogonal
angle between vl+1 and Bl. We know that β > λ, ul+1 is orthogonal to Bl, and ‖ul+1‖ ≥ ε.
Thus, β ≥ arcsin(ε/ ‖vl+1‖). Let 0 ≤ α ≤ π be the angle between x and L (α < π, because
x and vl+1 are on the same half-plane). The direction of α is chosen so that it is consistent
with the direction of β. Finally, let 0 ≤ η ≤ π/2 be the orthogonal angle between x and Bl.
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By the induction assumption

l+1∑
k=1

〈vk, x〉2 = 〈vl+1, x〉2 +
l∑

k=1

〈vk, x〉2

≥ 〈vl+1, x〉2 +
ε4

H

ε2(l−2)

16l−2(1 ∨ S2(l−2))
‖π(x,Bl)‖2 .

If α < π/2 + β/2 or α > π/2 + 3β/2, then

|〈vl+1, x〉| = |‖vl+1‖ ‖x‖ cos∠(vl+1, x)| ≥
∣∣∣∣‖vl+1‖ ‖x‖ sin

(
β

2

)∣∣∣∣ ≥ ε ‖x‖
4

.

Thus,

〈vl+1, x〉2 ≥
ε2 ‖x‖2

16
≥ ε4

H

ε2(l−1)

16l−1(1 ∨ S2(l−1))
‖π(x,Bl+1)‖2 ,

where we use 0 ≤ ε ≤ 1 and x ∈ Bl+1 in the last inequality.

If π/2 + β/2 < α < π/2 + 3β/2, then η < π/2− β/2. Thus,

‖π(x,Bl)‖ = ‖x‖ |cos(η)| ≥ ‖x‖
∣∣∣∣sin(β2

)∣∣∣∣ ≥ ε ‖x‖
4S

.

Thus,

‖π(x,Bl)‖2 ≥
ε2 ‖x‖2

16S2
,

and
ε4

H

ε2(l−2)

16l−2(1 ∨ S2(l−2))
‖π(x,Bl)‖2 ≥

ε4

H

ε2(l−1)

16l−1(1 ∨ S2(l−1))
‖x‖2 ,

which finishes the proof.

Next we show that
∥∥M>t zt∥∥ is well controlled except when t ∈ TT .

Lemma 18 We have that for any 0 ≤ t ≤ T ,

max
s≤t,s/∈Tt

∥∥∥M>s zs∥∥∥ ≤ GZ n+d
n+d+1

t βt(δ/4)
1

2(n+d+1) ,

where

G = 2

(
2S(n+ d)n+d+1/2

U1/2

)1/(n+d+1)

,

and
Zt = max

s≤t
‖zs‖ .
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Proof From Lemma 17 we get that

√
Uεn+d ‖π(zs,Bs)‖ ≤

√
i(s) max

1≤i≤i(s)

∥∥∥M>ti zs∥∥∥ ,
which implies that

‖π(zs,Bs)‖ ≤
√
n+ d

U

1

εn+d
max

1≤i≤i(s)

∥∥∥M>ti zs∥∥∥ . (18)

Now we can write∥∥∥M>s zs∥∥∥ =
∥∥∥(π(Ms,B⊥s ) + π(Ms,Bs))>(π(zs,B⊥s ) + π(zs,Bs))

∥∥∥
=
∥∥∥π(Ms,B⊥s )>π(zs,B⊥s ) + π(Ms,Bs)>π(zs,Bs)

∥∥∥
≤
∥∥∥π(Ms,B⊥s )>π(zs,B⊥s )

∥∥∥+
∥∥∥π(Ms,Bs)>π(zs,Bs)

∥∥∥
≤ (n+ d)ε ‖zs‖+ 2S

√
n+ d

U

1

εn+d
max

1≤i≤i(s)

∥∥∥M>ti zs∥∥∥ . by ((18) and (16)) (19)

Thus,

max
s≤t,s/∈Tt

∥∥∥M>s zs∥∥∥ ≤ (n+ d)εZt + 2S

√
n+ d

U

1

εn+d
max

s/∈Tt,s≤t
max

1≤i≤i(s)

∥∥∥M>ti zs∥∥∥ .
From 1 ≤ i ≤ i(s), s /∈ Tt, we conclude that s < ti. Thus,

max
s≤t,s/∈Tt

∥∥∥M>s zs∥∥∥ ≤ (n+ d)εZt + 2S

√
n+ d

U

1

εn+d
max
0≤s<t

∥∥∥M>t zs∥∥∥ .
By (15) we get that

max
s≤t,s/∈Tt

∥∥∥M>s zs∥∥∥ ≤ (n+ d)εZt + 2S

√
n+ d

U

1

εn+d
βt(δ/4)1/2.

Now if we choose

ε =

(
2Sβt(δ/4)1/2

Zt(n+ d)1/2U1/2H

)1/(n+d+1)

we get that

max
s≤t,s/∈Tt

∥∥∥M>s zs∥∥∥ ≤ 2

(
2Sβt(δ/4)1/2Zn+d

t (n+ d)n+d+1/2

U1/2

)1/(n+d+1)

= GZ
n+d

n+d+1

t βt(δ/4)
1

2(n+d+1) .

Finally, we show that this choice of ε satisfies ε < 1. From the chose of H, we have that

H >
4S2M2

(n+ d)U0
.
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Thus, (
4S2M2

(n+ d)U0H

) 1
2(n+d+1)

< 1.

Thus,

ε =

(
2Sβt(δ/4)

Zt(n+ d)1/2U
1/2
0 H1/2

) 1
n+d+1

< 1.

We can write the state update as

xt+1 = Γtxt + rt+1,

where

Γt+1 =

{
Ãt + B̃tK(Θ̃t) t /∈ TT
A∗ +B∗K(Θ̃t) t ∈ TT

and

rt+1 =

{
M>t zt + wt+1 t /∈ TT
wt+1 t ∈ TT

Hence we can write

xt = Γt−1xt−1 + rt = Γt−1(Γt−2xt−2 + rt−1) + rt = Γt−1Γt−2xt−2 + rt + Γt−1rt−1

= Γt−1Γt−2Γt−3xt−3 + rt + Γt−1rt−1 + Γt−1Γt−2rt−2 = · · · = Γt−1 . . .Γt−txt−t

+ rt + Γt−1rt−1 + Γt−1Γt−2rt−2 + · · ·+ Γt−1Γt−2 . . .Γt−(t−1)rt−(t−1)

=

t∑
k=1

(
t−1∏
s=k

Γs

)
rk.

From Section 4, we have that

η ≥ max
t≤T

∥∥∥A∗ +B∗K(Θ̃t)
∥∥∥ , ρ ≥ max

t≤T

∥∥∥Ãt + B̃tK(Θ̃t)
∥∥∥ .

So we have that
t−1∏
s=k

‖Γs‖ ≤ ηn+dρt−k−(n+d)+1.

Hence, we have that

‖xt‖ ≤
(
η

ρ

)n+d t∑
k=1

ρt−k+1 ‖rk+1‖

≤ 1

1− ρ

(
η

ρ

)n+d

max
0≤k≤t−1

‖rk+1‖ .

Now, ‖rk+1‖ ≤
∥∥M>k zk∥∥+ ‖wk+1‖ when k /∈ TT , and ‖rk+1‖ = ‖wk+1‖, otherwise. Hence,

max
k<t
‖rk+1‖ ≤ max

k<t,k/∈Tt

∥∥∥M>k zk∥∥∥+ max
k<t
‖wk+1‖ .
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The first term can be bounded by Lemma 18. The second term can be bounded as follows:
notice that from the sub-Gaussianity Assumption A1, we have that for any index 1 ≤ i ≤ n
and any time k ≤ t, with probability 1− δ/(t(t+ 1))

|wk,i| ≤ L
√

2 log
t(t+ 1)

δ
.

As a result, with a union bound argument, on some event H with P (H) ≥ 1− δ/4, ‖wt‖ ≤
2L

√
n log 4nt(t+1)

δ . Thus, on H ∩ E,

‖xt‖ ≤
1

1− ρ

(
η

ρ

)n+d
[
GZ

n+d
n+d+1

T βt(δ/4)
1

2(n+d+1) + 2L

√
n log

4nt(t+ 1)

δ

]
= αt.

By the definition of F , H ∩ E ⊂ F ∩ E. Since, by the union bound, P (H ∩ E) ≥ 1 − δ/2,
P (E ∩ F ) ≥ 1− δ/2 also holds, finishing the proof.
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