
Coded-InvNet for Resilient Prediction Serving Systems
Supplementary Material

Tuan Dinh 1 Kangwook Lee 2

In (A), we present additional experiment results, including a
concrete example of the illustration in Section 1.1 (A.1), ad-
ditional results of degraded accuracy for different k values
and architectures (A.2), full results of multi-task classifica-
tion (A.3), and more end-to-end latency evaluations (A.4).

In (B), we present the detail of architectures, choices of loss,
training parameters, and observations. We also present a
learning curve of encoder training.

Furthermore, we provide a more detailed discussion on
decoding overhead and online decoding in (C).

A. Additional Experiment Results

A.1. Linear Functions on Synthesis Dataset

To complete the story of illustration in Section 1.1, we
synthesize a 2D-dataset with a rotation function. Here,
we use the setting n = k + 1 with k inputs and n par-
allel workers. The inference function fθ is the rotation

πfunction with angle θ = , which has rotation matrix as� � 3
cos θ − sin θ

. The inverse function of f has the ro-
sin θ cos θ � �

cos θ sin θ
tation matrix as . Input distribution D− sin θ cos θ

1is the mixture Gaussian 1 N (µ1, Σ) + N (µ2, Σ), where� � � � 2 � � 2
1 0 1 0

µ1 = , µ2 = , Σ = .
0 1 0 1

For evaluation, we randomly draw a set of k inputs {xj }k
1

from the input distribution D. We randomly select an input
xa as the missing target to recover and remove it from the
input set. We recover xa from the f values of the remaining
inputs {xj }j=6 a, as P Xxj

x̂a = kf(j 6=a
) − f(xj)

k
j 6=a

1Department of Computer Sciences, University of Wisconsin-
Madison, Madison, USA 2Department of Electrical and Computer
Engineering, University of Wisconsin-Madison, Madison, USA.
Correspondence to: Tuan Dinh <tuan.dinh@wisc.edu>, Kang-
wook Lee <kangwook.lee@wisc.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

2 3 4 5 6 8 10
k

40

60

80

100

A
cc

ur
ac

y
(%

)

ParM
Learning-a-code
Ours w/ i-ResNet
Ours w/ i-RevNet

Figure 1. Degraded Accuracy measured on MNIST. Compar-
ison the accuracy of two baselines, ParM (grey), Learning-a-
code(blue), with Coded-InvNet built on top of i-ResNet (orange)
and i-RevNet (green). Our Coded-InvNet models outperforms both
baselines on every k, especially when k is large.

We measure the reconstruction error as kxa − x̂ak2. We
repeat this process 50K for each value of k ∈ [2, 100], and
calculate the mean of reconstruction errors.

We found that the reconstruction errors are almost negligi-
ble for all k values (from 10−15 to 10−14). These errors
are probably caused by floating-point errors in computing.
This result shows that our framework exactly recovers the
missing inputs.

A.2. Additional Degraded Accuracy on More Values of
k, and An Additional Invertible Architecture.

Fig. 1 presents the degraded accuracy measured on MNIST
with k = 2, 3, 4, 6, 8, 10. We add another invertible archi-
tecture, i-RevNet (Jacobsen et al., 2018) as an alternate
to i-ResNet in our Coded-InvNet framework. The result
confirms our findings that Coded-InvNet outperforms the
baselines, and the gap becomes larger as k increases.

A.3. Applicability to Multi-task Serving

Table 1 presents results of 2-task classification with k =
2, 4, 10. The two tasks are image classification on FINE (10-
class) and COARSE (2-super-class) sets using the shared
embedding learned by Coded-InvNet.

mailto:kangwook.lee@wisc.edu
mailto:tuan.dinh@wisc.edu

Coded-InvNet for Resilient Prediction Serving Systems

Table 1. Illustration of Coded-InvNet on multi-task learning.
Normal accuracy (Normal) and degraded mode accuracy (k =
2, 4, 10) on 10-class FINE image classification and 2-super-class
COARSE image classification. The two tasks use the same em-
bedding learned by Coded-InvNet. While maintaining the high
degraded mode accuracy on the FINE task, Coded-InvNet achieves
high accuracy on COARSE tasks with a modest overhead of com-
puting (just adding the linear classifiers).

Task Normal k = 2 k = 4 k = 10
Fine 86.2% 74.7% 43.4% 31.2%
Coarse 98.2% 93.5% 86.6% 71.4%

We note that the normal accuracy drops in the fine classifica-
tion. Indeed, we do not need to retrain the embedding layer
f(·) since the coarse classification task can be viewed as a
sub-task of the fine classification task. However, to mimic
scenarios where we do not have such a hierarchical rela-
tionship between tasks, we retrain the embedding layer as
well jointly with two task-specific classifiers g1(·) and g2(·),
accounting for the drops in fine classification accuracy.

A.4. Additional Results of End-to-end Latency

Shown in 2 the measurements on end-to-end latency with
more values of k = 2, 3, 4, 10, on ParM, Coded-InvNet, and
inference models without stragglers. For each k, we use
k +2 instances for ParM and Coded-InvNet (an extra redun-
dancy worker). For the measurement of inference models
without stragglers, we use k + 1 instances (without redun-
dancy). For all values of k, Coded-InvNet shows negligible
overhead compared to ParM and inference models.

B. Details on Architectures and Training

Encoding Training Curves Fig. 3 shows the training
curve of our encoding function, with (n, k) = (5, 4). We
select the best encoding model based on the valuation loss.

i-ResNet Architecture We use 7, 9 and 9 convolutional
i-ResNet blocks for MNIST, Fashion-MNIST and CIFAR10
respectively. Note that 7 and 9 i-ResNet blocks correspond
to ResNet-64 and ResNet-82, respectively. For i-ResNet, we
remove the injective padding module that introduces zero
paddings to increase spatial dimensions of images for clas-
sification performance improvement. This removal results
in a slight classification accuracy decrease, but significantly
improves the invertibility of i-ResNet, especially for off-
manifold embedding vectors.

Pix2Pix Architecture We use the U-Net architecture for
generators and the PixelGAN model (Makhzani & Frey,
2017) for discriminators (instead of PatchGAN in (Isola
et al., 2017)), with the recommended architectures (Isola

Median Mean 99th 99.5th 99.9th
0

50

100

150

L
at

en
cy

(m
s)

95 95 97 97 9893 93 95 95 95

77 78 82 83 86

ParMs Ours w/o stragglers

Median Mean 99th 99.5th 99.9th
0

50

100

150

L
at

en
cy

(m
s)

97 97 99 99 10
0

94 94 10
0

10
1

10
1

92 92 93 94 94

Median Mean 99th 99.5th 99.9th
0

50

100

150

L
at

en
cy

(m
s)

98 98 10
0

10
0

10
1

94 94 95 95 9593 93 95 96 99

Median Mean 99th 99.5th 99.9th
0

50

100

150

L
at

en
cy

(m
s)

11
5

11
5

11
6 12

4 13
9

11
5

11
5

11
9

12
2 14

5

11
2

11
2

11
7

12
0 13

3

Figure 2. End-to-end latency on AWS cluster with k =
2, 3, 4, 10 (top to bottom). Latencies are measured on ParM
(grey), our Coded-InvNet (orange) and inference models without
stragglers (olive). Coded-InvNet shows negligible overhead com-
pared to ParM and inference models. For instance, in case k = 10,
the 99th-tail latency of Coded-InvNet is only 3ms higher than
ParM, accounting for less than 3% inference latency. Note that,
compared to the setup on the inference models, we use an extra
redundancy worker on ParM and Coded-InvNet (k + 2 instances),
our extra latencies (and ParM) probably come from the communi-
cation to the redundancy worker.

et al., 2017). We maintain the low encoding overhead by
designing a sufficiently small architecture for the encoder.
Furthermore, one may minimize the trained encoder’s infer-
ence time by applying compression techniques to the larger
encoder models.

Choice of Loss We have tried different loss functions for
the encoder training, including various GAN losses, regres-
sion loss, knowledge distillation loss, and their combina-
tions. Regression losses (L1 and L2 losses) do not capture
well the semantic, so a small regression loss does not nec-
essarily imply a small error in the embedding space. In our
experiments, encoder training failed when L1 or L2 losses
were used without GAN losses, except when trained on
MNIST with k = 2. Knowledge distillation (KD) loss is ob-
served to work better than regression losses and sometimes
even better than GAN loss in terms of degraded accuracies,
as KD loss directly utilizes the soft labels. However, as KD
loss is specific to the classification, and it is not clear how
one can use the KD loss for encoder training when different

Coded-InvNet for Resilient Prediction Serving Systems

0 20 40 60 80 100
Epoch

0.08

0.10

0.12

0.14

0.16
L1

lo
ss

Train Test

Figure 3. Encoder training curve. We show the encoder training
curve. Here, we train an encoder on MNIST with k = 4. The loss
function is a combination of GAN loss and L1 loss. Observe that
the L1 (or L1) loss on train data keeps decreasing while the test
loss saturates around epoch 20. We choose the best-performing
epoch based on the validation loss.

types of downstream tasks are given. The combination of
GAN loss and L1 loss worked the best for most cases, but
we also observed several failure cases. When k is large, the
ideal encoded inputs lose most of their structural patterns
and semantic representation, making GAN loss less useful.
The design of an efficient loss function for encoder training
is an interesting open problem.

Further Training Details We train the classifier with
Manifold Mixup. Specifically, we apply Manifold Mixup
on random layers (including the input layer) with the mixup
coefficient (αmixup) being 1. Each classifier is trained for
200, 400, 600 epochs on MNIST, Fashion-MNIST, and
CIFAR10, respectively. For Imagette2 dataset, we trans-
fer the i-RevNet classifier (Jacobsen et al., 2018) for Ima-
geNet to ImagetNett2 and fine-tune with Manifold Mixup
in 100 epochs. For the classifier training, we use Adam
optimizer (Kingma & Ba, 2014) with β1 = 0.5, β2 = 0.999.
We set the learning rate as 0.1 with 40 warming-up epochs,
and decay the learning rate by 0.2 every 60 epochs. The
batch size is 128. For the encoder training, we train 100,
200, and 500 epochs for k = 2, 4, 10 respectively, as it be-
comes harder to learn when k increases. We also use Adam
optimizer with β1 = 0., β2 = 0.9 and lambda schedulers
for both generators and discriminators. Learning rates are
set to be 2e − 4 for both optimizers. We train 5 iterations
of the discriminator per each iteration of the generator. The
batch size is 64. For implementation, we use the PyTorch
framework. For the small-scale datasets, we use a single
compute node consisting of a 12-GB NVIDIA TITAN Xp
GPU, 128-GB of DRAM, and 40 Intel Xeon E5-2660 CPUs.
For the large-scale dataset (ImageNette2), we use a 48-GB
RTX8000 GPU.

C. Decoding Overhead and Online Decoding

The decoding overhead is minimal. When n = k + 1,
the decoding procedure simply requires one scalar-vector

multiplication and k − 1 subtractions. To see this, recall thatPk\f(x1) := kf (xk+1) − f(xk).i=2

The decoding time can be further reduced by performing
online decoding. This is possible because, in practice, not
all of the k tasks will complete exactly at the same time.
Instead, their task results will be available to the decoder one
by one. Therefore, the decoder can continuously update the
best-effort estimates of f[(xi)’s while receiving task results
one by one. More specifically, the decoder can run the
following update algorithm at the time of task j (1 ≤ j ≤
k + 1) completion: ⎧ ⎪f(xj) if i = j⎨

[f[(xi) = ⎪f(xi) − f(xj) if 1 ≤ i ≤ k, i 6= j, (1)⎩ [f(xi) + kf(xj) if i = k + 1,

for all 1 ≤ i ≤ k. Note that one does not have to con-
tinuously update [This online f(xi) after receiving f(xi).
algorithm hides all the decoding overhead but one operation,
minimizing the decoding overhead by a factor of k, i.e., the
decoding overhead does not scale with k.

References

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1125–1134, 2017.

Jacobsen, J.-H., Smeulders, A., and Oyallon, E. i-
revnet: Deep invertible networks. arXiv preprint
arXiv:1802.07088, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Makhzani, A. and Frey, B. J. Pixelgan autoencoders. In
Advances in Neural Information Processing Systems, pp.
1975–1985, 2017.

