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Abstract

Real world networks exhibit a complex set of
phenomena such as underlying hierarchical or-
ganization, multiscale interaction, and varying
topologies of communities. Most existing meth-
ods do not adequately capture the intrinsic inter-
play among such phenomena. We propose a non-
parametric Multiscale Community Blockmodel
(MSCB) to model the generation of hierarchies
in social communities, selective membership of
actors to subsets of these communities, and the
resultant networks due to within- and cross- com-
munity interactions. By using the nested Chinese
Restaurant Process, our model automatically in-
fers the hierarchy structure from the data. We de-
velop a collapsed Gibbs sampling algorithm for
posterior inference, conduct extensive validation
using synthetic networks, and demonstrate the
utility of our model in real-world datasets such
as predator-prey networks and citation networks.

1 INTRODUCTION
How do complex networks and their self-organization
arise from coordinated interactions and information shar-
ing among the actors? One way to tap into this ques-
tion is to understand the latent structures over actors which
lead to the formation and organization of these networks.
In particular, we are interested in uncovering the func-
tional/sociological communities of network actors, and
their influence on network connections. We consider a
community to be a group of actors that share a common
theme, like a clique of football fans in a social network, or
an ecosystem of dependent organisms in a biological food
web. Our objective is to gain a deeper understanding of the
relationships within and among these communities, so as
to shed insight into the network topology.

More specifically, we seek to address three critical aspects

Appearing in Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2011, Fort Laud-
erdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright
2011 by the authors.

of network modeling and community discovery:

1. Hierarchy — not all communities are equal: a com-
munity can contain sub-communities, or be contained
by super-communities. This is a natural way to struc-
ture the latent space of actors.

2. Multiscale Granularity — we must distinguish be-
tween coarse or generic associations that may occur
in a large super-community, as opposed to fine grained
interactions that occur within or among small, closely-
interconnected sub-communities.

3. Assortativity/Disassortativity — some communities
have strong within-community interactions and weak
cross-community interactions (assortativity), yet oth-
ers may exhibit the reverse (disassortativity).

These aspects are not independent, but are strongly inter-
related. As an example, consider an oceanic food web
(Figure 1), a directed network with species as actors and
predator-prey relationships as edges. This network exhibits
hierarchy: cold-blooded animals and mammals are large
super-communities that can be sub-divided into smaller
sub-communities, such as sharks and squid, or toothed
whales and pinnipeds. These sub-communities can in turn
be divided into even smaller communities (not shown). The
ideas of hierarchy and network should not be confused with
each other. The hierarchy is an organization of actors in
some latent space learned from the observed network.

Next, the predator-prey relationships in the ocean are mul-
tiscale. Consider a sperm whale: it occasionally eats fish,
which are common prey for many oceanic animals. Hence,
this “sperm whale, fish” interaction is generic. Moreover,
sperm whales usually eat giant squid, which are prey spe-
cific to them (making this interaction fine-grained). It is
important to differentiate between such interactions of dif-
ferent scale.

Finally, the toothed whale sub-community demonstrates
both assortative and disassortative behavior. Many toothed
whales feed on small fish and seals, which are cross-
community interactions. However, whales such as orcas
feed on other whales, which are within-community inter-
actions.
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We propose a nonparametric Multiscale Community
Blockmodel (MSCB) that presents a unified approach to
address these three concerns. Using the nested Chinese
Restaurant Process (Blei, Griffiths, and Jordan 2010) as a
nonparametric structural prior, our model learns the struc-
ture of the hierarchy from the data without requiring the
branching factor at each node to be prespecified. Moreover,
by exploiting latent space ideas from Blei et al. (2003)
and Airoldi et al. (2008), we uncover the coarse/fine-
grained interactions that underlie the network. Finally,
our model builds upon the blockmodel concept (Wang and
Wong 1987; Airoldi, Blei, Fienberg, and Xing 2008) to in-
tegrate assortativity and disassortativity into our hierarchy.

1.1 Comparison to Existing Work

Existing methods for graph clustering and inferring com-
munity structure do not adequately capture the three as-
pects we have described. Methods such as Girvan and
Newman (2002), Hoff et al. (2002), Handcock et al. (2007),
Krause et al. (2003) and Guimera and Amaral (2005) can-
not discover disassortative communities characterized by
weak within-community and strong cross-community in-
teractions. Furthermore, they do not explicitly model orga-
nizational structure — and by extension, multiscale gran-
ularity of interactions. These methods do not meet any of
our criteria, and are unsuited for our purposes.

The Mixed Membership Stochastic Blockmodel
(MMSB) (Airoldi, Blei, Fienberg, and Xing 2008)
aims to discover the multiple latent roles played by each
actor in the network, while employing a blockmodel to
accommodate both disassortative and assortative types
of interactions. The multi-role memberships discovered
by MMSB are similar, but not identical, to our notion of
coarse/fine-grained interactions. Furthermore, MMSB
does not induce a hierarchical structure over the actors.
These considerations prevent MMSB from modeling the
organized network phenomena that our model is designed
to explore. Another example of a latent space model
is Miller et al.’s link prediction model (2009), which
allows each actor to take on multiple binary features in an
infinite-dimensional space. Like MMSB, this model does
not learn a structure over its latent space, and therefore
cannot replicate our model’s ability to discover community
hierarchies.

On the other hand, methods such as Clauset et al. (2004),
Radicchi et al. (2004) and the infinite stochastic block-
model (Kemp and Tenenbaum 2008) explicitly model some
form of organizational structure. However, they do not per-
mit actors to have multiple kinds of interactions, which
precludes them from learning the kind of multiscale inter-
actions we have described. Roy et al. (2007) generalize
the infinite relational model (Kemp, Tenenbaum, Griffiths,
Yamada, and Ueda 2006) for hierarchical group discovery,
and extend their work to the nonparametric setting with

Cold-blooded

Mammals

Sharks Fish

Toothed Whales

Pinnipeds

Sea Creatures

Cold-blooded Mammals

Sh
ar

ks

Fi
sh

To
o

th
e

d
 

W
h

al
e

s

P
in

n
ip

e
d

sOrca Whale

Sperm Whale

Orca Whale
Sperm Whale

Sea Lion Seal

Sea Lion
Seal

Bottlenose Dolphin

Bottlenose Dolphin

Herring
Tuna

Herring

TunaMako

Hammerhead

Hammerhead
Mako

Squid

Sq
u

id

Giant

Giant
Flying

Flying

Figure 1: Illustration of an oceanic food web as a set of nested
communities (Left), and the corresponding hierarchy of com-
munities (Right). Vertices in the network represent individual
species, and directed edges represent predator-prey relationships
(not all shown). Solid edges are fine-grained, specific interac-
tions, while dashed edges are coarse-grained and generic to a
large community.

Mondrian Processes (Teh and Roy 2009). However, their
models are limited to binary hierarchies. Our model as-
sumes no limit on the hierarchy’s branching factor, which
is more realistic for certain networks.

2 MULTISCALE COMMUNITY
BLOCKMODEL (MSCB)

In the sequel, we describe the different aspects of the
model, beginning with the hierarchy and then proceeding
to network edge generation. We use the oceanic food web
in Figure 1 as a running example.

2.1 The Community Hierarchy
In our model, the hierarchy is a tree where each node
is a community. The root of the tree is designated as
level 0. Nodes closer to the root represent large super-
communities, (e.g. the “cold-blooded animals” and “mam-
mals” in Figure 1), while those closer to the leaves repre-
sent finer-grained sub-communities (e.g. “toothed whales”
or “sharks”).

Each actor is associated with a single path of super-
sub communities in the hierarchy (which we call its path
ci). This path delineates a sequence of communities from
coarse to fine. For example, a sperm whale could have the
path [mammal, toothed whale].

Selecting the number of branches at every tree node a priori
can be daunting because of the huge number of possibili-
ties. One might consider using heuristic methods that guess
at the number of such children, but doing so would defeat
the purpose of employing a probabilistic model.

We solve this problem by adopting a nonparametric
Bayesian prior on paths through trees, the nested Chi-
nese Restaurant Process (nCRP) (Blei, Griffiths, and Jor-
dan 2010), which automatically selects the number of
branches based on the data. The generative process for the
nCRP works according to the following metaphor: Actor 1
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chooses his tree path first, followed by actor 2, and so on.
Consider actor i. He begins at the root, then with proba-
bility n(1)

x,i−1/(i − 1 + γ) he selects branch x of the tree,
and with probability γ/(i− 1+ γ), he picks a new branch.
n

(1)
x,i−1 is the number of actors before i that chose branch x

at level 1, and γ is a hyperparameter dictating the probabil-
ity that an actor will start a new branch. Higher values of γ
will increase the width of the hierarchy.

Actor i continues this process as he descends the tree.
When picking a branch at level k, with probability
n

(k)
y,i−1/(n

(k−1)
i−1 + γ) he selects branch y, and with proba-

bility γ/(n(k−1)
i−1 + γ) he starts a new branch. Here, n(k−1)

i−1

counts the number of actors 1, . . . , i − 1 having the same
path as actor i up to (and including) level k − 1. Out of
these actors, n(k)

y,i−1 is the number that picked branch y (at
level k). This sequence of branch choices defines the path
of actor i, and the union of all these paths forms the hierar-
chy. A more formal treatment of the nCRP can be found in
the Supplemental. In our model, we limit the hierarchy to
a maximum depth of K.

2.2 Multiscale Membership

In order to enable multiscale granularity on the interactions,
we associate each actor i with a Multiscale Membership
(MM) vector θi. The MM vector is aK-dimensional multi-
nomial that encodes an actor’s tendencies to interact as a
member of the different super- and sub- communities along
his/her path of depthK. Consider two toothed whales: dol-
phins and sperm whales. Both have the same path in the
tree, [mammal, toothed whale], yet both behave very dif-
ferently. A dolphin’s diet mainly consists of fish, which are
common prey for many mammals. Thus it has a high prob-
ability of interacting as a member of the mammal super-
community, although it occasionally chooses prey that are
more specific to its species.

A sperm whale on the other hand barely eats fish, and thus
rarely interacts as a member of its super-community. In-
stead, it eats giant squid, a more specific prey uncommon
to most mammals. As a result, a sperm whale has a higher
probability of participating in fine-grained interactions, in-
stead of coarse ones like the dolphin does.

Like the mixed membership vector of the MMSB (Airoldi,
Blei, Fienberg, and Xing 2008), which allows an actor to
have a distribution over roles, our Multiscale Membership
vector allows an actor to have a distribution over commu-
nities. However, there is a key difference: in MMSB, an
actor may have a distribution over all possible latent roles,
whereas in our model, an actor’s Multiscale Membership
vector is a distribution over only the set of super and sub-
communities along the actor’s path. This is because allow-
ing an actor to have a distribution over all communities in
the hierarchy can render the hierarchy virtually meaning-
less: a dolphin could simultaneously be in the shark and
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Figure 2: Graphical model for MSCB.

toothed whale communities, which is unrealistic.

The Multiscale Membership vectors θi are drawn from a
two-parameter stick breaking process Stick(m,π) (Blei,
Griffiths, and Jordan 2010). The stick breaking prior makes
it more intuitive to bias interactions toward coarser or finer
levels compared to a Dirichlet prior with either a single pa-
rameter (which is not expressive enough), or K− 1 param-
eters (which may be too expressive). The parameterm > 0
influences the mean of θi, and π > 0 influences its vari-
ance (details in the Supplemental). Because the hierarchy
is only learnt up to depth K, we truncate the Stick(m,π).

2.3 Network Edge Generation
At this point, we shall introduce some notation. Let E be
the N × N adjacency matrix of observed network edges,
where Eij corresponds to the directed edge or interac-
tion/relationship from actor i to j. In the context of our
food web, the actors are sea creatures like dolphins and
sperm whales, and the edges represent predator-prey inter-
actions. A value of Eij = 1 indicates that the interaction
is present, while Eij = 0 indicates absence, and we ignore
self-edges Eii.

We introduce our generative process for network edges:

• For each actor i ∈ {1, . . . , N}
– Sample i’s path ci ∼ nCRP(γ).
– Sample i’s MM θi ∼ Stick(m,π).

• To generate the network, for each directed edge Eij :

– Sample donor level z→ij ∼ Multinomial(θi).
– Let1 h = ci[z→ij ].
– Sample receiver level z←ij ∼ Multinomial(θj).
– Let h′ = cj [z←ij ].
– Sample the edge Eij ∼ Bernoulli(SB(h, h

′)). We
shall explain the meaning of SB later.

The basic idea is as follows: for every directed edge Eij ,
both actor i (the donor) and actor j (the receiver) pick

1Formally, h is the community at level z→ij on path ci.
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Figure 3: Sibling groups in the hierarchy, and their associated
community compatibility matrices B.

communities h and h′ from their respective paths ci, cj ,
according to their MM vectors θi, θj . The communi-
ties h, h′ are then used to select a community compatibil-
ity parameter SB(h, h

′), which in turn generates Eij ∼
Bernoulli(SB(h, h

′)). Note that the arrow in z→ij or z←ij
denotes donor or receiver respectively, not edge direction
between i and j.

2.4 Community Compatibility Matrices B

We now discuss the SB() function. Intuitively, the compat-
ibility from h to h′ is high if actors from h often interact
with actors from h′. Conversely, a low compatibility indi-
cates that actors from h rarely interact with actors from h′.
Thus, it is natural to define compatibility to be a Bernoulli
parameter in [0, 1], where 1 indicates perfect compatibil-
ity. This notion of compatibility is what allows our model
to account for both assortative and disassortative behavior.
(For example, strong assortative interactions correspond to
high compatibility parameters when h = h′).

There are many ways to associate compatibility parameters
with pairs of communities h, h′. Our goal is to meaning-
fully integrate compatibility with the hierarchy and multi-
scale interactions over communities. A first attempt might
be to ignore the hierarchy, and place a fullH×H compati-
bility matrix over all community pairs h, h′, which is anal-
ogous to the blockmatrix of MMSB (Airoldi, Blei, Fien-
berg, and Xing 2008). However, this formulation does not
capture the multiscale nature of interactions, because there
is no connection between the compatibility parameter for
h, h′ and those communities’ levels in the hierarchy.

Instead, we restrict the compatibility parameters by defin-
ing a compatibility matrix for each sibling group (a set
of children under the same parent) in the hierarchy. Each
sibling group’s compatibility matrix defines the interaction
probability between every pair of siblings in that group —
refer to Figure 3 for an illustration. Since the number of
hierarchy nodes is not pre-specified, the number and size
of the sibling group compatibility matrices must be deter-
mined automatically from the data. We shall address this
issue when we describe our inference procedure.

When the interacting communities h, h′ share the same par-
ent, we simply choose the appropriate entry from their sib-

ling group matrix. However, if h, h′ do not share the same
parent, then we invoke the following coarsening procedure:

1. Recall that h = ci[z→ij ] and h′ = cj [z←ij ].
2. Find zmin = min(z→ij , z←ij).
3. If hcoarse = ci[zmin] and h′coarse = cj [zmin] are in

the same sibling group, then we look up its compati-
bility matrix entry Bhcoarse,h′coarse

. We then generate
Eij ∼ Bernoulli(Bhcoarse,h′coarse

).
4. Otherwise, hcoarse, h′coarse have zero compatibility,

and we generate Eij = 0.

Essentially, if actor i picks a community at a deeper level
than actor j, then i coarsens up along his path to the same
level as j. We can now formally define the SB() function
from the previous section:

SB(h, h
′) =


Bhcoarse,h′coarse

hcoarse and h′coarse have same parent
0 otherwise

h = ci[z→ij ] h′ = cj [z←ij ]

hcoarse = ci[zmin] h′coarse = cj [zmin]

zmin = min(z→ij , z←ij).

For brevity, we define the shorthand SijB := SB(h, h
′).

Finally, a Beta(λ1, λ2) prior is placed over every commu-
nity compatibility parameter Bhcoarse,h′coarse

. This adds
the following step to our generative process:

• For each hcoarse, h
′
coarse:

– Sample Bhcoarse,h′coarse
∼ Beta(λ1, λ2).

Increasing λ1 will bias the model towards having more
edges, whereas increasing λ2 biases the model towards
having fewer edges. Intuitively, λ1 is the number of fake
edges we are willing to assume, while λ2 is our assumed
number of fake non-edges.

A graphical model representation of our generative process
can be found in Figure 2.

3 COLLAPSED GIBBS SAMPLER
INFERENCE

Exact inference on our model is intractable, so we derive a
collapsed Gibbs sampling scheme for posterior inference.
The compatibility matrices B present a challenge since
they can change in number/size as nodes are added and
deleted during the sampling process (because the hierar-
chy structure is not prespecified). To finesse this issue, we
analytically integrate them out using Beta-Bernoulli conju-
gacy, which adds dependence among interactions that im-
plicitly share a compatibility parameter.

For faster mixing, the θi’s are also integrated out. Thus,
the only variables that need to be explicitly sampled are
the levels z and the paths c. The sampling equations are
provided below.
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Sampling Levels The distribution of z→ij conditioned
on all other variables is

P(z→ij | c, z−(→ij),E, γ,m, π, λ1, λ2) ∝ (1)
P(Eij | c, z,E−(ij), λ1, λ2)P(z→ij | zi,(−j),m, π)

where E−(ij) is the set of all edges except Eij , and
zi,(−j) = {z→i·, z←·i} \ z→ij . The first term, for a par-
ticular value of z→ij , is equal to{

Γ(a+b+λ1+λ2)
Γ(a+λ1)Γ(b+λ2) ·

Γ(a+Eij+λ1)Γ(b+(1−Eij)+λ2)
Γ(a+b+1+λ1+λ2) SijB 6= 0

0 otherwise

a =
∣∣∣{(x, y) | (x, y) 6= (i, j),SxyB = SijB , Exy = 1

}∣∣∣
b =

∣∣∣{(x, y) | (x, y) 6= (i, j),SxyB = SijB , Exy = 0
}∣∣∣ (2)

In Eq. 2, the compatibility matrices B have been integrated
out via Beta-Bernoulli conjugacy. As a result, z→ij de-
pends on the interactions Exy that share Eij’s compatibil-
ity parameter at this point in the sampling process.

The second term is computed by conditioning on the stick-
breaking lengths V1, ..., VK associated with z→ij :
P(z→ij = k | zi,(−j),m, π) = (3)

mπ +#[zi,(−j) = k]

π +#[zi,(−j) ≥ k]

k−1∏
u=1

(1−m)π +#[zi,(−j) > u]

π +#[zi,(−j) ≥ u]

Since we have limited the maximum depth toK, we simply
ignore the event z→ij > K, and renormalize the distribu-
tion of z→ij over the domain {1, . . . ,K}. The distribution
of z←ij is derived in similar fashion.

The runtime complexity of sampling a single zij is O(K),
where K is the (fixed) depth of our hierarchy. Hence the
total runtime for all z is O(N2K).

Sampling Paths The distribution of ci conditioned on all
other variables is

P(ci | c−i, z,E, γ,m, π, λ1, λ2) ∝ (4)
P(E(i·),(·i) | c, z,E−(i·),−(·i), λ1, λ2)P(ci | c−i, γ)

where E(i·),(·i) = {Exy | x= i or y= i} is the set of edges
Exy that depend on ci, and E−(i·),−(·i) is its complement.
The second term can be computed using the nCRP defini-
tion (refer to the Supplemental). The first term, for a par-
ticular value of ci, is

∏
B∈B(i·),(·i)

Γ(gB+hB+λ1+λ2)
Γ(gB+λ1)Γ(hB+λ2) ·

Γ(gB+rB+λ1)Γ(hB+sB+λ2)
Γ(gB+hB+rB+sB+λ1+λ2)

∀Exy∈E(i·),(·i), S
xy
B 6=0

0 otherwise

B(i·),(·i) = {Bh,h′ | ∃(i, j)[Eij ∈E(i·),(·i),S
ij
B=Bh,h′ ]}

gB =
∣∣{(x, y) | Exy∈E−(i·),−(·i), S

xy
B =B,Exy=1

}∣∣
hB =

∣∣{(x, y) | Exy∈E−(i·),−(·i), S
xy
B =B,Exy=0

}∣∣
rB =

∣∣{(x, y) | Exy∈E(i·),(·i), S
xy
B =B,Exy=1

}∣∣
sB =

∣∣{(x, y) | Exy∈E(i·),(·i), S
xy
B =B,Exy=0

}∣∣ (5)

where B(i·),(·i) is the set of community compatibility pa-
rameters Bh,h′ associated with some edge in E(i·),(·i).
Similar to Eq. (2), Eq. (5) is a consequence of integrat-
ing out B for all interactions E associated with actor i.

The runtime for a single ci is O(NH), whereH is the num-
ber of hierarchy nodes. Hence the time to sample all c is
O(N2H). Note that H = O(NK), so the complexity of
sampling all c is O(N3K).

4 SIMULATION
We first evaluate our model’s ability to recover hier-
archies on simulated data. Our focus is to exam-
ine how our model’s ability to model both assortative
(within-community) interactions and disassortative (cross-
community) interactions differentiates it from a traditional
hierarchical clustering algorithm.

Our experiments explore the effect of different compatibil-
ity matrices B. We first explore an on-diagonal B, whose
diagonal elements are much larger than the off-diagonals
(strong assortative interactions). We also investigate an off-
diagonal B, whose off-diagonal elements are larger (strong
disassortative interactions). For either B type, we experi-
mented with maximum hierarchy depths K = 2 and 3. For
the K = 2 simulations, the number of actors N was 150,
while for K = 3 we used 300 actors. Additional details
and experiments can be found in the Supplemental.

We compare our approach to hierarchical spectral cluster-
ing (denoted HSpectral). For spectral clustering, it is un-
clear how the number of clusters at each node would be
selected, so we give it the number of 1st-level branches as
an advantage (and then let it do a binary split at the deeper
levels). For our model, we fix m = π = λ1 = λ2 = .5 and
search over γ = {.01, .1, .5, 1, 1.5, 2}, picking the value
that maximizes the marginal likelihood. We calculate the
F1 score at each level k, F1k = 2∗Precision∗Recall

Recall+Precision where
Recall = TP

TP+FN , and Precision = TP
TP+FP . TP is true

positive count (actors that should be in the same cluster, up
to depth k), FP is false positive count, TN is true negative
count, and FN is false negative count. The total F1 score
is computed by averaging the F1k scores for each level.

Figure 4 illustrates our results as a function of the number
of branches at the first level of the generated tree. As one
can see, in Figure 4(a) and Figure 4(b), when B is strongly
on-diagonal, our algorithm performs well, but a little worse
than HSpectral (since HSpectral is given the number of
level 1 branches). A specific example for K = 2 is shown
in Figures 4(e), 4(f), 4(g), 4(h), on which both models per-
formed reasonably well.

However, when B is strongly off-diagonal (implying strong
cross-community interactions), HSpectral performs poorly.
This is because, by formulation, spectral clustering cannot
recover a disassortative community. On the other hand, our
method still gives good results (Figure 4(c), Figure 4(d)).
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Figure 4: Simulation Results. Figures 4(a), 4(b), 4(c), and 4(d) show quantitative results. Figures 4(e), 4(f), 4(g) 4(h) illustrate results
for one on-diagonal (assortative) network, and Figures 4(i), 4(j), 4(k) , 4(l) illustrate results for one off-diagonal (disassortative) network.
4(e) and 4(i) are the original networks for these two cases (black indicates edge). The numbers inside hierarchy nodes are actor counts
(nodes of size < 5 are not shown). See text for details.
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Figure 5: Held-out marginal likelihoods for our model and
MMSB. Dotted lines show our model’s error bars.

A K = 2 example is shown in Figures 4(i), 4(j), 4(k), 4(l)
where our model performs accurately while HSpectral es-
sentially divides the actors randomly and performs poorly.
Thus our model successfully captures a variety of commu-
nity interactions that traditional clustering methods cannot.
Moreove, it can also recover the actor-specific multi-scale
interaction levels for a richer network analysis.

5 HELD-OUT EVALUATION
Having evaluated how our model compares to a traditional
hierarchical clustering method without a latent space, we
now seek to compare it to latent space models that do not
account for hierarchical structure. Since our latent space
is integrated with the hierarchy, it is not possible to com-
pare to a “non-hierarchical version” of our model. MMSB
(Airoldi, Blei, Fienberg, and Xing 2008) seems the best
choice for comparison, since it has analogous (but differ-
ent) notions to our multi-scale membership and community
compatibility in a non-hierarchical setting.

We use two real-world datasets, a 75-species food web of
grass-feeding wasps (Dawah, Hawkins, and Claridge 1995;
Clauset, Moore, and Newman 2008), and the 9/11 hijacker
network consisting of 62 terrorists (Krebs 2002; Clauset,
Moore, and Newman 2008). Our choices reflect two com-
mon modes of interaction seen in real-world network data:
edges in the food web denote predator-prey relationships,
while edges in the terrorist network reflect social cohesion.
The food web could be represented as a hierarchy where

different branches reflect different trophic levels (e.g. para-
site, predator or prey), while the terrorist network could be
interpreted as an organization chart. In the following exper-
iments, we compare our model to MMSB using held-out
marginal likelihood; models with higher likelihood imply a
better fit to the data.

For each dataset, we generated 5 sets of training and test
subgraphs; each train/test pair was obtained by randomly
partitioning the actors into two equal sets, and keeping only
the edges within each partition. With each train/test pair,
we first used the training subgraph to select an appropri-
ate prior on the community compatibility parameters B, by
performing a gridsearch over (λ1, λ2) ∈ {.1, .3, .5, .7, .9}2
according to the log marginal likelihood. The remain-
ing parameters were fixed to γ = 1,m = π = 0.5, as
we found our results to be relatively insensitive to them.
Using the best gridsearch parameters, we then estimated
the log marginal likelihood on the corresponding test sub-
graphs, averaging over them to obtain our model’s average
held-out likelihood. This entire procedure was conducted
for maximum hierarchy depths K = 2 and 3. The pro-
cedure for MMSB was similar, except that we used 100
random restarts of the MMSB variational EM algorithm
on the training subgraphs to select the best parameters.
MMSB also requires the number of latent roles R as a
tuning parameter, so we repeated the experiment for each
2 ≤ R ≤ 20. For either algorithm, log marginal likelihoods
were estimated using 10,000 importance samples.

The results are shown in Figure 5. On both datasets, our
model’s held-out likelihood for either value of K is su-
perior to MMSB for all R. Notably, MMSB’s likelihood
peaks on both datasets at R = 2, but selecting so few roles
will lead to an extremely coarse network analysis. In con-
trast, our model automatically recovers a suitable level of
hierarchical complexity and enables rich interpretations of
the data — as we shall demonstrate next.
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6 REAL-DATA QUALITATIVE ANALYSIS
In this section, we apply our model to interpret two real-
world networks. We demonstrate that our model recovers
the three network aspects we seek: hierarchy, multiscale
granularity, and assortativity/disassortativity.

For both experiments, we use the optimal parameters from
a held-out gridsearch similar to the previous section. We
then ran our Gibbs sampler for 10,000 burn-in iterations,
and took 500 samples. In order to account for posterior
spread, we report a “consensus” sample that is analogous
to an average. A description of the consensus and other
experimental details can be found in the Supplemental.

6.1 Grass-Feeding Wasp Parasitoids Food Web

We begin with the earlier grass dataset, consisting of 75
species in a food web, and in which interactions represent

predator-prey relationships. This dataset annotates each
species with its position or “trophic level” in the food web:
grass, herbivore, parasitoid, hyper-parasitoid (parasites that
prey on other parasites), and hyper-hyper parasitoid. Our
Gibbs sampler’s inferred community hierarchy and Multi-
scale Membership (MM) vectors are reported in Figure 6.
We also show the original network, where each interaction
Eij = 1 has been augmented with its associated commu-
nity and interaction level (missing links Eij = 0 are not
shown). Trophic level annotations are shown in the hierar-
chy as counts, and in the network as node shapes.

In general, the level 1 super-communities separate the
trophic levels. For example, community 3 contains all grass
species, 2 contains most herbivores, and 1 contains most
parasitoids. Note that the trophic levels form a set of dis-
assortative communities, e.g. herbivores feed on grasses,
but not on other herbivores. In contrast, Clauset et al.’s
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method, which assumes assortative communities, did not
recover this structure in their experiments (Clauset, Moore,
and Newman 2008).

The smaller super-communities are still more interesting:
for instance, the herbivore in super-community 6 is the
sole prey of the parasitoids in super-community 4, which
justifies its separation from the other herbivores in super-
community 2. Moreover, community 5 solely contains the
two apex parasitoids with the largest and 2nd-largest range
of prey species.

At level 2, the communities are separated by more subtle
criteria than just trophic levels. The herbivores in commu-
nity 2.2 are the sole prey of species 42 and 41 in commu-
nity 1.1, while community 1.2 contains another apex par-
asitoid with an especially large range of prey species. In
both cases, our model has separated these auxiliary food
webs from the main web.

We now investigate the Multiscale Memberships recovered
by our model. The MM vectors in Figure 6 show the fre-
quency at which each species interacts as a member of a
particular super- or sub-community. Most species iden-
tify at the super-community (i.e. generic) level, though
some occasionally identify at the sub-community level.
Our results show that level 2 interactions occur only within
super-communities, hence they account for fine-grained,
within-community interactions. For example, the within-
community links in community 4, as well as the links from
species 65 in sub-community 1.2 to other members of com-
munity 1, are all level 2 interactions. Note that we have not
shown interaction levels for missing links, and a number
of these are accounted for by level 2 interactions (e.g. in
community 1).

6.2 High-Energy Physics Citation Network

Finally, we consider a 1,000-paper subgraph of the arXiv
high-energy physics citation network, taken from the 2003
KDD Cup (2010). We constructed this subgraph by
subsampling papers involved in citations from Jan 2002
through May 2003. Our Gibbs sampler completed 10,000
samples in just under 23 hours on a single processor,
demonstrating that our algorithm scales to networks with

thousands of actors.

The inferred community hierarchy is shown in Figure 7,
where each sub-community has been annotated with its pa-
pers’ most frequent title words2. We also show the adja-
cency matrix in Figure 8, permuted to match the order of
inferred communities.

As expected, our model learns communites reflecting spe-
cific areas of study (an assortative network). The giant 810-
paper level 2 community has a sparse citation pattern, im-
plying that its papers are not specific to any research topic.
This is confirmed by the top 3 keywords: ‘theory’, ‘field’
and ‘quantum’, which are general to physics research. The
other level 2 communities under the same parent are more
focused, with specific physical concepts like ‘supergrav-
ity’, ‘string’ and ‘pp-wave’. This is also reflected in the
adjacency matrix, which is denser among these communi-
ties. The remaining super-communities form a dense sub-
network mostly separated from the rest, implying narrower
research foci. In particular, three of the sub-communities
involve the title keyword “tachyon”, which is absent from
the giant level 1 community.

7 CONCLUSION

We have developed a nonparametric Multiscale Commu-
nity Blockmodel (MSCB) that models social networks in
terms of the hierarchical community memberships that
actors undertake during interactions. Our model auto-
matically infers the structure of the hierarchy while si-
multaneously recovering the Multiscale Memberships of
every actor, setting it apart from hierarchy-discovering
methods that are restricted to binary hierarchies and/or
single-community-memberships for actors. Moreover, our
model is expressive enough to account for both assortative
(within-community) and disassortative (cross-community)
interactions, as we have demonstrated through our simula-
tion and real dataset experiments. We believe these aspects
make our model suitable for exploring and understanding
real-world network phenomena.
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