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Abstract
The great success of modern machine learning
models on large datasets is contingent on exten-
sive computational resources with high financial
and environmental costs. One way to address this
is by extracting subsets that generalize on par with
the full data. In this work, we propose a general
framework, GRAD-MATCH, which finds subsets
that closely match the gradient of the training
or validation set. We find such subsets effec-
tively using an orthogonal matching pursuit algo-
rithm. We show rigorous theoretical and conver-
gence guarantees of the proposed algorithm and,
through our extensive experiments on real-world
datasets, show the effectiveness of our proposed
framework. We show that GRAD-MATCH signifi-
cantly and consistently outperforms several recent
data-selection algorithms and achieves the best
accuracy-efficiency trade-off. GRAD-MATCH is
available as a part of the CORDS toolkit: https:
//github.com/decile-team/cords.

1. Introduction
Modern machine learning systems, especially deep learning
frameworks, have become very computationally expensive
and data-hungry. Massive training datasets have signifi-
cantly increased end-to-end training times, computational
and resource costs (Sharir et al., 2020), energy require-
ments (Strubell et al., 2019), and carbon footprint (Schwartz
et al., 2019). Moreover, most machine learning models
require extensive hyper-parameter tuning, further increas-
ing the cost and time, especially on massive datasets. In
this paper, we study efficient machine learning through the
paradigm of subset selection, which seeks to answer the
following question: Can we train a machine learning model
on much smaller subsets of a large dataset, with negligible
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loss in test accuracy?

Data subset selection enables efficient learning at multiple
levels. First, by using a subset of a large dataset, we can
enable learning on relatively low resource computational
environments without requiring a large number of GPU and
CPU servers. Second, since we are training on a subset
of the training dataset, we can significantly improve the
end-to-end turnaround time, which often requires multiple
training runs for hyper-parameter tuning. Finally, this also
enables significant reduction in the energy consumption and
CO2 emissions of deep learning (Strubell et al., 2019), par-
ticularly since a large number of deep learning experiments
need to be run in practice. Recently, there have been sev-
eral efforts to make machine learning models more efficient
via data subset selection (Wei et al., 2014a; Kaushal et al.,
2019; Coleman et al., 2020; Har-Peled & Mazumdar, 2004;
Clarkson, 2010; Mirzasoleiman et al., 2020a; Killamsetty
et al., 2021). Existing approaches either use proxy functions
to select data points, or are specific to particular machine
learning models, or use approximations of quantities such
as gradient error or generalization errors. In this work, we
propose a data selection framework called GRAD-MATCH,
which exactly minimizes a residual error term obtained by
analyzing adaptive data subset selection algorithms, there-
fore admitting theoretical guarantees on convergence.

1.1. Contributions of this work

Analyses of convergence bounds of adaptive data subset
selection algorithms. A growing number of recent
approaches (Mirzasoleiman et al., 2020a; Killamsetty et al.,
2021) can be cast within the framework of adaptive data
subset selection, where the data subset selection algorithm
(which selects the data subset depending on specific criteria)
is applied in conjunction with the model training. As the
model training proceeds, the subset on which the model is
being trained is improved via the current model’s snapshots.
We analyze the convergence of this general framework and
show that the convergence bound critically depends on an
additive error term depending on how well the subset’s
weighted gradients match either the full training gradients
or the full validation gradients (c.f., Section 2).

Data selection framework with convergence guarantees.
Inspired by the result above, we present GRAD-MATCH,
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a gradient-matching algorithm (c.f., Section 3), which
directly tries to minimize the gradient matching error. As
a result, we are able to show convergence bounds for a
large class of convex loss functions. We also argue that
the resulting bounds we obtain are tighter than those of
recent works (Mirzasoleiman et al., 2020a; Killamsetty
et al., 2021), which either use upper bounds or their
approximations. We then show that minimizing the gradient
error can be cast as a weakly submodular maximization
problem and propose an orthogonal matching pursuit based
greedy algorithm. We then propose several implementation
tricks (c.f., Section 4), which provide significant speedups
for the data selection step.
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Figure 1. Efficiency of GRAD-MATCH relative to full training on
the CIFAR-10, CIFAR-100, and Imagenet datasets.

Best tradeoff between efficiency and accuracy. In our
empirical results (c.f., Section 5), we show that GRAD-
MATCH achieves much a better accuracy and training-time
trade-off than several state-of-the-art approaches such as
CRAIG (Mirzasoleiman et al., 2020a), GLISTER (Killam-
setty et al., 2021), random subsets, and even full training
with early stopping. When training with ResNet-18 on Ima-
genet, CIFAR-10, and CIFAR-100, we observe around 3×
efficiency improvement with an accuracy drop of close to
1% for 30% subset. With smaller subsets (e.g., 20% and
10%), we sacrifice a little more in terms of accuracy (e.g.,
2% and 2.8%) for a larger speedup in training (4× and 7×).
Furthermore, we see that by extending the training beyond
the specified number of epochs (300 in this case), we can
match the accuracy on the full dataset using just 30% of
the data while being overall 2.5× faster. In the case of
MNIST, the speedup improvements are even more drastic,
ranging from 27× to 12× with 0.35% to 0.05% accuracy
degradation.

1.2. Related work

A number of recent papers have used submodular func-
tions as proxy functions (Wei et al., 2014a;c; Kirchhoff &
Bilmes, 2014; Kaushal et al., 2019) (to actual loss). Let n
be the number of data points in the ground set. Then a set
function f : 2[n] → R is submodular (Fujishige, 2005)
if it satisfies the diminishing returns property: for subsets

S, T ⊆ [n], f(j|S) , f(S ∪ j) − f(S) ≥ f(j|T ). An-
other commonly used approach is that of coresets. Coresets
are weighted subsets of the data, which approximate cer-
tain desirable characteristics of the full data (, e.g., the loss
function) (Feldman, 2020). Coreset algorithms have been
used for several problems including k-means and k-median
clustering (Har-Peled & Mazumdar, 2004), SVMs (Clark-
son, 2010) and Bayesian inference (Campbell & Broderick,
2018). Coreset algorithms require algorithms that are often
specialized and very specific to the model and problem at
hand and have had limited success in deep learning.

A very recent coreset algorithm called CRAIG (Mirza-
soleiman et al., 2020a) has shown promise for both deep
learning and classical machine learning models such as
logistic regression. Unlike other coreset techniques that
largely focus on approximating loss functions, CRAIG se-
lects representative subsets of the training data that closely
approximate the full gradient. Another approach poses the
data selection as a discrete bi-level optimization problem
and shows that, for several choices of loss functions and
models (Killamsetty et al., 2021; Wei et al., 2015), the re-
sulting optimization problem is submodular. A few recent
papers have studied data selection approaches for robust
learning. Mirzasoleiman et al. (2020b) extend CRAIG to
handle noise in the data, whereas Killamsetty et al. (2021)
study class imbalance and noisy data settings by assuming
access to a clean validation set. In this paper, we study data
selection under class imbalance in a setting similar to (Kil-
lamsetty et al., 2021), where we assume access to a clean
validation set. Our work is also related to highly distributed
deep learning systems (Jia et al., 2018) which make deep
learning significantly faster using a cluster of hundreds of
GPUs. In this work, we instead focus on single GPU train-
ing runs, which are more practical for smaller companies
and academic labs and potentially complementary to (Jia
et al., 2018). Finally, our work is also complementary to that
of (Wang et al., 2019), where the authors employ tricks such
as selective layer updates, low-precision backpropagation,
and random subsampling to achieve significant energy re-
ductions. In this work, we demonstrate both energy and time
savings solely based on a more principled subset selection
approach.

2. GRAD-MATCH through the lens of
adaptive data subset selection

In this section, we will study the convergence of general
adaptive subset selection algorithms and use the result (The-
orem 1) to motivate GRAD-MATCH.

Notation. Denote U = {(xi, yi)}Ni=1, as the set of training
examples, and let V = {(xj , yj)}Mj=1 denote the validation
set. Let θ be the classifier model parameters. Next, denote
by LiT (θ) = LT (xi, yi, θ), the training loss at the ith epoch
of training, and let LT (X , θ) =

∑
i∈X LT (xi, yi, θ) be the

loss on a subset X ⊆ U of the training examples. Let the
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Figure 2. Block Diagram of any adaptive data selection algorithm, where data selection is performed every R epochs of (stochastic)
gradient descent, and the gradient descent updates are performed on the subsets obtained by the data selection.

validation loss be denoted by LV . In Table 1 in Appendix A,
we organize and tabulate the notations used throughout this
paper.

Adaptive data subset selection: (Stochastic) gradient de-
scent algorithms proceed by computing the gradients of all
the training data points for T epochs. We study the alterna-
tive approach of adaptive data selection, in which training is
performed using a weighted sum of gradients of the training
data subset instead of the full training data. In the adaptive
data selection approach, the data selection is performed in
conjunction with training such that subsets get incrementally
refined as the learning algorithm proceeds. This incremental
subset refinement allows the data selection to adapt to the
learning and produces increasingly effective subsets with
progress of the learning algorithm. Assume that an adaptive
data selection algorithm produces weights wt and subsets
X t for t = 1, 2, · · · , T through the course of the algorithm.
In other words, at iteration t, the parameters θt are updated
using the weighted loss of the model on subset X t by weigh-
ing each example i ∈ X t with its corresponding weight wti .
For example, if we use gradient descent, we can write the
update step as: θt+1 = θt − α

∑
i∈X t w

t
i∇θLT (xi, yi, θt).

Note that though this framework uses a potentially different
setX t in each iteration t, we need not perform data selection
every epoch. In fact, in practice, we run data selection only
everyR epochs, in which case, the same subsets and weights
will be used between epochs t = Rτ and t = R(τ + 1). In
contrast, the non-adaptive data selection settings (Wei et al.,
2014b;c; Kaushal et al., 2019) employ the same X t = X for
gradient descent in every iteration. In Figure 2, we present
the broad adaptive data selection scheme. In this work, we
focus on a setting in which the subset size is fixed, i.e.,
|X t| = k (typically a small fraction of the training dataset).

Convergence analysis: We now study the conditions for
the convergence of either the full training loss or the valida-
tion loss achieved by any adaptive data selection strategy.
Recall that we can characterize any data selection algorithm
by a set of weights wt and subsets X t for t = 1, · · · , T . We
provide a convergence result which holds for any adaptive
data selection algorithm, and applies to Lipschitz continu-
ous, Lipschitz smooth, and strongly convex loss functions.

Before presenting the result, we define the term:

Err(wt,X t, L, LT , θt) =

∥∥∥∥∥∑
i∈X t

wti∇θLiT (θt)−∇θL(θt)

∥∥∥∥∥
The norm considered in the above equation is the l2 norm.
Next, assume that the parameters satisfy ||θ||2 ≤ D2, and
let L denote either the training or validation loss. We next
state the convergence result:
Theorem 1 Any adaptive data selection algorithm. run with full
gradient descent (GD), defined via weights wt and subsets X t for
t = 1, · · · , T , enjoys the following guarantees:

(1). If LT is Lipschitz continuous with parameter σT , optimal
model parameters are θ∗, and α = D

σT
√
T

, then mint=1:T L(θt)−
L(θ∗) ≤ DσT√

T
+ D

T

∑T−1
t=1 Err(wt,X t, L, LT , θt).

(2) If LT is Lipschitz smooth with parameter LT , optimal model
parameters are θ∗, and LiT satisfies 0 ≤ LiT (θ) ≤ βT , ∀i,
then setting α = 1/LT , we have mint=1:T L(θt) − L(θ∗) ≤
D2LT+2βT

2T
+ D

T

∑T−1
t=1 Err(wt,X t, L, LT , θt).

(3) IfLT is Lipschitz continuous with parameter σT , optimal model
parameters are θ∗, andL is strongly convex with parameter µ, then
setting a learning rate αt = 2

µ(1+t)
, we have mint=1:T L(θt)−

L(θ∗) ≤ 2σT
2

µ(T+1)
+
∑t=T
t=1

2Dt
T (T+1)

Err(wt,X t, L, LT , θt).

We present the proof in Appendix B.1. We can also extend
this result to the case in which SGD is used instead of full
GD to update the model. The main difference in the result is
that the inequality holds with expectations over both sides.
We defer the convergence result and proof to Appendix B.2.
Theorem 1 suggests that an effective data selection algo-
rithm should try to obtain subsets which have very small
error Err(wt,X t, L, LT , θt) for t = 1, · · · , T . If the goal
of data selection is to select a subset X t at every epoch
which approximates the full training set, the data selection
procedure should try to minimize Err(wt,X t, LT , LT , θt).
On the other hand, to select subset X t at every epoch
which approximates the validation set, the data selection
procedure should try to minimize Err(wt,X t, LV , LT , θt).
In Appendix B.3, we provide conditions under which an
adaptive data selection approach reduces the loss function
L (which can either be the training loss LT or the val-
idation loss LV ). In particular, we show that any data
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selection approach which attempts to minimize the error
term Err(wt,X t, L, LT , θt) is also likely to reduce the loss
value at every iteration. In the next section, we present
GRAD-MATCH, that directly minimizes this error function
Err(wt,X t, L, LT , θt).

3. The GRAD-MATCH Algorithm
Following the result of Theorem 1, we now design an adap-
tive data selection algorithm that minimizes the gradient
error term: Err(wt,X t, L, LT , θt) (where L is either the
training loss or the validation loss) as the training proceeds.
The complete algorithm is shown in Algorithm 1. In Algo-
rithm 1, isValid is a boolean Validation flag indicator that
indicates whether to match the subset loss gradient with val-
idation set loss gradient like in the case of class imbalance
(isValid=True) or training set loss gradient (isValid=False).
As discussed in Section 2, we do the subset selection only
everyR epochs, and during the rest of the epochs, we update
the model parameters (using Batch SGD) on the previously
chosen set X t with associated weights wt. This ensures
that the subset selection time in itself is negligible compared
to the training time, thereby ensuring that the adaptive se-
lection runs as fast as simple random selection. The full
algorithm is shown in Algorithm 1. Line 9 of Algorithm 1 is
the mini-batch SGD and takes as inputs the weights, subset
of instances, learning rate, training loss, batch size, and the
number of epochs. We randomly shuffle elements in the
subset X t, divide them up into mini-batches of size B, and
run mini-batch SGD with instance weights.

Lines 3 and 5 in Algorithm 1 are the data subset selection
steps, run either with the full training gradients or vali-
dation gradients. We basically minimize the error term
Err(wt,X t, L, LT , θt) with minor difference. Define the
regularized version of Err(wt,X t, L, LT , θt) as:

Errλ(w,X , L, LT , θt) =Err(w,X , L, LT , θt) + λ‖w‖2
(1)

The data selection optimization problem then is:

wt,X t = argmin
w,X :|X |≤k

Errλ(w,X , L, LT , θt) (2)

In Errλ(w,X , L, LT , θt), the first term is the additional
error term that adaptive subset algorithms have from the
convergence analysis discussed in Section 2, and the second
term is a squared l2 loss regularizer over the weight vector
w with a regularization coefficient λ to prevent overfitting
by discouraging the assignment of large weights to individ-
ual data instances or mini-batches. During data-selection,
we select the weights wt and subset X t by optimizing equa-
tion (2). To this end, we define:

Eλ(X ) = min
w

Errλ(w,X , L, LT , θt) (3)

Note that the optimization problem in Eq. (2) is equivalent to
solving the optimization problem minX :|X |≤k Eλ(X ). The
detailed optimization algorithm is presented in Section 3.1.

GRAD-MATCH for mini-batch SGD: We now discuss an
alternative formulation of GRAD-MATCH, specifically for
mini-batch SGD. Recall from Theorem 1 and optimization
problem (2), that in the case of full gradient descent or SGD,
we select a subset of data points for the data selection. How-
ever, mini-batch SGD is a combination of SGD and full
gradient descent, where we randomly select a mini-batch
and compute the full gradient on that mini-batch. To handle
this, we consider a variant of GRAD-MATCH, which we
refer to as GRAD-MATCHPB. Here we select a subset of
mini-batches by matching the weighted sum of mini-batch
training gradients to the full training loss (or validation loss)
gradients. Once we select a subset of mini-batches, we
train the neural network on the mini-batches, weighing each
mini-batch by its corresponding weight. Let B be the batch
size, bn = n/B as the total number of mini-batches, and
bk = k/B as the number of batches to be selected. Let
∇θLB1

T (θt), · · · ,∇θL
Bbn
T (θt) denote the mini-batch gradi-

ents. The optimization problem is then to minimize EBλ (X ),
which is defined as:

EBλ (X ) = min
w
‖
∑
i∈X

wit∇θL
Bi
T (θt)−∇θL(θt)‖+ λ‖w‖2

The constraint now is |X | ≤ bk, whereX is a subset of mini-
batches instead of being a subset of data points. The use of
mini-batches considerably reduces the number of selection
rounds during the OMP algorithm by a factor of B, result-
ing in B× speed up. In our experiments, we compare the
performance of GRAD-MATCH and GRAD-MATCHPB and
show that GRAD-MATCHPB is considerably more efficient
while being comparable in performance. GRAD-MATCHPB
is a simple modification to lines 3 and 5 of Algorithm 1,
where we send the mini-batch gradients instead of individual
gradients to the orthogonal matching pursuit (OMP) algo-
rithm (discussed in the next section). Further, we use the
subset of mini-batches selected directly without any addi-
tional shuffling or sampling in our current experiments. We
will consider augmenting the selected mini-batch subsets
with additional shuffling or including new mini-batches with
augmented images in our future work.

3.1. Orthogonal Matching Pursuit (OMP) algorithm

We next study the optimization algorithm for solving equa-
tion (2). Our objective is to minimize Eλ(X ) subject to
the constraint X : |X | ≤ k. We can also convert this
into a maximization problem. For that, define: Fλ(X ) =
Lmax − minw Errλ(X ,w, L, LT , θt). Note that we mini-
mize Eλ(X ) subject to the constraint X : |X | ≤ k until
Eλ(X ) ≤ ε, where ε is the tolerance level. Note that mini-
mizing Eλ is equivalent to maximizing Fλ. The following
result shows that Fλ is weakly submodular.

Theorem 2 If |X | ≤ k and maxi ||∇θLiT (θt)||2 < ∇max, then
Fλ(X ) is γ-weakly submodular, with γ ≥ λ

λ+k∇2
max

We present the proof in Appendix B.4. Recall that a set
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Algorithm 1 GRAD-MATCH Algorithm

Require: Train set: U ; validation set: V; initial subset: X (0);
subset size: k; TOL: ε; initial params: θ0; learning rate: α;
total epochs: T , selection interval: R, Validation Flag: isValid,
Batchsize: B

1: for epochs t in 1, · · · , T do
2: if (t mod R == 0) and (isValid == 1) then
3: X t,wt = OMP(LT , LV , θt, k, ε)
4: else if (t mod R == 0) and (isValid == 0) then
5: X t,wt = OMP(LT , LT , θt, k, ε)
6: else
7: X t = X t−1

8: end if
9: θt+1 = BatchSGD(X t,wt, α, LT , B,Epochs = 1)

10: end for
11: Output final model parameters θT

Algorithm 2 OMP
Require: Training loss LT , target loss: L, current parameters: θ,

regularization coefficient: λ, subset size: k, tolerance: ε
X ← ∅
r ← ∇wErrλ(X ,w, L, LT , θ)|w=0

while |X | ≤ k and Eλ(X ) ≥ ε do
e = argmaxj |rj |
X ← X ∪ {e}
w← argminwErrλ(X ,w, L, LT , θ)
r ← ∇wErrλ(X ,w, L, LT , θ)

end while
return X , w

function F : 2[n] → R is γ-weakly submodular (Gat-
miry & Gomez-Rodriguez, 2018; Das & Kempe, 2011)
if F (j|S) ≥ γF (j|T ), S ⊆ T ⊆ [n]. Since Fλ(X ) is ap-
proximately submodular (Das & Kempe, 2011), a greedy
algorithm (Nemhauser et al., 1978; Das & Kempe, 2011;
Elenberg et al., 2018) admits a (1− exp(−γ)) approxima-
tion guarantee. While the greedy algorithm is very appeal-
ing, it needs to compute the gain Fλ(j|X ), O(nk) number
of times. Since computation of each gain involves solving a
least squares problem, this step will be computationally ex-
pensive, thereby defeating the purpose of data selection. To
address this issue, we consider a slightly different algorithm,
called the orthogonal matching pursuit (OMP) algorithm,
studied in (Elenberg et al., 2018). We present OMP in
Algorithm 2. In the corollary below, we provide the approx-
imation guarantee for Algorithm 2.

Corollary 1 Algorithm 2, when run with a cardinality constraint
|X | ≤ k returns a 1− exp

(
−λ

λ+k∇2
max

)
approximation for maxi-

mizing Fλ(X ) with X : |X | ≤ k.

We can also find the minimum sized subset such that the
resulting error Eλ(X ) ≤ ε. We note that this problem is
essentially: minX |X | such that Fλ(X ) ≥ Lmax − ε. This
is a weakly submodular set cover problem, and the follow-
ing theorem shows that a greedy algorithm (Wolsey, 1982)
as well as OMP (Algorithm 2) with a stopping criterion
Eλ(X ) ≤ ε achieve the following approximation bound:

Theorem 3 If the function Fλ(X ) is γ-weakly submodular, X ∗
is the optimal subset and maxi ||∇θLiT (θt)||2 < ∇max, (both)
the greedy algorithm and OMP (Algorithm 2), run with stop-
ping criteria Eλ(X ) ≤ ε result in sets X such that |X | ≤
|X∗|
γ

log
(
Lmax
ε

)
where Lmax is an upper bound of Fλ .

The proof of this theorem is in Appendix B.5. Finally, we
derive the convergence result for GRAD-MATCH as a corol-
lary of Theorem 1. In particular, assume that by running
OMP, we can achieve sets X t such that Eλ(X t) ≤ ε, for all
t = 1, · · · , T . If L is Lipschitz continuous, we obtain a con-
vergence bound of mint L(θt)−L(θ∗) ≤ DσT√

T
+Dε. In the

case of smooth or strongly convex functions, the result can
be improved to O(1/T ). For example, with smooth func-
tions, we have: mint L(θt) − L(θ∗) ≤ D2LT+2βT

2T + Dε.
More details can be found in Appendix B.6.

3.2. Connections to existing work

Next, we discuss connections of GRAD-MATCH to existing
approaches such as CRAIG and GLISTER, and contrast the
resulting theoretical bounds. Let X be a subset of k data
points from the training or validation set. Consider the
expression for loss L(θ) =

∑
i∈W L(xi, yi, θ) so that L =

LT when W = U and L = LV when W = V . Define
Ê(X ) to be:

Ê(X ) =
∑
i∈W

min
j∈X
‖∇θLi(θt)−∇θLjT (θt)‖ (4)

Note that Ê(X ) is an upper bound for E(X ) (Mirza-
soleiman et al., 2020a):

E(X ) = min
w

Err(w,X , L, LT , θt) ≤ Ê(X ) (5)

Given the set X t obtained by optimizing Ê, the weight wt
j

associated with the jth point in the subset X t will be: wt
j =∑

i∈W I
[
j = arg mins∈X t‖∇θLiT (θt)−∇θLs(θt)‖]. Note

that we can minimize both sides with respect to a cardinality
constraint X : |X | ≤ k; the right hand side of eqn. (5)
is minimized when X is the set of k medoids (Kaufman
et al., 1987) for all the components in the gradient space. In
Appendix B.7, we prove the inequality (5), and also discuss
the maximization version of this problem and how it relates
to facility location. Similar to GRAD-MATCH, we also use
the mini-Batch version for CRAIG (Mirzasoleiman et al.,
2020a), which we refer to as CRAIGPB. Since CRAIGPB
operates on a much smaller groundset (of mini-batches), it
is much more efficient than the original version of CRAIG.

Next, we point out that a convergence bound, very similar
to GRAD-MATCH can be shown for CRAIG as well. This
result is new and different from the one shown in (Mirza-
soleiman et al., 2020a) since it is for full GD and SGD, and
not for incremental gradient descent algorithms discussed
in (Mirzasoleiman et al., 2020a). If the subsets X t obtained
by running CRAIG satisfy Ê(X t) ≤ ε,∀t = 1, · · · , T , we
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can show O(1/
√
T ) and O(1/T ) bounds (depending on the

nature of the loss) with an additional ε term. However, the
bounds obtained for CRAIG will be weaker than the one for
GRAD-MATCH since Ê is an upper bound of E. Hence, to
achieve the same error, a potentially larger subset could be
required for CRAIG in comparison to GRAD-MATCH.

Finally, we also connect GRAD-MATCH to GLISTER (Kil-
lamsetty et al., 2021). While the setup of GLISTER is differ-
ent from GRAD-MATCH since it directly tries to optimize
the generalization error via a bi-level optimization, the au-
thors use a Taylor-series approximation to make GLISTER
efficient. The Taylor-series approximation can be viewed
as being similar to maximizing the dot product between∑
i∈X ∇θLiT (θt) and ∇θL(θt). Furthermore, GLISTER

does not consider a weighted sum the way we do, and
is therefore slightly sub-optimal. In our experiments, we
show that GRAD-MATCH outperforms CRAIG and GLIS-
TER across a number of deep learning datasets.

4. Speeding up GRAD-MATCH

In this section, we propose several implementational and
practical tricks to make GRAD-MATCH scalable and effi-
cient (in addition to those discussed above). In particular,
we will discuss various approximations to GRAD-MATCH
such as running OMP per class, using the last layer of the
gradients, and warm-start to the data selection.

Last-layer gradients. The number of parameters in mod-
ern deep models is very large, leading to very high dimen-
sional gradients. The high dimensionality of gradients slows
down OMP, thereby decreasing the efficiency of subset selec-
tion. To tackle this problem, we adopt a last-layer gradient
approximation similar to (Ash et al., 2020; Mirzasoleiman
et al., 2020a; Killamsetty et al., 2021) by only consider-
ing the last layer gradients for neural networks in GRAD-
MATCH. This simple trick significantly improves the speed
of GRAD-MATCH and other baselines.

Per-class and per-gradient approximations of GRAD-
MATCH: To solve the GRAD-MATCH optimization prob-
lem, we need to store the gradients of all instances in mem-
ory, leading to high memory requirements for large datasets.
In order to tackle this problem, we consider per-class and
per-gradient approximation. We solve multiple gradient
matching problems using per-class approximation - one for
each class by only considering the data instances belonging
to that class. The per-class approximation was also adopted
in (Mirzasoleiman et al., 2020a). To further reduce the mem-
ory requirements, we additionally adopt the per-gradient
approximation by considering only the corresponding last
linear layer’s gradients for each class. The per-gradient and
per-class approximations not only reduce the memory usage,
but also significantly speed up (reduce running time of) the
data selection itself. By default, we use the per-class and
per-gradient approximation, with the last layer gradients

and we will call this algorithm GRAD-MATCH. We do not
need these approximations for GRAD-MATCHPB since it
is on a much smaller ground-set (mini-batches instead of
individual items).

Warm-starting data selection: For each of the algorithms
we consider in this paper (i.e., GRAD-MATCH, GRAD-
MATCHPB, CRAIG, CRAIGPB, and GLISTER), we also
consider a warm-start variant, where we run Tf epochs of
full training. We set Tf in a way such that the number of
epochs Ts with the subset of data is a fraction κ of the total
number of epochs, i.e., Ts = κT and Tf = Tsk

n , where k
is the subset size. We observe that doing full training for
the first few epochs helps obtain good warm-start models,
resulting in much better convergence. Setting Tf to a large
value yields results similar to the full training with early
stopping (which we use as one of our baselines) since there
is not enough data-selection.

Other speedups: We end this section by reiterating two im-
plementation tricks already discussed in Section 3, namely,
doing data selection everyR epochs (in our experiments, we
setR = 20, but also study the effect of the choice ofR), and
the per-batch (PB) versions of CRAIG and GRAD-MATCH.

5. Experiments
Our experiments aim to demonstrate the stability and effi-
ciency of GRAD-MATCH. While in most of our experiments,
we study the tradeoffs between accuracy and efficiency
(time/energy), we also study the robustness of data-selection
under class imbalance. For most data selection experiments,
we use the full loss gradients (i.e., L = LT ). As an excep-
tion, in the case of class imbalance, following (Killamsetty
et al., 2021), we use L = LV (i.e., we assume access to a
clean validation set).

Baselines in each setting. We compare the variants
of our proposed algorithm (i.e., GRAD-MATCH, GRAD-
MATCHPB, GRAD-MATCH-WARM, GRAD-MATCHPB-
WARM) with variants of CRAIG (Mirzasoleiman et al.,
2020a) (i.e., CRAIG, CRAIGPB, CRAIG-WARM, CRAIGPB-
WARM), and variants of GLISTER (Killamsetty et al., 2021)
(i.e., GLISTER, GLISTER-WARM). Additionally, we com-
pare against RANDOM (i.e., randomly select points equal to
the budget), and FULL-EARLYSTOP, where we do an early
stop to full training to match the time taken (or energy used)
by the subset selection.

Datasets, model architecture and experimental setup:
To demonstrate the effectiveness of GRAD-MATCH and
its variants on real-world datasets, we performed experi-
ments on CIFAR100 (60000 instances) (Krizhevsky, 2009),
MNIST (70000 instances) (LeCun et al., 2010), CIFAR10
(60000 instances) (Krizhevsky, 2009), SVHN (99,289 in-
stances) (Netzer et al., 2011), and ImageNet-2012 (1.4 Mil-
lion instances) (Russakovsky et al., 2015) datasets. Wher-
ever the datasets do not have a pre-specified validation set,
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Figure 3. Sub-figures (a-g) show speedup vs relative error in % tradeoff (both log-scale) of different algorithms. In each scatter plot,
smaller subsets are on the left, and larger ones are on the right. Results are shown for (a) CIFAR-100, (b) MNIST, (c) CIFAR-10, (d)
SVHN, (e) ImageNet, (f) CIFAR-10 imbalance, and (g) MNIST imbalance. Sub-figures (h, i) show energy gains vs. relative error for
CIFAR-100 and CIFAR-10. Sub-figure (j) shows a convergence plot of different strategies at 30% subset of CIFAR-100. Sub-figure (k)
shows an extended convergence plot of GRAD-MATCHPB-WARM at 30% subset of CIFAR-100 by running it for more epochs. Sub-figure
(l) shows results of GRAD-MATCHPB-WARM using ResNet18 and Full training using MobileNet-V1 and MobileNet-V2 models on the
CIFAR-10 dataset. In every case, the speedups & energy ratios are computed w.r.t full training. Variants of GRAD-MATCH achieve best
speedup-accuracy tradeoff (bottom-right in each scatter plot represents best speedup-accuracy tradeoff region) in almost all cases.

we split the original training set into a new train (90%) and
validation sets (10%). We ran experiments using an SGD
optimizer with an initial learning rate of 0.01, a momentum
of 0.9, and a weight decay of 5e-4. We decay the learning
rate using cosine annealing (Loshchilov & Hutter, 2017) for
each epoch. For MNIST, we use the LeNet model (LeCun
et al., 1989) and train the model for 200 epochs. For all
other datasets, we use the ResNet18 model (He et al., 2016)
and train the model for 300 epochs (except for ImageNet,
where we train the model for 350 epochs). In most of our
experiments, we train the data selection algorithms (and full
training) using the same number of epochs; the only differ-
ence is that each epoch is much smaller with smaller subsets,
thereby enabling speedups/energy savings. We consider one
additional experiment where we run GRAD-MATCHPB-
WARM for 50 more epochs to see how quickly it achieves
comparable accuracy to full training. All experiments were
run on V100 GPUs. Furthermore, the accuracies reported
in the results are mean accuracies after five runs, and the

standard deviations are given in Appendix C.5. More details
are in Appendix C.

Data selection setting: Since the goal of our experiments
is efficiency, we use smaller subset sizes. For MNIST, we
use sizes of [1%, 3%, 5%, 10%], for ImageNet-2012 we use
[5%, 10%, 30%], while for the others, we use [5%, 10%,
20%, 30%]. For the warm versions, we set κ = 1/2 (i.e.
50% warm-start and 50% data selection). Also, we set R =
20 in all experiments. In our ablation study experiments, we
study the effect of varying R and κ.

Speedups and energy gains compared to full training:
In Figures 3a,3b,3c,3d,3e, we present scatter plots of rela-
tive error vs. speedups, both w.r.t full training. Figures 3h,3i
show scatter plots of relative error vs. energy efficiency,
again w.r.t full training. In each case, we also include the
cost of subset selection and subset training while computing
the wall-clock time or energy consumed. For calculating the
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Figure 4. Sub-figure (a) compares the effect of varying R (5, 10 and 20) for different strategies (5% CIFAR-100). Sub-figure (b) compares
R = 5 with a 5% subset (circles) and R = 20 with 10% subset (squares) showing that the latter is more efficient and accurate. Sub-figure
(c) compares the per-batch (PB) versions with non-PB versions showing that the former has a better accuracy-efficiency trade-off.
Sub-figure (d) compares the warm-start variants with the variants without warm-start for different subset sizes of CIFAR-100. Sub-figure
(e) shows the performance of different selection strategies for 30% CIFAR-10 with varying percentages of imbalanced classes: 30%, 60%,
and 90%. GRAD-MATCH-WARM outperforms all baselines, including full training (which under-performs due to a high imbalance).
Sub-figure (f) shows the effect of the warm-start parameter κ for CIFAR-100. Sub-figure (g) shows the effect of the regularization
parameter λ on GRAD-MATCH and its variants for 10% CIFAR-10.

energy consumed by the GPU/CPU cores, we use pyJoules1.
As a first takeaway, we note that GRAD-MATCH and its
variants, achieve significant speedup (single GPU) and en-
ergy savings when compared to full training. In particular
(c.f., Figure 1) for CIFAR-10, GRAD-MATCHPB-WARM
achieves a 7x, 4.2x and 3x speedup and energy gains (with
10%, 20%, 30% subsets) with an accuracy drop of only
2.8%, 1.5% and 0.9% respectively. For CIFAR-100, GRAD-
MATCHPB-WARM achieves a 4.8x and 3x speedup with an
accuracy loss of 2.1% and 0.7% respectively, while for Ima-
geNet, (30% subset), GRAD-MATCHPB-WARM achieves
a 3x speedup with an accuracy loss of 1.3%. The gains are
even more significant for MNIST.

Comparison to other baselines: GRAD-MATCHPB-
WARM not only outperforms random selection and FULL-
EARLYSTOP consistently, but also outperforms variants
of CRAIG, CRAIGPB, and GLISTER. Furthermore, GLIS-
TER and CRAIG could not run on ImageNet due to large
memory requirements and running time. GRAD-MATCH,
GRAD-MATCHPB, and CRAIGPB were the only variants
which could scale to ImageNet. Furthermore, GLISTER
and CRAIG also perform poorly on CIFAR-100. We see
that GRAD-MATCHPB-WARM almost consistently achieves
best speedup-accuracy tradeoff (i.e., the bottom right of
the plots) on all datasets. We note that the performance

1
https://pypi.org/project/pyJoules/.

gain provided by the variants of GRAD-MATCH com-
pared to other baselines like GLISTER, CRAIG and FULL-
EARLYSTOP is statistically significant (Wilcoxon signed-
rank test (Wilcoxon, 1992) with a p value = 0.01). More
details on the comparison (along with a detailed table of
numbers) are in Appendix C.

Convergence and running time: Next, we compare the
end-to-end training performance through a convergence
plot. We plot test-accuracy versus training time in Figure 3j.
The plot shows that GRAD-MATCH and specifically GRAD-
MATCHPB-WARM is more efficient compared to other al-
gorithms (including variants of GLISTER and CRAIG), and
also converges faster than full training. Figure 3k shows the
extended convergence of GRAD-MATCHPB-WARM on 30%
CIFAR-100 subset, where the GRAD-MATCH is allowed to
train for as few more epochs to achieve comparable accu-
racy with Full training at the cost of losing some efficiency.
The results show that GRAD-MATCHPB-WARM achieves
similar performance to full training while being 2.5x faster,
after running for just 30 to 50 additional epochs. Note that
the points marked by * in Figure 3k denotes the standard
training endpoint (i.e., 300 epochs) used for all experiments
using CIFAR-100.

Comparison to smaller models: We compare the
speedups achieved by GRAD-MATCH to the speedups
achieved using smaller models for training to understand the

https://pypi.org/project/pyJoules/
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importance of data subset selection. We perform additional
experiments (c.f., Figure. 3l) on the CIFAR-10 dataset using
MobileNet-V1 and MobileNet-V2 models as two proxies
for small models. The results show that GRAD-MATCHPB-
WARM outperforms the smaller models on both test accu-
racy and speedup (e.g., MobileNetV2 achieves less than 2x
speedup with 1% accuracy drop).

Data selection with class imbalance: We check the ro-
bustness of GRAD-MATCH and its variants for generaliza-
tion by comparing the test accuracies achieved on a clean
test dataset when class imbalance is present in the training
dataset. Following (Killamsetty et al., 2021), we form a
dataset by making 30% of the classes imbalanced by reduc-
ing the number of data points by 90%. We present results
on CIFAR10 and MNIST in Figures 3f,3g respectively. We
use the (clean) validation loss for gradient matching in the
class imbalance scenario since the training data is biased.
The results show that GRAD-MATCH and its variants out-
perform other baselines in all cases except for the 30%
MNIST case (where GLISTER, which also uses a clean val-
idation set, performs better). Furthermore, in the case of
MNIST with imbalance, GRAD-MATCH-WARM even out-
performs training on the entire dataset. Figure 4e shows the
performance on 10% CIFAR-10 with varying percentages
of imbalanced classes: 30% (as shown in Figure 3f), 60%
and 90%. Grad-Match-Warm outperforms all baselines, in-
cluding full training (which under-performs due to a high
imbalance). The trend is similar when we vary the degree
of imbalance as well.

Ablation study results. Next, we study the effect of
R, per-batch gradients, warm-start, λ, κ and other hyper-
parameters. We start with the effect ofR on the performance
of GRAD-MATCH and its variants. We study the result on
CIFAR-100 dataset at 5% subset for varying values of R
(5,10,20) in the Figure 4a (with leftmost point correspond-
ing to R=5 and the rightmost to R=20).The first takeaway
is that, as expected, GRAD-MATCH and its variants outper-
form other baselines for different R values. Secondly, this
also helps us understand the accuracy-efficiency trade-off
with different values of R. From Figure 4b, we see that
a 10% subset with R = 20 yields accuracy similar to a
5% subset with R = 5. However, across the different al-
gorithms, we observe that R = 20 is more efficient (from
a time perspective) because of fewer subset selection runs.
We then compare the PB variants of CRAIG and GRAD-
MATCH with their non-PB variants (c.f., Figure 4c). We
see that the PB versions are efficient and lie consistently
to the bottom right (, i.e., lesser relative test accuracy and
higher speedups) than non-PB counterparts. One of the
main reasons for this is that the subset selection time for the
PB variants is almost half that of the non-PB variant (c.f.,
Appendix C.4), with similar relative errors. Next, we study
the effect of warm-start along with data selection. As shown
in Figure 4d, warm-start, in the beginning, helps the model
come to a reasonable starting point for data selection, some-

thing which just random sets do not offer. We also observe
that the effect of warm-start is more significant for smaller
subset sizes (compared to larger sizes) in achieving large
accuracy gains compared to the non-warm start versions.
Figure 4f shows the effect of varying κ (i.e., the warm-start
fraction) for 10% of CIFAR-100. We observe that setting
κ = 1

2 generally performs the best. Setting a small value of
κ leads to sub-optimal performance because of not having a
good starting point, while with larger values of κ we do not
have enough data selection and get results closer to the early
stopping. The regularization parameter λ prevents OMP
from over-fitting (e.g., not assigning large weights to indi-
vidual samples or mini-batches) since the subset selection is
performed only every 20 epochs. Hence variants of GRAD-
MATCH performs poorly for small lambda values (e.g., λ=0)
as shown in Figure. 4g. Similarly, GRAD-MATCH and its
variants perform poorly for large λ values as the OMP al-
gorithm performs sub-optimally due to stronger restrictions
on the possible sample weights. In our experiments, we
found that λ = 0.5 achieves the accuracy and efficiency
(c.f., Figure. 4g), and this holds consistently across subset
sizes and datasets. Furthermore, we observed that ε does
not significantly affect the performance of GRAD-MATCH
and its variants as long as ε is small (e.g., ε ≤ 0.01).

6. Conclusions
We introduce a Gradient Matching framework GRAD-
MATCH, which is inspired by the convergence analysis of
adaptive data selection strategies. GRAD-MATCH optimizes
an error term, which measures how well the weighted sub-
set matches either the full gradient or the validation set
gradients. We study the algorithm’s theoretical properties
(convergence rates and approximation bounds, connections
to weak-submodularity) and finally demonstrate our algo-
rithm’s efficacy by demonstrating that it achieves the best
speedup-accuracy trade-off and is more energy-efficient
through experiments on several datasets.
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