
A Functional Perspective on Learning Symmetric Functions with Neural
Networks

Aaron Zweig 1 Joan Bruna 1 2

Abstract
Symmetric functions, which take as input an un-
ordered, fixed-size set, are known to be univer-
sally representable by neural networks that en-
force permutation invariance. These architectures
only give guarantees for fixed input sizes, yet
in many practical applications, including point
clouds and particle physics, a relevant notion of
generalization should include varying the input
size. In this work we treat symmetric functions (of
any size) as functions over probability measures,
and study the learning and representation of neu-
ral networks defined on measures. By focusing
on shallow architectures, we establish approxi-
mation and generalization bounds under differ-
ent choices of regularization (such as RKHS and
variation norms), that capture a hierarchy of func-
tional spaces with increasing degree of non-linear
learning. The resulting models can be learned ef-
ficiently and enjoy generalization guarantees that
extend across input sizes, as we verify empiri-
cally.

1. Introduction
Deep learning becomes far more efficient with prior knowl-
edge of function invariants. This knowledge underlies archi-
tectural choices that enforce the invariance or equivariance
in the network, including Convolutional Neural Networks
(LeCun et al., 1998) which encode translation symmetries,
and Graph Neural Networks (Scarselli et al., 2008) which
encode conjugate permutation symmetries. For functions
with invariance to permutation of the input elements, several
universal architectures encode this invariance by treating
the input as a set (Zaheer et al., 2017; Qi et al., 2017). How-
ever, these formulations assume a constant input size, which
precludes learning an entire family of symmetric functions.

1Courant Institute of Mathematical Sciences, New York Uni-
versity, New York 2Center for Data Science, New York University,
New York. Correspondence to: Aaron Zweig <az831@nyu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Such symmetric functions appear naturally across several
domains, including particle physics, computer graphics, pop-
ulation statistics and cosmology. Yet, in most of these appli-
cations, the input size corresponds to a sampling parameter
that is independent of the underlying symmetric function
of interest. As a motivating example, consider the function
family induced by the max function, where for varying N ,
fN ({x1 . . . xN}) = maxi≤N xi. It is natural to ask if a
network can simultaneously learn all these functions.

In this work, we interpret input sets as an empirical measure
defined over the base space I, and develop families of neural
networks defined over the space of probability measures
probability measures of I, as initially suggested in (Pevny &
Kovarik, 2019; De Bie et al., 2019). We identify functional
spaces characterized by neural architectures and provide
generalization bounds that showcase a natural hierarchy
among spaces of symmetric functions. In particular, our
framework allows us to understand the question of general-
izing across input sizes as a corollary. Our constructions rely
on the theory of infinitely wide neural networks (Bengio
et al., 2006; Rosset et al., 2007; Bach, 2017a), and provide a
novel instance of depth separation leveraging the symmetric
structure of the input.

Summary of Contributions: We consider the infinite-
width limit of neural networks taking as domain the space
of probability measures in order to formalize learning of
symmetric function families. We prove a necessary and
sufficient condition for which symmetric functions can be
learned. By controlling the amount of non-linear learning,
we partition the space of networks on measures into sev-
eral function classes, proving a separation result among the
classes as well as proving a generalization result and em-
pirically studying the performance of these classes to learn
symmetric functions on synthetic and real-world data.

Related Work Several works consider representing sym-
metric functions of fixed input size with invariant neural
networks, and in particular there are two main universal ar-
chitectures, DeepSets (Zaheer et al., 2017) and PointNet (Qi
et al., 2017). An alternative generalization of DeepSets
is given in (Maron et al., 2019), which proves the univer-
sality of tensor networks invariant to any subgroup of the

Functional Perspective on Learning Symmetric Functions

symmetric group. Regarding variable input size, the work
from (Wagstaff et al., 2019) proves lower bounds on repre-
sentation of the max function in the DeepSets architecture
with a dependency on input size.

Separately, there is a wide literature considering neural net-
works that act on elements on functional data. These results
mainly consider universal approximation (Sandberg & Xu,
1996; Stinchcombe, 1999; Rossi & Conan-Guez, 2005). The
work (Mhaskar & Hahm, 1997) bears some similarity to
the present work, as they prove a quantitative separation
between the class of neural networks and the class of func-
tionals with bounded norm, while our main result shows
separations among several neural network classes.

The work most similar to ours are (Pevny & Kovarik, 2019;
De Bie et al., 2019), which also normalize the DeepSets
architecture to define a function on measures. However,
they only prove the universality of this model, while we
justify the model by classifying symmetric families that are
representable and recovering generalization results. We also
build on the framework given by (Bach, 2017a), which intro-
duces function classes to characterize neural networks in the
wide limit, and proves statistical generalization bounds to
demonstrate the advantage of non-linear learning. Although
we motivate our work from symmetric functions on finite
sets, there are applications in multi-label learning (Frogner
et al., 2015) and evolving population dynamics (Hashimoto
et al., 2016) that require functions of measures.

Roadmap: We introduce notation and summarize the
infinite-dimensional convex network theory theory (Bach,
2017a) in Section 2. In Section 3 we introduce measure
networks and characterize their relationship to symmetric
functions. Section 4 gives our main result, separating sev-
eral classes of measure networks according to the degree of
non-linear learning, and Section 5 introduces generalization
results. Finally, we detail several experiments with the finite
instantiation of measure networks in Section 6.

2. Preliminaries
2.1. Problem Setup

Let I ⊆ Rd be a convex domain, and N ∈ N. A sym-
metric function f : IN → R is such that f(x1, . . . xN) =
f(xπ(1), . . . xπ(N)) for any x ∈ IN and any permutation
π ∈ SN . In this work, we are interested in learning
symmetric functions defined independently of N . Let
I =

⋃∞
N=1 IN , then f : I→ R is symmetric if f restricted

to IN is symmetric for each N ∈ N. Let Fsym denote the
space of symmetric functions defined on I. This setting
is motivated by applications in statistical mechanics and
particle physics, where N is a sampling parameter.

We focus on the realizable regression setting, where we

observe a dataset {(xi, f∗(xi)) ∈ I× R}i=1,...n of n sam-
ples from an unknown symmetric function f∗, and xi are
drawn iid from a distribution D on I. The goal is to find a
proper estimator f̂ ∈ Fsym such that the population error
Ex∼D`(f

∗(x), f̂(x)) is low, where ` is a convex loss.

Following a standard Empirical Risk Minimisation setup
(Shalev-Shwartz & Ben-David, 2014; Bach, 2017a), we will
construct hypothesis classes F ⊂ Fsym endowed with a
metric ‖f‖F , and consider

f̂ ∈ arg min
f∈F ;‖f‖F≤δ

1

n

n∑
i=1

`(f∗(xi), f(xi)) , (1)

where δ is a regularization parameter that is optimised using
e.g. cross-validation. We focus on the approximation and
statistical aspects of this estimator for different choices of
F ; solving the optimization problem (1) is not the focus of
the present work and will be briefly discussed in Section 7.

2.2. Symmetric Polynomials

A simplest way to approximate symmetric functions is with
symmetric polynomials. Combining Weierstrass approxima-
tion theory with a symmetrization argument, it can be seen
that assuming d = 1, any symmetric continuous function
f : IN → R can be uniformly approximated by symmetric
polynomials (see (Yarotsky, 2018) for a proof). There are
several canonical bases over the ring of symmetric polyno-
mials, but we will consider the one given by the power sum
polynomials, given by pk(x) =

∑N
i=1 x

k
i , with x ∈ IN .

Theorem 2.1 ((2.12) in (Macdonald, 1998)) For any sym-
metric polynomial f on N inputs, there exists a polynomial
q such that f(x) = q(p1(x), . . . , pN (x)).

If q is linear, this theorem suggests a simple predictor for
symmetric functions across varying N . If x ∈ IM , we
can consider x 7→

∑N
i=1 ci

(
1
M pi(x)

)
=
∑N
i=1 ciEy∼µ(yi)

where µ = 1
M

∑M
j=1 δxj . The truncated moments of the em-

pirical distribution given by x act as linear features, which
yield an estimator over any input size M . We will consider
a generalization of this decomposition, by moving beyond
the polynomial kernel to a general RKHS (see Section 3.1).

2.3. Convex Shallow Neural Networks

By considering the limit of infinitely many neurons (Bengio
et al., 2006; Rosset et al., 2007), (Bach, 2017a) introduces
two norms on shallow neural representation of functions φ
defined over Rd. For a constant R ∈ R, a fixed probability
measure κ ∈ P(Sd) with full support, a signed Radon mea-
sure ν ∈ M(Sd), a density p ∈ L2(dκ), and the notation
that x̃ = [x,R]T , define:

Functional Perspective on Learning Symmetric Functions

γ1(φ) = inf

{
‖ν‖TV; φ(x) =

∫
Sd
σα(〈w, x̃〉)ν(dw)

}
and

γ2(φ) = inf

{
‖p‖L2

; φ(x) =

∫
Sd
σα(〈w, x̃〉)p(w)κ(dw)

}
where ‖ν‖TV := sup|g|≤1

∫
gdν is the Total Variation of

ν and σα(t) = max(0, t)α is the ReLU activation raised
to the positive integer power α. These norms measure the
minimal representation of φ, using either a Radon measure ν
over neuron weights, or a density p over the fixed probability
measure κ. The norms induce function classes:

F1 = {φ ∈ C0(I) : γ1(φ) <∞} ,
F2 = {φ ∈ C0(I) : γ2(φ) <∞} .

We also assume that the input domain I is bounded with
supx∈I ‖x‖2 ≤ R.

These two functional spaces are fundamental for the theo-
retical study of shallow neural networks and capture two
distinct regimes of overparametrisation: whereas the so-
called lazy or kernel regime corresponds to learning in
the space F2 (Chizat & Bach, 2018; Jacot et al., 2018),
which is in fact an RKHS with kernel given by k(x, y) =
Ew∼κ [σα(〈w, x̃〉)σα(〈w, ỹ〉)] (Bach, 2017a) 1, the mean-
field regime captures learning in F1, which satisfies F2 ⊂
F1 from Jensen’s inequality, and can efficiently approxi-
mate functions with hidden low-dimensional structure, as
opposed to F2 (Bach, 2017a).

Finally, one can leverage the fact that the kernel
above is an expectation over features to define a
finite-dimensional random feature kernel km(x, y) =
1
m

∑m
j=1 σα(〈wj , x̃〉)σα(〈wj , ỹ〉) with wj

i.i.d.∼ κ, which
defines a (random) RKHS F2,m converging to F2 as m
increases (Bach, 2017b; Rahimi & Recht, 2008). The em-
pirical norm γ2,m can be defined similarly to γ2, where the
density p is replaced by coefficients over the sampled basis
functions σα(〈wj , ·〉).

2.4. Symmetric Neural Networks

A universal approximator for symmetric functions was pro-
posed by (Zaheer et al., 2017), which proved that for any
fixed N and fN ∈ FNsym there must exist Φ : I→ RL and
ρ : RL → R such that

fN (x) = ρ

(
1

N

N∑
n=1

Φ(xn)

)
. (2)

However, universality is only proven for fixed N . Given
a symmetric function f ∈ Fsym we might hope to learn ρ

1Or a modified NTK kernel that also includes gradients with
respect to first-layer weights (Jacot et al., 2018)

and Φ such that this equation holds for all N . Note that
the fraction 1

N is not present in their formulation, but is
necessary for generalization across N to be feasible (as
otherwise the effective domain of ρ could grow arbitrarily
large as N →∞).

Treating the input to ρ as an average motivates moving
from sets to measures as inputs, as proposed in (Pevny &
Kovarik, 2019; De Bie et al., 2019). Given x ∈ IN , let
µ(N) = 1

N

∑N
i=1 δxi denote the empirical measure in the

space P(I) of probability measures over I. Then (2) can be
written as fN (x) = ρ

(∫
I Φ(u)µ(N)(du)

)
.

3. From Set to Measure Functions
3.1. Neural Functional Spaces for Learning over

Measures

Equipped with the perspective of (2) acting on an empir-
ical measure, we consider shallow neural networks that
take probability measures as inputs, with test functions as
weights. We discuss in Section 3.2 which functions defined
over sets admit an extension to functions over measures.

Let A be a subset of C0(I), equipped with its Borel sigma
algebra. For µ ∈ P(I), and a signed Radon measure χ ∈
M(A), define f : P(I)→ R as

f(µ;χ) =

∫
A
σ̃(〈φ, µ〉)χ(dφ) . (3)

where σ̃ is again a scalar activation function, such as the
ReLU, and 〈φ, µ〉 :=

∫
I φ(x)µ(dx). Crucially, the space

of functions given by f(·;χ) were proven to be dense in
the space of real-valued continuous (in the weak topology)
functions on P(I) in (Pevny & Kovarik, 2019; De Bie et al.,
2019), and so this network exhibits universality.

Keeping in mind the functional norms defined on test func-
tions in Section 2.3, we can introduce analogous norms
for neural networks on measures. For a fixed probability
measure τ ∈ P(A), define

‖f‖1,A = inf

{
‖χ‖TV; f(µ) =

∫
A
σ̃(〈φ, µ〉)χ(dφ)

}
,

(4)

‖f‖2,A = inf

{
‖q‖L2

; f(µ) =

∫
A
σ̃(〈φ, µ〉)q(φ)τ(dφ)

}
,

(5)
where we take the infima over Radon measures χ ∈
M(A) and densities q ∈ L2(dτ). Analogously these
norms also induce the respective function classes G1(A) =
{f : ‖f‖1,A < ∞}, G2(A) = {f : ‖f‖2,A < ∞}.
The argument in Appendix A of (Bach, 2017a) implies
G2(A) is an RKHS, with associated kernel kG(µ, µ′) =∫
A σ̃(〈φ, µ〉)σ̃(〈φ, µ′〉)τ(dφ).

Functional Perspective on Learning Symmetric Functions

Moving from vector-valued weights to function-valued
weights presents an immediate issue. The space C0(I) is
infinite-dimensional, and it is not obvious how to learn a
measure χ over this entire space. Moreover, our ultimate
goal is to understand finite-width symmetric networks, so
we would prefer the function-valued weights be efficiently
calculable rather than pathological. To that end, we choose
the set of test functions A to be representable as regular
neural networks.

Explicitly, using the function norms
of Section 2.3, define A1,m ={
φ;φ(x) =

∑m
j=1 βjσα(〈wj , x̃〉), ‖wj‖2≤ 1, ‖β‖1≤ 1

}
and A2,m = {φ ∈ F2,m : γ2,m(φ) ≤ 1}.

A1,m thus contains functions in the unit ball of F1 that
can be expressed with m neurons, and A2,m contains func-
tions in the (random) RKHS F2,m obtained by sampling
m neurons from κ. By definition A2,m ⊂ A1,m for all
m. Representational power grows with m, and observe
that the approximation rate in the unit ball of F1 or F2

is in m−1/2, obtained for instance with Monte-Carlo es-
timators (Bach, 2017a; Ma et al., 2019). Hence we can
also consider the setting where m =∞, with the notation
A{i,∞} = {φ ∈ Fi : γi(φ) ≤ 1}. Note also that there is
no loss of generality in choosing the radius to be 1, as by
homogeneity of σ any φ with γi(φ) <∞ can be scaled into
its respective norm ball.

We now examine the combinations of Gi with Ai:

• S1,m := G1(A1,m); the measure χ is supported on test
functions in A1,m.

• S2,m := G1(A2,m); χ is supported on test functions in
A2,m.

• S3,m := G2(A2,m); χ has a density with regards to τ ,
which is supported on A2,m.

• The remaining class G2(A1,m) requires defining a
probability measure τ over A1,m that sufficiently
spreads mass outside of any RKHS ball. Due to the
difficulty in defining this measure in finite setting, we
omit this class.

Note that from Jensen’s inequality and the inclusionA2,m ⊂
A1,m for all m, we have the inclusions S3,m ⊂ S2,m ⊂
S1,m. And S3,m is clearly an RKHS, since it is a particu-
lar instantiation of G2(A). In the sequel we will drop the
subscript m and simply write Ai and Si.

These functional spaces provide an increasing level of adap-
tivity: while S2 is able to adapt by selecting ‘useful’ test
functions φ, it is limited to smooth test functions that lie on
the RKHS, whereas S1 is able to also adapt to more irregular

First Layer Second Layer Third Layer
S1 Trained Trained Trained
S2 Frozen Trained Trained
S3 Frozen Frozen Trained

Table 1: Training for finite function approximation

test functions that themselves depend on low-dimensional
structures from the input domain. We let ‖f‖Si denote the
associated norm, i.e. ‖f‖S1 := ‖f‖1,A1

.

Finite-Width Implementation: For any m, these classes
admit a particularly simple interpretation when implemented
in practice. On the one hand, the spaces of test functions
are implemented as a single hidden-layer neural network of
width m. On the other hand, the integral representations in
(4) and (5) are instantiated by a finite-sum usingm′ neurons,
leading to the finite analogues of our function classes given
in Table 1. Specifically,

f(µ) =
1

m′

m′∑
j′=1

bj′ σ̃

1

m

m∑
j=1

cj′,j

∫
σα(〈wj′,j , x̃〉)µ(dx)


One can verify (Neyshabur et al., 2015) that the finite-width
proxy for the variation norm is given by

‖f‖1 =
1

m′

∑
j′

|bj′ |‖φj′‖1 ≤
1

mm′

∑
j′,j

|bj′ ||cj′,j |‖wj′,j‖ ,

which in our case corresponds to the so-called path norm
(Neyshabur et al., 2014). In particular, under the practical
assumption that the test functions φj′ are parameterized
by two-layer networks with shared first layer, the weight
vectors wj′,j only depend on j and this norm may be easily
calculated as a matrix product of the network weights. We
can control this term by constraining the weights of the first
two layers to obey our theoretical assumptions (of bounded
weights and test functions in respective RKHS balls), and
regularize the final network weights. See Section 6 and the
Appendix for practical relaxations of the constraints.

3.2. Continuous Extension

In general, the functions we want to represent don’t take in
measures µ ∈ P(I) as inputs. In this section, we want to
understand when a function f defined on the power set f :
I→ R can be extended to a continuous map f̄ : P(I)→ R
in the weak topology, in the sense that for all N ∈ N and all
(x1, . . . xN) ∈ IN , f̄

(
1
N

∑N
i=1 δxi

)
= f(x1, . . . , xN).

Observe that by construction f̄ captures the permutation
symmetry of the original f . Define the mapping D : I →
P(I) by D(x1, . . . , xN) = 1

N

∑N
i=1 δxi . Let P̂N (I) :=

D(IN) and P̂(I) =
⋃∞
N=1 P̂N (I), so that P̂(I) is the set

Functional Perspective on Learning Symmetric Functions

of all finite discrete measures. For µ ∈ P̂(I), let N(µ) be
the smallest dimension of a point in D−1(µ), and let x be
this point (which is unique up to permutation). Then define
f̂ : P̂(I)→ R such that f̂(µ) = fN (x).

We also write W1(µ, µ′) as the Wasserstein 1-metric under
the ‖·‖2 norm (Villani, 2008). The following proposition es-
tablishes a necessary and sufficient condition for continuous
extension of f :

Proposition 3.1 There exists a continuous extension f̄ iff f̂
is uniformly continuous with regard to the W1 metric on its
domain.

This result formalises the intuition that extending a sym-
metric function from sets to measures requires a minimal
amount of regularity across sizes. We next show examples
of symmetric families that can be extended to P(I).

3.3. Examples of Eligible Symmetric Families

Moment-based Functions: Functions based on
finite-range interactions across input elements
admit continuous extensions. For example, a
function of singleton and pairwise interactions
f(x) = ρ

(
1
N

∑N
i=1 φ1(xi),

1
N2

∑N
i1,i2=1 φ2(xi1 , xi2)

)
is a special case of the continuous measure extension
f̄(µ) = ρ (〈φ1, µ〉, 〈φ2, µ⊗ µ〉) when µ = D(x).

Ranking: Suppose that I ⊆ R. The max function
fN (x) = maxi≤N xi cannot be lifted to a function on mea-
sures due to discontinuity in the weak topology. Specifically,
consider µ = δ0 and νN = N−1

N δ0 + 1
N δ1. Then νN ⇀ µ,

but for f̂ as in Proposition 3.1, f̂(νN) = 1 6= 0 = f̂(µ).

Nevertheless, we can define an extension on a smooth
approximation via the softmax, namely gλN (x) =
1
λ log 1

N

∑N
i=1 exp(λxi). This formulation, which is the

softmax up to an additive term, can clearly be lifted to a
function on measures, with the bound ‖gλN−fN‖∞ ≤

logN
λ .

Although we cannot learn the max family across all N , we
can approximate arbitrarily well for bounded N .

Counterexamples: Define the map ∆k : RN → RkN
such that ∆k(x) is a vector of k copies of x. Then a nec-
essary condition for the function f̂ introduced in Propo-
sition 3.1 to be uniformly continuous is that fN (x) =
fkN (∆k(x)) for any k. Intuitively, if fN can distinguish
the input set beyond the amount of mass on each point, it
cannot be lifted to measures. This fact implies any continu-
ous approximation to the family fN (x) = x[2], the second
largest value of x will incur constant error.

4. Approximation and Function Class
Separation

4.1. Approximation of single ‘neurons’

In the same spirit as the “separations” between F1 and F2,
we characterise prototypical functions that belong to Si but
have poor approximation rates in Si+1 for i = {1, 2} in
terms of the relevant parameters of the problem, the input
dimensionality d and the bandwidth parameter m. Such
functions are given by single neurons in a spherical input
regime (details for this setting are given in the Appendix).

For the remainder of this work, we consider σ̃ = σ as the
ReLU activation, and choose α = 2 such that σ2(t) = σ(t)2

is the squared ReLU.

Theorem 4.1 (informal) Assume m = ∞. For appropri-
ate choices of the kernel base measures κ and τ , there exist
f1 with ‖f1‖S1 ≤ 1 and f2 with ‖f2‖S2 ≤ 1 such that:

inf
‖f‖S3≤δ

‖f − f2‖∞ & d−2δ−5/d ,

inf
‖f‖S2≤δ

‖f − f1‖∞ & |d−11 − d−d/3δ| .

The choice of the squared ReLU activation in the parameteri-
zation of the test functions is required in the proof separating
S1 and S2. This follows from some properties of spherical
harmonic parity and the decomposition of signed measures
into probability measures.

These separations use the infinity norm rather than an ap-
propriate L2 norm, and therefore hold in a weaker norm
than separation between F1 and F2. Nevertheless, these
separations confirm that symmetric network expressiveness
is graded by the degree of non-linear learning.

Both results hold in the domain m = ∞, so from the con-
centration of the empirical kernel km → k, with high prob-
ability these approximation lower bounds will still hold for
sufficiently large m. In finite-width implementations, how-
ever, m may be sufficiently small that the random kernel
more explicitly determines the expressiveness of Si,m. We
experimentally test the presence of these depth separations
with finite m in Section 6.

4.2. Approximation of variational symmetric function
via Laplace method

Consider any symmetric family fN (x) =
arg mint∈T 〈µ̂x, φt〉 where µ̂x is the empirical mea-
sure of x, ie, µ̂x = 1

N

∑
i δxi , T is a Euclidean subset,

and t 7→ φt is measurable. For example T = R and
φt(x) = |t− x| yields fN as the median.

Although this function family isn’t necessarily uniformly
continuous in the weak topology, we highlight the option

Functional Perspective on Learning Symmetric Functions

of a Laplace approximation. Define Eµ(t) := 〈µ, φt〉
and introduce the density pβ(t) = 1

Z e
−βEµ(t) where

Z =
∫
T
e−βEµ(t)dt is the partition function. Then

consider the Gibbs approximation gβ(µ) := Epβ [t] =
1
Z

∫
T
te−βEµ(t)dt.

One can verify (e.g. (Raginsky et al., 2017)) that gβ → g

pointwise at a rate ∼ d log(β+1)
β . As gβ is continuous, by

universality it can be represented in Si for all i = {1, 2, 3}.
An approximation of gβ is given as a ratio of two shallow

networks gβ(µ) =
∫
T
tσ1(〈µ,φt〉)dt∫

T
σ1(〈µ,φt〉)dt , with σ1(u) = e−βu.

However, the approximation rates blow-up as β →∞ with
an exponential dependency on the dimension of T .

5. Generalization and Concentration
5.1. Generalization Bounds

Despite being a larger function class than F2, the class F1

enjoys a nice generalization bound (Bach, 2017a). Cru-
cially, this property is inherited when we lift to functions on
measures, controlling the generalization of functions in S1:

Proposition 5.1 Assume for given δ, for all y the loss func-
tion `(y, ·) isG-Lipschitz onB0(2R2δ), and l(y, 0) ≤ RGδ.
Then with probability at least 1− t,

sup
‖f‖S1≤δ

∣∣∣∣∣Eµ∼D`(f∗(µ), f(µ))− 1

n

n∑
i=1

`(f∗(µi), f(µi))

∣∣∣∣∣
≤ 2RGδ + 16R4Gδ√

n
+ (4R2Gδ + 2RGδ)

√
log 1/t

2n
.

This proposition demonstrates that learning in S1 is not
cursed by the dimension of the underlying input space I.
In other words, the main price for learning in S1 is not in
generalization, despite the size of this class relative to S2 and
S3. In the absence of a lower bound on generalization error
for the RKHS function classes, our experiments investigate
the generalization of these models in practice.

Although d and N do not appear in this bound, these param-
eters nevertheless impact the generalization of our function
classes Si. The input dimension controls the separation of
the classes according to Theorem 4.1, and therefore larger d
weakens the generalization of S2 and S3; compare Figure 1
and Figure 4 (in the Appendix) for how RKHS methods
suffer in higher dimensions. Whereas large N and a natural
choice of D make generalization for S1, and hence all three
classes, nearly trivial, as discussed in section 5.2.

5.2. Concentration across Input Size

Consider the data distribution from which we sample,
namely a measure from P

(
Ī
)

to sample finite sets. A natu-
ral way to draw data is to consider the following sampling

procedure: given ξ ∈ P(P(I)) and Ω ∈ P(N), draw µ ∼ ξ
and N ∼ Ω, sample N independent points xi ∼ µ, and re-
turn {x1, . . . , xN}. If ξ is too peaked, this sampling process
will concentrate very rapidly:

Proposition 5.2 For ξ = δµ∗ , the Rademacher com-
plexity E sup‖f‖S1≤δ

∣∣ 1
n

∑n
i=1 εif(µi)

∣∣ . δR(n−1/2 +

REN∼Ω[N−1/d]).

Hence, the question of generalization across differently
sized sets becomes trivial if N is large and d is small. In
our experiments, N ≈ d, so we will nevertheless choose
ξ = δµ for some µ ∈ P(I). We consider more exotic data
distributions over measures in the experiments on robust
mean estimation in Section 6.2.

6. Experiments
6.1. Symmetric Function Approximation

We consider the task of learning several common symmetric
functions (see Figure 1). Our aim is to practically under-
stand the approximation bounds of Theorem 4.1, as well as
the generalization result of Proposition 5.1. Furthermore,
by training and testing on sets of different sizes, we may
consider how the models perform on out-of-distribution
generalization across input size.

Experimental Setup: We instantiate our three function
classes in the finite network setting, as outlined in Table 1.
We use input dimension d = 10. For the finite realization
of S1, we use first hidden layer size m = 100 and second
hidden layer size h = 100. Crucially, after fixing the finite
architecture representing S1, we scale up the width by 10
for the models with frozen weights. That is, the first hidden
layer in S2, and both hidden layers in S3, have width equal
to 1000. Increasing the width makes the S2 and S3 models
strictly more powerful, and this setup allows us to inspect
whether a larger number of random kernel features can
compensate for a smaller, trained weight in approximation.
For each model, we use its associated functional norm for
regularization.

Each network is trained on a batch of 100 input sets. For our
data distribution we consider the base domain I = [−3, 3]d,
and the distribution over input measures ξ places all its mass
on the uniform measure U([−3, 3]d). We choose to train
with N = 4, i.e. all networks train on input sets of size 4,
and test on sets of varying size. From the results we can
measure out-of-distribution generalization of finite sets.

The one-dimensional symmetric functions are defined on
sets of vectors by first applying inverse norms, i.e. fN (x) =
max1≤i≤N ‖xi‖−1

2 . The potential function calculates the
normalized gravitational potential among equal masses, i.e.
fN (x) = 2

N(N−1)

∑
i<j

1
‖xi−xj‖2 . The planted neuron and

Functional Perspective on Learning Symmetric Functions

Figure 1: Test Error for d = 10 on the neural architectures of Section 3.1

smooth neuron are given as single-neuron networks, where
following from the proof of Theorem 4.1, the planted neu-
ron weight initialization is distinct from the model weight
initialization. Further details are given in the Appendix.

We additionally consider an applied experiment on a variant
of MNIST to observe how the finite-width implementations
perform on real-world data, by first mapping images to
point clouds. Due to space limitations, details and results
are given in the Appendix.

Discussion: We observe in Figure 1 that S3 performs sub-
stantially worse in several cases, consistent with this func-
tion class being the smallest of those considered. The classes
S2 and S1 are competitive for some functions, although we
observe a trend where S1 still has better generalization per-
formance. Therefore, the larger number of random kernel
features doesn’t compensate for training a smaller weight
matrix in S1, empirically confirming Theorem 4.1.

The test error on sets of larger size than the training data
corroborates the conclusion of Proposition 3.1. The second-
largest-element function generalizes extremely poorly, con-
sistent with the observation in Section 3.3 that this function
family cannot be approximated without constant error. In
particular, all function classes more effectively generalize
across different N on the softmax than the max, seeing as
the latter lacks uniform continuity in measure space.

The other essential takeaway is the performance of the three
models on the planted neurons in Figure 2. By using a
distinct weight initialization for the neuron, its first layer
will have very little mass under κ, and its first two layers
will have little mass under τ , and therefore random features
will not suffice to approximate this neuron. This is true

even with the scaling of S2 and S3 to enable more random
kernel features, reiterating that these single neuron functions
realize a meaningful separation between the classes. We
observe a more similar performance of S1 and S2 on the
smooth_neuron, as this function is chosen to be exactly
representable with the random kernel features sampled by
S2. According to the function class inclusion it is still
representable by S1, but from Theorem 4.1 not efficiently
representable by S3, which is consistent with the results.

On increasing m, the standard deviations of S2 and S3

shrink with more random kernel features, but S1 still
achieves the best approximation on the neuron. For the
smooth neuron, S1 and S2 perform comparably, but S3 per-
forms worse even for larger m. In Figure 3 we confirm the
need for taking averages rather than sums in the DeepSets
architecture, as the unnormalized model cannot generalize
outside of the value of N = 4 where it was trained.

6.2. Robust Mean Estimation

Symmetric functions naturally arise in the context of empir-
ical estimators. We consider specifically the task of robust
mean estimation (Diakonikolas et al., 2017), where one
seeks to estimate EX∼P [X] given samples drawn from the
mixture distribution (1 − ε)P + εQ. For simplicity, we
consider an oblivious contamination model where the true
distribution P and the noise distribution Q have similar
mean vectors. Explicitly, each input set is derived as fol-
lows: we sample m ∼ N (0, σ2

mI), m′ ∼ N (m,σ2
m′I),

and define P = N (m,σ2
P I) and Q = N (m′, σ2

QI). Then
each input sets consist of N samples (X1, . . . , XN) where
Xi

iid∼ (1−ε)P +εQ. Note that each input set is a corrupted
sample with a different true mean vector m.

Functional Perspective on Learning Symmetric Functions

Figure 2: Planted neurons for m = 100 (left two) and m = 200 (right two). The smooth neuron has weights sampled consistently with
F2 while the regular neuron has weights sampled distinctly from the network initialization.

N = 10 N = 20 N = 30 N = 40
S1 0.335± 0.153 0.131± 0.018 0.091± 0.011 0.076± 0.011
S2 0.342± 0.153 0.137± 0.019 0.098± 0.012 0.082± 0.011
S3 0.361± 0.162 0.144± 0.020 0.103± 0.013 0.087± 0.013

Sample Mean 0.385± 0.172 0.153± 0.068 0.093± 0.042 0.096± 0.043
Geometric Median 0.321± 0.144 0.138± 0.062 0.087± 0.039 0.077± 0.034

Adversarial Estimator 0.612± 0.495 0.469± 0.550 0.417± 0.549 0.420± 0.564

Table 2: Mean squared test error for robust mean estimation among the finite model instantiations and baselines.

Figure 3: Test error for S1 versus unnormalized DeepSets
architecture.

Experimental Setup: The network architecture is the
same as above, with d = 10. We use σm = 1, σm′ = 2,
σP = σQ = 1.5, and ε = 0.2. All networks train on sets
of size N = 20, and test on sets of varying size, with mean
squared error as the objective. As baselines we consider the
naive sample mean, the geometric median, and the adver-
sarially robust mean estimator proposed in (Diakonikolas
et al., 2017). The results are given in Table 2.

Discussion: Although the variance is quite high due to the
sampling procedure, performance in this setting confirms

that robust mean estimation also realizes the class separa-
tion, and that for this simple corruption model learning is
competitive and in some cases superior to fixed estimators.
In particular, the advantage of S1 over the baselines is most
clear forN = 20, the setting where it was trained. Although
the dependence of the fixed estimators on σP and σQ van-
ishes as N → ∞, the dependence on these parameters is
non-negligible in the regime whereN is small, and therefore
the robust mean may not generalize in the sense of Proposi-
tion 3.1. We explore training on different N sizes further in
the Appendix. The poor performance of the adversarial esti-
mator can mainly be attributed to the fact that the number
of samples is considerably smaller than the setting studied
in (Diakonikolas et al., 2017), weakening the concentration
of the empirical covariance matrix on which this estimator
relies.

7. Conclusion
In this work, we have analyzed learning and generalization
of symmetric functions through the lens of neural networks
defined over probability measures, which formalizes the

Functional Perspective on Learning Symmetric Functions

learning of symmetric function families across varying input
size. Our experimental data confirms the theoretical insights
distinguishing tiers of non-linear learning, and suggests that
symmetries in the input might be a natural device to study
the functional spaces defined by deeper neural networks.
Specifically, and by focusing on shallow architectures, our
analysis extends the fundamental separation between adap-
tive and non-adaptive neural networks from (Bach, 2017a)
to symmetric functions, leading to a hierarchy of functional
spaces S3 ⊂ S2 ⊂ S1, in which nonlinear learning is added
into the parametrization of the network weights (S2), and
into the parametrization of test functions (S1) respectively.

A crucial aspect we have not addressed, though, is the com-
putational cost of learning in S1 through gradient-based
algorithms. An important direction of future work is to
build on recent advances in mean-field theory for learning
shallow neural networks (Chizat & Bach, 2020; Ma et al.,
2019; 2020; de Dios & Bruna, 2020).

Acknowledgements: We thank Raghav Singhal for help-
ful discussions regarding the proof of Theorem 4.1.
This work has been partially supported by the Alfred P.
Sloan Foundation, NSF RI-1816753, NSF CAREER CIF-
1845360, and NSF CCF-1814524.

References
Bach, F. Breaking the curse of dimensionality with con-

vex neural networks. The Journal of Machine Learning
Research, 18(1):629–681, 2017a.

Bach, F. On the equivalence between kernel quadrature rules
and random feature expansions. The Journal of Machine
Learning Research, 18(1):714–751, 2017b.

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., and Mar-
cotte, P. Convex neural networks. In Advances in neural
information processing systems, pp. 123–130, 2006.

Chizat, L. and Bach, F. A note on lazy training in su-
pervised differentiable programming. arXiv preprint
arXiv:1812.07956, 2018.

Chizat, L. and Bach, F. Implicit bias of gradient descent for
wide two-layer neural networks trained with the logistic
loss. arXiv preprint arXiv:2002.04486, 2020.

De Bie, G., Peyré, G., and Cuturi, M. Stochastic deep net-
works. In International Conference on Machine Learning,
pp. 1556–1565, 2019.

de Dios, J. and Bruna, J. On sparsity in overparametrised
shallow relu networks. arXiv preprint arXiv:2006.10225,
2020.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being robust (in high dimensions)
can be practical. In International Conference on Machine
Learning, pp. 999–1008. PMLR, 2017.

Efthimiou, C. and Frye, C. Spherical harmonics in p dimen-
sions. World Scientific, 2014.

Fournier, N. and Guillin, A. On the rate of convergence in
wasserstein distance of the empirical measure. Probabil-
ity Theory and Related Fields, 162(3-4):707–738, 2015.

Frogner, C., Zhang, C., Mobahi, H., Araya, M., and Poggio,
T. A. Learning with a wasserstein loss. In Advances in
neural information processing systems, pp. 2053–2061,
2015.

Hashimoto, T., Gifford, D., and Jaakkola, T. Learning
population-level diffusions with generative rnns. In In-
ternational Conference on Machine Learning, pp. 2417–
2426, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571–8580, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Ma, C., Wu, L., and E, W. Barron spaces and the composi-
tional function spaces for neural network models. arXiv
preprint arXiv:1906.08039, 2019.

Ma, C., Wu, L., et al. The quenching-activation behavior
of the gradient descent dynamics for two-layer neural
network models. arXiv preprint arXiv:2006.14450, 2020.

Macdonald, I. G. Symmetric functions and Hall polynomials.
Oxford university press, 1998.

Maron, H., Fetaya, E., Segol, N., and Lipman, Y. On the
universality of invariant networks. In International Con-
ference on Machine Learning, pp. 4363–4371, 2019.

Mhaskar, H. N. and Hahm, N. Neural networks for func-
tional approximation and system identification. Neural
Computation, 9(1):143–159, 1997.

Functional Perspective on Learning Symmetric Functions

Neyshabur, B., Tomioka, R., and Srebro, N. In search of the
real inductive bias: On the role of implicit regularization
in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Neyshabur, B., Tomioka, R., and Srebro, N. Norm-Based
Capacity Control in Neural Networks. arXiv:1503.00036
[cs, stat], April 2015. URL http://arxiv.org/
abs/1503.00036. arXiv: 1503.00036.

Pevny, T. and Kovarik, V. Approximation capability of neu-
ral networks on spaces of probability measures and tree-
structured domains. arXiv preprint arXiv:1906.00764,
2019.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Raginsky, M., Rakhlin, A., and Telgarsky, M. Non-
convex learning via stochastic gradient langevin dy-
namics: a nonasymptotic analysis. arXiv preprint
arXiv:1702.03849, 2017.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in neural information
processing systems, pp. 1177–1184, 2008.

Rosset, S., Swirszcz, G., Srebro, N., and Zhu, J. `1 regu-
larization in infinite dimensional feature spaces. In Inter-
national Conference on Computational Learning Theory,
pp. 544–558. Springer, 2007.

Rossi, F. and Conan-Guez, B. Functional multi-layer per-
ceptron: a non-linear tool for functional data analysis.
Neural networks, 18(1):45–60, 2005.

Sandberg, I. W. and Xu, L. Network approximation of
input-output maps and functionals. Circuits, Systems and
Signal Processing, 15(6):711–725, 1996.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Stinchcombe, M. B. Neural network approximation of con-
tinuous functionals and continuous functions on compact-
ifications. Neural Networks, 12(3):467–477, 1999.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I., and Os-
borne, M. A. On the limitations of representing functions
on sets. In International Conference on Machine Learn-
ing, pp. 6487–6494, 2019.

Yarotsky, D. Universal approximations of invariant maps by
neural networks. arXiv preprint arXiv:1804.10306, 2018.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in neural information processing systems, pp.
3391–3401, 2017.

http://arxiv.org/abs/1503.00036
http://arxiv.org/abs/1503.00036

