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Beyond Perturbation Stability: Supplementary Material

A Preliminaries Details

Claim A.1. For Uniform Metric Labeling, we can assume c(u, i) ≥ 0 and w(u, v) > 0 without loss of generality.

Proof. For problem instances where some node costs are strictly negative, let cmin be the minimum value
among all the node costs. Consider a new problem instance where we keep the edge costs the same, but set
c′(u, i) = c(u, i) + |cmin| for all u ∈ V and i ∈ [k]. This new problem instance has all non-negative node costs, and
the optimization problem is equivalent, because we added the same constant for all solutions. This reformulation
also does not affect the (2, 1)-expansion stability or (2, 1, ψ)-expansion stability of the instance.

Likewise, for problem instances where some edge weights are 0, let E0 be the set of all edges with 0 edge weight.
Consider a new problem instance with E′ = E \ E0, with w(u, v) unchanged for (u, v) ∈ E \ E0, and identical
node costs. The MAP optimization problem remains the same, and the new instance ((V,E′), c, w) is equivalent:
it has the same MAP solution, and satisfies the stability definitions if and only if the original instance does as
well.

Claim 3.3. For a given graph G, every solution x ∈ L(G) that minimizes 〈θ, x〉 for some valid objective vector
θ = (c, w) also belongs to L∗(G). Further, all integer solutions in L(G) also belong to L∗(G).

Proof of Claim 3.3. Recall the local LP:

min.
x

∑
u∈V

∑
i

c(u, i)xu(i) +
∑

(u,v)∈E

w(u, v)
∑
i 6=j

xuv(i, j) (6)

subject to:
∑
i

xu(i) = 1 ∀ u ∈ V (7)∑
i

xuv(i, j) = xv(j) ∀ (u, v) ∈ E, j ∈ [k] (8)∑
j

xuv(i, j) = xu(i) ∀ (u, v) ∈ E, i ∈ [k] (9)

xuv(i, j) ∈ [0, 1] ∀ (u, v), (i, j) (10)
xu(i) ∈ [0, 1] ∀ u, i. (11)

The feasible region defined by the above constraints is L(G). L∗(G) ⊆ L(G) is the set of points that satisfy
the additional constraint that xuv(i, i) = min(xu(i), xv(i)) for all (u, v) ∈ E and i ∈ [k]. For any feasible node
variable assignments {xu}, L∗(G) is not empty: a simple flow argument2 implies that the constraints (8), (9),
and (10) are always satisfiable even when we set xuv(i, i) = min(xu(i), xv(i)). For all integer feasible solutions in
L(G), notice that xuv(i, j) = 1 if xu(i) = 1 and xv(j) = 1 or 0 otherwise. Therefore, all integer solutions satisfy
this additional constraint. Consider a θ where all edge weights are strictly positive. If x minimizes 〈θ, x〉, x must

2For an edge (u, v), consider the bipartite graph G̃ = ((U, V ), E), where |U | = |V | = k. We let xu(i) represent
the supply at node i in U , and let xv(i) represent the demand at node j in V . Because xu and xv are both feasible,
the total supply equals the total demand. E contains all edges between U and V , so we can send flow from i ∈ U to
j ∈ V for any (i, j) pair. Let xuv(i, j) represent this flow, and set xuv(i, i) = min(xu(i), xv(i)). For every i, this either
satisfies the demand at node Vi or exhausts the supply at node Ui. In each case, we can remove that satisfied/exhausted
node from the graph. After this choice of xu(i, i), the total remaining supply equals the total remaining demand
(
∑

i
xu(i)−min(xu(i), xv(i)) =

∑
i
xv(i)−min(xu(i), xv(i))), all supplies and demands are nonnegative, and the remaining

graph G̃′ is a complete bipartite graph (over fewer nodes). This implies that the flow constraints (8), (9), (10) are still
feasible.
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Figure 3: (2, 1)-expansion stable instance that is not (2, 1)-stable. In the original instance (shown left), the
optimal solution labels each vertex with label 1, for an objective of 2.5. The adversarial (2, 1)-perturbation for
this instance replaces all the edge weights of 1 + ε with (1 + ε)/2. In this perturbed instance, the optimal solution
labels (u, v, w)→ (1, 2, 3). This has a node cost of 0.5 and an edge cost of (3 + 3ε)/2, for a total of 2 + 3ε/2 < 2.5.
Since the original solution is not optimal in the perturbed instance, this instance is not (2, 1)-perturbation stable.
However, note that the only expansions of the original solution (which had all label 1) that have non-infinite
objective are (u, v, w) → (1, 2, 1) and (u, v, w) → (1, 1, 3). These each have objective 2.5 + ε, which is strictly
greater than the perturbed objective of the original solution. Therefore, this instance is (2, 1)-expansion stable.

pay the minimum edge cost consistent with its node variables xu(i). So if we fix the xu(i) portion of x, we know
that the edge variables xuv of x are a solution to:

min
x∈L(G)

∑
(u,v)∈E

w(u, v)
∑
i6=j

xuv(i, j).

Notice that since we have fixed the node variables xu(i), there is no interaction between the xuv variables across
different edges. So we can minimize this objective by minimizing each individual term w(u, v)

∑
i 6=j xuv(i, j).

Since wuv > 0 for all edges, we need to minimize
∑
i 6=j xuv(i, j). Notice that for every edge (u, v) ∈ E, we get

that
∑
i

∑
j xuv(i, j) = 1 by substituting xu(i) in constraint 7 with

∑
j xuv(i, j) from constraint 9. Therefore∑

i 6=j xuv(i, j) = 1−
∑
i xuv(i, i). Thus, minimizing

∑
i 6=j xuv(i, j) is the same as maximizing

∑
i xuv(i, i). And

the maximizing choice for xuv(i, i) = min(xu(i), xv(i)) due to constraints 8 and 9.

B Expansion Stability details

Claim B.1. An instance (G,w, c) is (2, 1)-expansion stable iff the MAP solution x̄ is strictly better than all its
expansions in the adversarial perturbation θadv. That is, for all x ∈ Ex̄, 〈θadv, x〉 > 〈θadv, x̄〉 where θadv has the

same node costs c but has weights wadv(u, v) =
{

1
2w(u, v) x̄(u) = x̄(v)
w(u, v) x̄(u) 6= x̄(v).

Proof. Consider θ′ = (c, w′), any valid (2, 1)-perturbation of θ = (c, w) i.e. for every edge (u, v) ∈ E, w(u,v)
2 ≤

w′(u, v) ≤ w(u, v). For any valid labeling x, let Ex represent the edges cut by x. Then, for any x which is an
expansion of x̄ i.e. x ∈ Ex̄,

〈θ′, x〉 − 〈θ′, x̄〉 =
∑
u∈V

c(u, x(u))− c(u, x̄(u)) +
∑

(u,v)∈Ex

w′(u, v)−
∑

(u,v)∈Ex̄

w′(u, v)

=
∑
u∈V

c(u, x(u))− c(u, x̄(u)) +
∑

(u,v)∈Ex\Ex̄

w′(u, v)−
∑

(u,v)∈Ex̄\Ex

w′(u, v)

= 〈θadv, x〉 − 〈θadv, x̄〉+
∑

(u,v)∈Ex\Ex̄

w′(u, v)− wadv(u, v) +
∑

(u,v)∈Ex̄\Ex

wadv − w′(u, v)

= 〈θadv, x〉 − 〈θadv, x̄〉+
∑

(u,v)∈Ex\Ex̄

w′(u, v)− w(u, v)
2 +

∑
(u,v)∈Ex̄\Ex

w(u, v)− w′(u, v)

Since w′ is a valid (2, 1)-perturbation, w′(u, v) ≥ w(u, v)/2 and w′(u, v) ≤ w(u, v). Therefore, for any valid
(2, 1)-perturbation θ′, we have

〈θ′, x〉 − 〈θ′, x̄〉 ≥ 〈θadv, x〉 − 〈θadv, x̄〉.

If the instance is (2, 1)-expansion stable, then certainly 〈θadv, x〉 > 〈θadv, x̄〉 for all x ∈ E x̄, since θadv is a valid
(2, 1)-perturbation of θ. If the instance is not (2, 1)-expansion stable, there exists a θ′ and an x ∈ E x̄ for which
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〈θ′, x〉 − 〈θ′, x̄〉 ≤ 0. But the above inequality then implies that 〈θadv, x〉 − 〈θadv, x̄〉 ≤ 0 as well. This gives both
directions.

This claim shows that to check whether an instance is (2, 1)-expansion stable, it is sufficient to check that the
MAP solution is strictly better than all its expansions in the adversarial perturbation θadv. We don’t need to
verify that this condition is satisfied in every valid (2, 1)-perturbation. Because the optimal expansion of x̄ in the
instance with objective θadv can be computed efficiently, this claim also implies that (2, 1)-expansion stability can
be efficiently checked once the MAP solution x̄ is known.
Claim B.2. (2, 1)-expansion stability is strictly weaker than (2, 1)-perturbation stability.

Proof. Figure 2 gives an instance of uniform metric labeling that is (2, 1)-expansion stable but not (2, 1)-
perturbation stable. Here, 0 < ε < 1/3.

Theorem 4.2 (Local LP is tight on (2, 1)-expansion stable instances). Let x̄ and x̂ be the MAP and local LP
solutions to a (2, 1)-expansion stable instance (G, c, w), respectively. Then x̄ = x̂ i.e. the local LP is tight on
(G, c, w).

Proof. First, we note that for any x ∈ L∗(G), the objective value of the local LP can be written in a form that
depends only on the node variables xV . The objective term corresponding to the edges

∑
(u,v)∈E

w(u, v)
∑
i6=j

xuv(i, j) =
∑

(u,v)∈E

w(u, v)

∑
i,j

xuv(i, j)−
∑
i

xuv(i, i)


=

∑
(u,v)∈E

w(u, v)
(

1−
∑
i

xuv(i, i)
)

=
∑

(u,v)∈E

w(u, v)
(

1−
∑
i

min(xu(i), xv(i))
)

=
∑

(u,v)∈E

w(u, v)
(

1−
∑
i

(
xu(i) + xv(i)

2 − |xu(i)− xv(i)|
2

))

=
∑

(u,v)∈E

w(u, v)
(

1
2
∑
i

|xu(i)− xv(i)|
)

Here we used the definition of L∗(G) and the facts that
∑
i xu(i) = 1 for all (u, i) and

∑
j xuv(i, j) = xu(i) for all

(u, v) ∈ E, i ∈ [k].

Thus, for any x ∈ L∗(G), the objective of the local LP can be written as∑
u∈V

∑
i

c(u, i)xu(i) +
∑

(u,v)∈E

w(u, v)d(u, v)

where d(u, v) := 1
2
∑
i |xu(i)− xv(i)|. This is the objective function of another LP relaxation for uniform metric

labeling called the “metric LP”, which is equivalent to the local LP (Archer et al., 2004). Note that both x̄ and x̂
are in L∗(G) by Claim 3.3. Therefore, the objective function can be written in the above form for both of them.

In the next section, we introduce a rounding algorithm and prove some guarantees for the random solutions
h output by it. We then use these guarantees to show an upper bound on the expected cost of these random
solutions in a perturbed instance of the problem. Finally, we use this upper bound to prove that x̂ = x̄.

B.1 ε-close rounding:

Given any feasible solution x ∈ L(G) and a valid labeling x̄, we construct a related feasible solution x′ which is
ε-close to x̄ in the `∞-norm i.e. ‖x′ − x̄‖∞ ≤ ε:

x′ = εx+ (1− ε)x̄, (12)
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where ε < 1/k and we have identified the labeling x̄ : V → L with its corresponding vertex of the marginal
polytope (a vector in {0, 1}nk+mk2). We consider the following rounding algorithm applied to x′, which is a
modified version of the ε-close rounding algorithm used in Lang et al. (2018):

Algorithm 1 ε-close rounding
1: Choose i ∈ {1, . . . , k} uniformly at random.
2: Choose r ∈ (0, 1/k) uniformly at random.
3: Initialize labeling h : V → [k].
4: for each u ∈ V do
5: if x′u(i) > r then
6: Set h(u) = i.
7: else
8: Set h(u) = x̄(u)
9: end if

10: end for
11: Return h

Lemma B.3 (Rounding guarantees). Given any x′ constructed using (12), the labeling h output by Algorithm 1
satisfies the following guarantees:

P {h(u) = i } = x′u(i) ∀ u ∈ V, i ∈ [k]
P {h(u) 6= h(v) } ≤ 2d(u, v) ∀ (u, v) ∈ E : x̄(u) = x̄(v)
P {h(u) = h(v) } = (1− d(u, v)) ∀ (u, v) ∈ E : x̄(u) 6= x̄(v),

where d(u, v) = 1
2
∑
i |x′u(i)− x′v(i)| is the edge separation of the constructed feasible point x′.

Proof of Lemma B.3 (rounding guarantees). First, fix u ∈ V and a label i 6= x̄(u). We output h(u) = i precisely
when i is chosen and 0 < r < x′u(i), which occurs with probability 1

k
x′u(i)
1/k = x′u(i) (we used here that x′u(i) ≤ ε <

1/k for all i 6= x̄(u)). Now we output h(u) = x̄(u) with probability 1−
∑
j 6=x̄(u) P {h(u) = j } = 1−

∑
j 6=x̄(u) x

′
u(j) =

x′u(x̄(u)), since
∑
i x
′
u(i) = 1. This proves the first guarantee.

For the second, consider an edge (u, v) not cut by x̄, so x̄(u) = x̄(v). Then (u, v) is cut by h when some i 6= x̄(u)
is chosen and r falls between x′u(i) and x′v(i). This occurs with probability

1
k

∑
i 6=x̄(u)

max(x′u(i), x′v(i))−min(x′u(i), x′v(i))
1/k =

∑
i 6=x̄(u)

|x′u(i)− x′v(i)| ≤ 2d(u, v).

Finally, consider an edge (u, v) cut by x̄, so that x̄(u) 6= x̄(v). Here h(u) = h(v) if some i, r are chosen with
r < min(x′u(i), x′v(i)). We have r < min(x′u(i), x′v(i)) with probability min(x′u(i),x′v(i))

1/k . Note that this is still valid
if i = x̄(u) or i = x̄(v), since only one of those equalities can hold. So we get

1
k

∑
i

min(x′u(i), x′v(i))
1/k = 1

2

(∑
i

x′u(i) + x′v(i)− |x′u(i)− x′v(i)|
)

= 1− d(u, v),

where we used again that
∑
i x
′
u(i) = 1.

Given these rounding guarantees, we can relate the expected cost difference between h and x̄ in a perturbation of
the original instance to the cost difference between x and x̄ in the original instance. We are only interested in the
case when x ∈ L∗(G) and so the objective function f(x) =

∑
u∈V

∑
i c(u, i)xu(i) +

∑
(u,v)∈E w(u, v)d(u, v).
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B.2 Using the rounding guarantees

Lemma B.4. Given an integer solution x̄, a feasible LP solution x ∈ L∗(G), and a random output h of Algorithm
1 on an input x′ = εx+ (1− ε)x̄, define

w′(u, v) =
{

1
2w(u, v) x̄(u) = x̄(v)
w(u, v) x̄(u) 6= x̄(v)

and let f ′(y) =
∑
u∈V

∑
i c(u, i)yu(i) +

∑
(u,v)∈E w

′(u, v)d(y, u, v) be the objective in the instance with the original
costs, but using weights w′. Here d(y, u, v) = 1

2
∑
i |yu(i) − yv(i)|. Let Ah := f ′(h) − f ′(x̄) be the difference in

this perturbed objective between h and x̄. Then,

E[Ah] = E [f ′(h)− f ′(x̄)] ≤ ε · (f(x)− f(x̄)) .

Proof.

E [f ′(h)− f ′(x̄)] =
∑
u∈V

∑
i

c(u, i)P {h(u) = i } −
∑
u∈V

c(u, x̄(u)) +
∑

uv:x̄(u)=x̄(v)

w′(u, v)P {h(u) 6= h(v) }

−
∑

uv:x̄(u) 6=x̄(v)

w′(u, v)P {h(u) = h(v) }

=
∑
u

∑
i

c(u, i)x′u(i)−
∑
u

c(u, x̄(u)) +
∑

uv:x̄(u)=x̄(v)

2w′(u, v)d(x′, u, v)

−
∑

uv:x̄(u) 6=x̄(v)

w′(u, v)(1− d(x′, u, v))

=
∑
u

∑
i

c(u, i)x′u(i)−
∑
u

c(u, x̄(u)) +
∑
uv∈E

w(u, v)d(x′, u, v)−
∑

uv:x̄(u)6=x̄(v)

w(u, v)

= f(x′)− f(x̄).

where the second-to-last equality used the definition of w′ (note that w′ is identical to the worst-case perturbation
wadv for x̄). Because f is convex (in particular, d(x, u, v) is convex in x), we have f(x′) ≤ εf(x) + (1− ε)f(x̄).
Therefore,

E [f ′(h)− f ′(x̄)] ≤ εf(x) + (1− ε)f(x̄)− f(x̄) = ε(f(x)− f(x̄)),
which is what we wanted.

B.3 Final proof of Theorem 4.2:

Suppose the local LP solution x̂ is not the same as the MAP solution x̄ i.e. x̂ 6= x̄. Consider x′ = εx̂+ (1− ε)x̄
where 0 < ε < 1/k (see equation (12)). Let h be the random integer solution output by using Algorithm 1 on x′.
By Lemma B.4, we have

E [f ′(h)− f ′(x̄)] ≤ ε · (f(x̂)− f(x̄))

We note that any solution h that we get from rounding x′ is either x̄ or an expansion move of x̄. This is because
we pick only a single label i in step 1 of Algorithm 1 and label all vertices u either i or x̄(u). Therefore, for the i
picked in step 1, h is an i-expansion of x̄ if h 6= x̄.

E [f ′(h)− f ′(x̄)] = E [f ′(h)− f ′(x̄)|h 6= x̄] P[h 6= x̄] + E [f ′(h)− f ′(x̄)|h = x̄] P[h = x̄]
= E [f ′(h)− f ′(x̄)|h 6= x̄] P[h 6= x̄]

Since (G, c, w) is a (2, 1)-expansion stable instance, we know that f ′(h) > f ′(x̄) when h 6= x̄ since all h in the
support of the rounding (other than x̄) are expansion moves of x̄ and we get f ′ by a valid (2, 1)-perturbation of
(G, c, w). Therefore, E [f ′(h)− f ′(x̄)|h 6= x̄] > 0. We also have that P[h 6= x̄] > 0 since we assumed that x̂ 6= x̄.
Therefore, E [f ′(h)− f ′(x̄)] > 0. But we know that f(x̂)− f(x̄) ≤ 0 since x̂ is the minimizer of f(x) among all
feasible x ∈ L(G). So Lemma B.4 implies E [f ′(h)− f ′(x̄)] ≤ 0. Thus we have a contradiction and so the local
LP solution x̂ has to be the same as the MAP solution x̄.
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C Stability and Curvature around MAP solution: details

Theorem 5.2. Let (G, c, w) be a (2, 1, ψ)-expansion stable instance with MAP solution x̄. Let θ = (c, w). Then
for any x ∈ L∗(G), the recovery error (see Def. 3.1) satisfies

1
2‖x− x̄‖1 := 1

2‖xV − x̄V ‖1 ≤
1
ψ
|〈θ, x〉 − 〈θ, x̄〉|. (2)

Here, we provide two proofs for this theorem, one deals directly with the local LP relaxation and the other uses
the dual of the relaxation. The dual proof is more general than the primal proof as it works for all x ∈ L(G), not
just for those in L∗(G).

C.1 Primal-based proof

Proof. For any x ∈ L∗(G), consider a feasible solution x′ which is ε-close to x̄ constructed using Equation 12 i.e.
x′ = εx+ (1− ε)x̄. Let h be the random solution output by Algorithm 1 on x′.

Lemma C.1 (Bound for E [Bh]). For any h in the support of the rounding of x′ = εx+ (1− ε)x̄, let us define
Bh to be the number of vertices which it labels differently from x̄. In other words, it is the number of vertices
which are misclassified by h i.e. Bh :=

∑
u∈V 1[h(u) 6= x̄(u)]. Then,

E [Bh] = ε
∑
u∈V

1
2‖xu − x̄u‖1

Proof.

E[Bh] =
∑
u∈V

E[1[h(u) 6= x̄(u)]] =
∑
u∈V

P {h(u) 6= x̄(u) } =
∑
u∈V

1− P {h(u) = x̄(u) }

=
∑
u∈V

1− x′u(x̄(u)) =
∑
u∈V

1− (εxu(x̄(u)) + (1− ε)) =
∑
u∈V

ε (1− xu(x̄(u)))

= ε
∑
u∈V

1
2

1− xu(x̄(u)) +
∑
i6=x̄(u)

xu(i)

 = ε
∑
u∈V

1
2‖xu − x̄u‖1

Here, we used the fact that for all u ∈ V, x̄u(x̄(u)) = 1 and x̄u(i) = 0 ∀ i 6= x̄(u) and since x is a feasible solution
to the LP, it satisfies

∑
i 6=x̄(u) xu(i) = 1− xu(x̄(u)) for all u ∈ V .

Lemma C.2 (Lower bound for Ah using (2, 1, ψ)-expansion stability). If (G,w, c) is a (2, 1, ψ)-expansion stable
instance, then for any h in the support of the rounding of x′ = εx+ (1− ε)x̄,

Ah ≥ ψ ·Bh

where Ah = f ′(h)− f ′(x̄) and f ′ is the objective in the instance (G, c, w′) where w′ is the worst (2, 1) perturbation
for x̄ i.e.

w′(u, v) =
{

1
2w(u, v) x̄(u) = x̄(v)
w(u, v) x̄(u) 6= x̄(v)

Proof. Note that Ah here is the same as the one defined for Lemma B.4. Since the instance (G, c, w) is (2, 1, ψ)-
expansion stable, we know that (G, c′, w) should be (2, 1)-expansion stable for all c′ such that c ≤ c′ ≤ c+ ψ · 1.

Consider the worst c′ for x̄ i.e. c′(u, i) =
{
c(u, i) + ψ i = x̄(u)
c(u, i) i 6= x̄(u)

. Let f ′′ be the objective in the instance (G, c′, w′).

As discussed in section B.3, we know that any h 6= x̄ in the support of the rounding is an expansion move of x̄.
Therefore, for any h 6= x̄ in the support of the rounding of x′,
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f ′′(h)− f ′′(x̄) > 0 =⇒
∑
u∈V

c′(u, h(u))− c′(u, x̄(u)) +
∑

(u,v):h(u)6=h(v)

w′(u, v)−
∑

(u,v):x̄(u)6=x̄(v)

w′(u, v) > 0

=⇒
∑
u∈V

c(u, h(u))− (c(u, x̄(u)) + ψ · 1[h(u) 6= x̄(u)]) +
∑

(u,v):h(u)6=h(v)

w′(u, v)−
∑

(u,v):x̄(u)6=x̄(v)

w′(u, v) > 0

=⇒ f ′(h)− f ′(g) > ψ ·
∑
u∈V

1[h(u) 6= x̄(u)] =⇒ Ah > ψ ·Bh.

This is true for all h 6= x̄ in the support of the rounding of x′. When h = x̄, we have Ah = Bh = 0. Therefore for
all h in the support of the rounding of x′, we have that Ah ≥ ψ ·Bh.

C.2 Final proof of Theorem 5.2:

We use the Lemmas B.4(upper bound for E[Ah]), C.2(lower bound for Ah), and C.1(bound for E[Bh]) to prove
Theorem 5.2. For all h in the support of rounding of x, Ah ≥ ψ ·Bh. Also,

E[Ah] ≤ ε (f(x)− f(x̄)) , E[Bh] = ε
∑
u∈V

1
2‖xu − x̄u‖1

Suppose that ‖x− x̄‖1 > τ · (f(x)− f(x̄)). Then,

E[Ah]
E[Bh] ≤

f(x)− f(x̄)∑
u∈V

1
2‖xu − x̄u‖1

<
2
τ

But since Ah ≥ ψ ·Bh for every h in the rounding of x, we get that E[Ah]
E[Bh] ≥ ψ.

Setting τ = 2
ψ , we get a contradiction and thus we get,

1
2‖x− x̄‖1 ≤

1
ψ
· (f(x)− f(x̄)) = 1

ψ
· (〈θ, x〉 − 〈θ, x̄〉)

Corollary F.1 (LP solution is good if there is a nearby stable instance). Let x̂MAP and x̂ be the MAP and local
LP solutions to an observed instance (G, ĉ, ŵ). Also, let x̄ be the MAP solution for a latent (2, 1, ψ)-expansion
stable instance (G, c̄, w̄). If θ̂ = (ĉ, ŵ) and θ̄ = (c̄, w̄),

1
2‖x̂V − x̂

MAP
V ‖1 ≤

2d(θ̂, θ̄)
ψ

+ 1
2‖x̂

MAP
V − x̄V ‖1.

Proof of Corollary 5.3. First, we note that for the nearby stable instance, the MAP and the local LP solutions
are the same due to Theorem 4.2. Therefore, for any feasible solution x ∈ L(G), 〈θ̄, x〉 ≥ 〈θ̄, x̄〉. In particular,
this implies that 〈θ̄, x̂〉 ≥ 〈θ̄, x̄〉 and 〈θ̄, x̂MAP 〉 ≥ 〈θ̄, x̄〉 since x̂, x̂MAP are also feasible solutions. Remember that
we defined d(θ̂, θ̄) := supx∈L∗(G) |〈θ̂, x〉 − 〈θ̄, x〉|. Therefore,

〈θ̄, x̂〉 ≤ 〈θ̂, x̂〉+ d(θ̂, θ̄) ≤ 〈θ̂, x̄〉+ d(θ̂, θ̄) ≤ 〈θ̄, x̄〉+ 2d(θ̂, θ̄).

The first and third inequalities hold due to the definition of d(θ̂, θ̄). The second inequality follows from the fact
that x̂ is the minimizer for 〈θ̂, x〉 among x ∈ L(G). Thus, 0 ≤ 〈θ̄, x̂〉 − 〈θ̄, x̄〉 ≤ 2d(θ̂, θ̄). From Theorem 5.2, we
get 1

2‖x̂V − x̄V ‖1 ≤
2d(θ̂,θ̄)
ψ . Thus,

1
2‖x̂V − x̂

MAP
V ‖1 ≤

1
2‖x̂V − x̄V ‖1 + 1

2‖x̂
MAP
V − x̄V ‖1

≤ 2d(θ̂, θ̄)
ψ

+ 1
2‖x̂

MAP
V − x̄V ‖1.
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C.3 Dual-based proof

Here we provide an alternate proof of the curvature result using the dual of the local LP relaxation. First, we show
that the curvature bound is related to the dual margin of the instance. Then we show that (2, 1, ψ)-expansion
stability implies that the dual margin is at least ψ. Throughout this section, we assume the local LP solution x̂ is
unique and integral (as guaranteed, for example, by (2, 1)-expansion stability), so x̂ = x̄.

Relaxing the local LP’s marginalization constraints in both directions for each edge, we obtain the following
Lagrangian for the local LP:

L(δ, x) =
∑
u

∑
i

θu(i) +
∑

v∈N(u)

δuv(i)

xu(i) +
∑
uv

∑
ij

(θuv(i, j)− δuv(i)− δvu(j))xuv(i, j)

where each xu is constrained to be in the (k − 1)-dimensional simplex, and each xuv the k2 − 1-dimensional
simplex (i.e., the normalization constraints remain). There are no constraints on the dual variables δ. Observe
that for any δ and any primal-feasible x, L(δ, x) = 〈θ, x〉. This gives rise to the reparametrization view: for a
fixed δ, define θδu(i) = θu(i) +

∑
v∈N(u) δuv(i), and θδuv(i, j) = θuv(i, j)− δuv(i)− δvu(j). Then L(δ, x) = 〈θδ, x〉.

This will allow us to define equivalent primal problems with simpler structure than the original. L(δ, x) also gives
the dual function:

D(δ) = min
x
L(δ, x) =

∑
u

min
i

θu(i) +
∑

v∈N(u)

δuv(i)

+
∑
uv

min
i,j

(θuv(i, j)− δuv(i)− δvu(j)) .

A dual point δ is a dual solution if δ ∈ argmaxδ′ D(δ′). Theorem 4.2 implies that the local LP has a unique,
integral solution when the instance is (2, 1, ψ)-expansion stable. Sontag et al. (2011, Theorem 1.3) show that this
implies the existence of a dual solution δ∗ that is locally decodable at all nodes u: for each u, argmini θδ

∗

u (i) is
unique, and moreover, the edge and node dual subproblems agree:(

argmin
i

θδ
∗

u (i), argmin
j

θδ
∗

v (j)
)
∈ argmin

i,j
θδ
∗

uv(i, j). (13)

In this case, the primal solution defined by “decoding” δ∗, x(u) = argmini θδ
∗

u (i), is the MAP solution (Sontag
et al., 2011).

For locally decodable δ∗, we define the node margin ψu(δ∗) at a node u as:

ψu(δ∗) = min
i 6=argminj θδ

∗ (j)
θδ
∗
(i)−min

j
θδ
∗
(j).

This is the difference between the optimal reparametrized node cost at u and the next-smallest cost. Local
decodability of δ is the property that ψu(δ) > 0 for every u.

Together with (13), the following lemma implies that we need only consider locally decodable dual solutions
where the optimal primal solution pays zero edge cost.
Lemma C.3 (Dual edge “removal”). Given a locally decodable dual solution δ, we can transform it to a locally
decodable dual solution δ′ that satisfies mini,j θδ

′

uv(i, j) = 0 and has the same (additive) margin at every node.

Proof. Fix an edge (u, v), and consider any pair i∗, j∗ in argmini,j θδuv(i, j). Put θδuv(i∗, j∗) = θuv(i∗, j∗) + ε for
ε ∈ R. Now define δ′uv(i) = δuv(i)− ε for all i (or, equivalently, δ′vu(j) = δvu(j)− ε for all j). Because we changed
θδu(i) by a constant for each i, local decodability is preserved and the additive margin of local decodability is not
changed. We incurred a change of +ε in the dual objective of δ from the edge term mini,j θδ

′

uv(i, j), and a −ε in
the objective from the decrease in the node term mini θδ

′

u (i), so δ′ is still optimal. We can repeat this process for
every edge (u, v).

Lemma C.3 implies that when (x∗, δ∗) is a pair of primal/dual optima and δ∗ is locally decodable, we can assume
that L(x∗, δ∗) =

∑
u θ

δ∗

u (x∗u), where we overload notation to define x∗u to be the label for which x∗u(i) = 1. That
is, the primal optimum pays no edge cost in the problem reparametrized by the dual opt δ∗. Finally, Lemma
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C.3 implies that we can always assume that θδ∗uv(i, j) ≥ 0 for all (u, v), (i, j). Therefore, if there is any locally
decodable dual solution, and the primal LP solution is integral and unique, we may assume there exists a locally
decodable dual solution δ such that x̄(u) = argmini θδ(i), (x̄(u), x̄(v)) ∈ argmini,j θδuv(i, j), θδuv(x̄(u), x̄(v)) = 0,
and θδuv(i, j) ≥ 0.
Lemma C.4 (Dual margin implies curvature around x̄). For an instance with objective θ and MAP solu-
tion x̄, assume there exists a locally decodable dual solution δ such that x̄(u) = argmini θδ(i), (x̄(u), x̄(v)) ∈
argmini,j θδuv(i, j), θδuv(x̄(u), x̄(v)) = 0, and θδuv(i, j) ≥ 0. Additionally, let ψ(δ) = minu ψu(δ) be the smallest
node margin. Note that ψ(δ) > 0 because δ is locally decodable. Then for any x ∈ L(G),

1
2 ||xV − x̄V ||1 ≤

〈θ, x− x̄〉
ψ(δ)

Proof. Let ∆ = 〈θ, x− x̄〉. Since x and x̄ are both primal-feasible, we have L(x, δ) = 〈θ, x〉 and L(x̄, δ) = 〈θ, x̄〉.
Therefore,

L(x, δ) = L(x̄, δ) + ∆. (14)

Because θδ(x̄(u), x̄(v)) = 0 for all (u, v), we have

L(x̄, δ) =
∑
u

θδu(x̄(u)).

Additionally, because θδuv(i, j) ≥ 0,

L(x, δ) =
∑
u

∑
i

θδu(i)xu(i) +
∑
uv

∑
ij

θδuv(i, j)xuv(i, j) ≥
∑
u

∑
i

θδu(i)xu(i).

Combining the above two inequalities with (14) gives:∑
u

∑
i

θδu(i)xu(i) ≤
∑
u

θδu(x̄(u)) + ∆ (15)

Because δ is locally decodable to x̄, and the smallest node margin is equal to ψ(δ), we have that for every u,
θδu(x̄(u)) + ψ(δ) ≤ θδu(i) for all i 6= x̄(u). The margin condition implies:∑

u

θδu(x̄(u))xu(x̄(u)) +
∑
u

∑
i6=x̄(u)

(θδu(x̄(u)) + ψ(δ))xu(i) <
∑
u

∑
i

θδu(i)xu(i),

and simplifying using
∑
i xu(i) = 1 gives:∑

u

θδu(x̄(u)) + ψ(δ)
∑
u

∑
i 6=x̄(u)

xu(i) <
∑
u

∑
i

θδu(i)xu(i).

Plugging in to (15) gives: ∑
u

∑
i 6=x̄(u)

xu(i) < ∆
ψ(δ) .

The left-hand-side is precisely ||xV − x̄V ||1/2.

Now we show that (2, 1, ψ)-expansion stability implies that there exists a locally decodable dual solution δ with
dual margin ψ(δ) ≥ ψ.
Lemma C.5 ((2, 1, ψ)-expansion stability gives a lower bound on dual margin). Let (G, c, w) be a (2, 1, ψ)-
expansion stable instance with ψ > 0. Then there exists a locally decodable dual solution δ with dual margin
ψ(δ) ≥ ψ.

Proof. Define new costs cψ as

cψ(u, i) =
{
c(u, i) + ψ x̄(u) = i

c(u, i) otherwise.
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By definition, the instance (G, cψ, w) is (2, 1)-expansion stable (see Definition 4.1). Theorem 4.2 implies the
pairwise LP solution is unique and integral on (G, cψ, w). This implies there exists a dual solution δ0 that is
locally decodable to x̄. The only guarantee on the dual margin of δ0 is that ψ(δ0) > 0. But note that δ0 is also
an optimal dual solution for (G, c, w), since its objective in that instance is the same as the objective of x̄. But in
that instance, the dual margin at every node is at least ψ, because cψ(u, x̄(u))− c(u, x̄(u)) = ψ. So ψ(δ) ≥ ψ.

These two lemmas directly imply Theorem 5.2. This dual proof is slightly more general than the primal proof,
since the curvature result applies to any x ∈ L(G).

D Details for Generative model

Definition D.1 (sub-Gaussians and (b, σ)-truncated sub-Gaussians). Suppose b ∈ R, σ ∈ R+. A random variable
X with mean µ is sub-Gaussian with parameter σ if and only if E[eλ(X−µ)] ≤ exp(λ2σ2/2) for all λ ∈ R. The
random variable X is (b, σ)-truncated sub-Gaussian if and only if X is supported in (b,∞) and X is sub-Gaussian
with parameter σ.

We remark that the above definition captures many well-studied families of bounded random variables e.g.,
Rademacher distributions, uniform distributions on an interval etc. We remark that a bounded random variable
supported on [−M,M ] is also sub-Gaussian with parameter M . However in our setting, it needs to be truncated
only on negative side, and the bound M will be much larger than the variance parameter σ; the bound is solely to
ensure non-negativity of edge costs. A canonical example to keep in mind is a truncated Gaussian distribution.We
use the following standard large deviations bound for sums of sub-Gaussian random variables (for details, refer to
Thm 2.6.2 from Vershynin (2018)). Given independent r.v.s X1, X2, . . . , Xn, with Xi drawn from a sub-Gaussian
with parameter σi we have for µ =

∑n
i=1 E[Xi] and σ2 =

∑n
i=1 σ

2
i ,

P
[∣∣∣ n∑
i=1

Xi − µ
∣∣∣ ≥ t] ≤ 2 exp

(
− t2

2σ2

)
. (16)

Lemma 6.1 (d(θ̂, θ̄) is small w.h.p. ). There exists a universal constant c < 1 such that for any instance in the
above model, with probability at least 1− o(1),

sup
x∈L∗(G)

|〈θ̂, x〉 − 〈θ̄, x〉| ≤ c
√
nk

√√√√∑
u,i

σ2
u,i + k2

4
∑
uv

γ2
u,v

Proof. As discussed in section B, for any x ∈ L∗(G), the objective of the local LP can be written as

∑
u∈V

∑
i

c(u, i)xu(i) +
∑

(u,v)∈E

w(u, v)d(u, v)

where d(u, v) := 1
2
∑
i |xu(i)− xv(i)|. Let f̂(x) := 〈θ̂, x〉, f̄(x) := 〈θ̄, x〉. Then,

|〈θ̂, x〉 − 〈θ̄, x〉| = |f̂(x)− f̄(x)| =
∣∣∣ ∑
u∈V

∑
i∈L

c̃(u, i)xu(i) +
∑

(u,v)∈E

w̃(u, v)d(u, v)
∣∣∣

For any feasible LP solution x, consider the following rounding algorithm R:
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Algorithm 2 R rounding
1: for each i ∈ L do
2: Choose ri ∈ (0, 1) uniformly at random.
3: for each u ∈ V do
4: if xu(i) > ri then
5: R(x)u(i) = 1.
6: else
7: R(x)u(i) = 0
8: end if
9: end for

10: end for

Then, we have

E[f̂(R(x))− f̄(R(x))] =
∑
u∈V

∑
i∈L

c̃(u, i)E[1[R(x)u(i) = 1]] +
∑

(u,v)∈E

w̃(u, v)
2

∑
i

E[1[R(x)u(i) 6= R(x)v(i)]]

=
∑
u∈V

∑
i∈L

c̃(u, i)P[xu(i) > ri] +
∑

(u,v)∈E

w̃(u, v)
2

∑
i

P[min (xu(i), xv(i)) ≤ ri < max (xu(i), xv(i))]

=
∑
u∈V

∑
i∈L

c̃(u, i)xu(i) +
∑

(u,v)∈E

w̃(u, v)
2

∑
i

|xu(i)− xv(i)|

=
∑
u∈V

∑
i∈L

c̃(u, i)xu(i) +
∑

(u,v)∈E

w̃(u, v)d(u, v) = f̂(x)− f̄(x)

Therefore,

sup
x∈L∗(G)

|f̂(x)− f̄(x)| = sup
x∈L∗(G)

|E[f̂(R(x))− f̄(R(x))]| ≤ sup
x̂V ∈{0,1}nk

|f̂(x̂V )− f̄(x̂V )|

Note that for all x ∈ L∗(G), f̂(x) and f̄(x) only depend on the portion of x restricted to the vertices i.e. xV .
This is why we only need to look at x̂v ∈ {0, 1}nk for the last inequality.

For any fixed x̂V ∈ {0, 1}nk, since w̃(u, v), c̃(u, i) are all mean 0 and sub-Gaussian with parameters γu,v, σu,i, we
have for any t > 0,

P
[
|f̂(x̂V )− f̄(x̂)| > t

]
≤ 2 exp

 −t2

2
(∑

u,i σ
2
u,i + k2/4

∑
uv γ

2
u,v

)


Taking t = c
√
nk
√∑

u,i σ
2
u,i + k2/4

∑
uv γ

2
u,v, we get that for any fixed x̂V ∈ {0, 1}nk,

P
[
|f̂(x̂)− f̄(x̂)| > t

]
≤ 2 exp

(
−c2nk

)
Taking a union bound over {0, 1}nk, we get that

P

[
sup

x̂V ∈{0,1}nk
|f̂(x̂)− f̄(x̂)| > t

]
≤ 2 exp

(
nk
(
log 2− c2

))

Here, c needs to be greater than
√

ln 2 ≈ 0.83 to get a high probability guarantee.
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Corollary 6.3 (MAP solution recovery for regular graphs ). Suppose we have a d-regular graph G with γ2
u,v = γ2

for all edges (u, v), and σ2
u,i = σ2 for all vertex-label pairs (u, i). Also, suppose only a fraction ρ of the vertices

and η of the edges are subject to the noise. With high probability over the random noise,

‖x̂V − x̄V ‖1
2n ≤

2ck
√
ρσ2 + ηdk

8 γ2

ψ

Proof. From Theorem 6.2, we have that, with high probability over the random noise

1
2‖x̂V − x̄V ‖1 ≤

2
ψ
· c
√
nk ·

√√√√∑
u,i

σ2
u,i + k2

4
∑
uv

γ2
u,v

In this setting, this leads to

2
ψ
· c
√
nk ·

√√√√∑
u,i

σ2
u,i + k2

4
∑
uv

γ2
u,v = 2

ψ
· c
√
nk ·

√
ρnkσ2 + η

k2

4
nd

2 γ2 =
2cnk

√
ρσ2 + ηdk

8 γ2

ψ

since |V | = n, |L| = k, and |E| = nd
2 .

E Algorithm for finding nearby stable instances details

Let x̄ be a MAP solution, and let E x̄ be the set of expansions of x̄. We prove that an instance is (2, 1, ψ)-expansion
stable if and only if 〈θadv, x̄〉 ≤ 〈θadv, x〉 for all x ∈ E x̄. In other words, it is sufficient to check for stability in the
adversarial perturbation for x̄. This proves that we need not check every possible perturbation when finding a
(2, 1, ψ)-expansion stable instance.
Claim E.1. Let (G, c, w) be an instance of uniform metric labeling with MAP solution x̄. Define:

wadv(u, v) =
{

1
2wuv x̄(u) = x̄(v)
w(u, v) x̄(u) 6= x̄(v)

cadv(u, i) =
{
c(u, i) + ψ x̄(u) = i

c(u, i) otherwise.

Let θadv be the objective vector in the instance (G, cadv, wadv). Then

〈θ′, x̄〉 ≤ 〈θ′, x〉

for all (2, 1, ψ)-perturbations θ′ of θ and all x ∈ E x̄ if and only if:

〈θadv, x̄〉 ≤ 〈θadv, x〉

for all x ∈ E x̄.

Proof. The proof is analogous to that of Claim B.1. If the instance is (2, 1, ψ)-expansion stable, then 〈θ′, x〉 −
〈θ′, x̄〉 ≥ 0 for all (2, 1, ψ)-perturbations θ′ and all expansions x of x̄. Because θadv is a valid (2, 1, ψ)-perturbation,
this gives one direction. For the other, note that if the instance is not (2, 1, ψ)-expansion stable, there exists a θ′
and an x ∈ E x̄ for which 〈θ′, x〉−〈θ′, x̄〉 < 0. A direct computation shows that 〈θ′, x〉−〈θ′, x̄〉 ≥ 〈θadv, x〉−〈θadv, x̄〉
for all (2, 1, ψ)-perturbations θ′ of θ. Then we have 〈θadv, x〉 − 〈θadv, x̄〉 < 0.

This claim justifies (5), which only enforces that x̄ is at least as good as all of its expansions in θadv. The following
claim implies that there is always a feasible point of (5) that makes modifications of bounded size to c and w.
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Claim E.2. Consider an instance (G, c, w) with a unique MAP solution x̄. Let w′ be defined as

w′(u, v) =
{
w(u, v) x̄(u) 6= x̄(v)
2w(u, v) x̄(u) = x̄(v),

and let c′ be defined as

c′(u, i) =
{
c(u, i)− ψ x̄(u) = i

c(u, i) x̄(u) 6= i.

Then the instance (G, c′, w′) is (2, 1, ψ)-expansion stable with MAP solution x̄.

Proof (sketch). The original MAP solution x̄ is also the MAP solution to (G, c′, w′). Then the original instance
(G, c, w) is obtained from (G, c′, w′) by performing the adversarial (2, 1, ψ)-perturbation for x̄ (see Claim E.1).
Because x̄ was the unique MAP solution to this instance, it has better objective than all of its expansions.
Therefore, (G, c′, w′) is (2, 1, ψ)-expansion stable, by Claim E.1.

(G, c′, w′) is a “nearby” stable instance to (G, c, w), but it requires changes to quite a few edges—every edge
that is not cut by x̄—and changes the node costs of every vertex. Surprisingly, the stable instances we found in
Section 8 were much closer than (G, c′, w′)—that is, only sparse changes were required to transform the observed
instance (G, c, w) to a (2, 1, ψ)-expansion stable instance.

F Experiment details

In this section, we give more details for the numerical examples for which we evaluate our curvature bound from
Theorem 5.2. We studied instances for stereo vision, where the input is two images taken from slightly offset
locations, and the desired output is the disparity of each pixel location between the two images (this disparity is
inversely proportional to the depth of that pixel). We used the models from Tappen & Freeman (2003) on three
images from the Middlebury stereo dataset (Scharstein & Szeliski, 2002). In this model, G is a grid graph with
one node corresponding to each pixel in one of the images (say, the one taken from the left), the costs c(u, i) are
set using the Birchfield-Tomasi matching costs (Birchfield & Tomasi, 1998), and the edge weights w(u, v) are set
as:

w(u, v) =
{
P × s |I(u)− I(v)| < T

s otherwise.

Here I(u) is the intensity of one of the images (again, say the left image) at pixel location u, and we set
(P, T, s) = (2, 50, 4). This is a Potts model. The tsukuba, cones, and venus images were 120 x 150, 125 x 150,
and 383 x 434, respectively. These models had k = 7, k = 5, and k = 5, respectively.

To generate Table 1, we ran the algorithm in (5) using Gurobi (Gurobi Optimization, 2020) for the L1 distance. For
each observed instance (G, ĉ, ŵ), this output a nearby (2, 1, ψ)-stable instance (G, c̄, w̄). In all of our experiments,
we used ψ = 1. Additionally, we always set the target MAP solution xt in (5) to be equal to the observed MAP
solution x̂MAP . To evaluate our recovery bound, we compared the objective of the observed LP solution x̂ to the
x̂MAP in (G, c̄, w̄). That is, if θ̄ is the objective for (G, c̄, w̄), we computed 〈θ̄, x̂〉 − 〈θ̄, x̂MAP 〉 = 〈θ̄, x̂〉 − 〈θ̄, x̄〉,
where the second equality is because we set the target solution xt to be equal to x̂MAP , so x̂MAP = x̄. Because
ψ = 1, the difference between these two objectives is precisely the value of our curvature bound. In particular,
Theorem 5.2 guarantees that

1
2n ||x̂V − x̂

MAP
V ||1 ≤

1
n

(
〈θ̄, x̂〉 − 〈θ̄, x̂MAP 〉

)
.

The right-hand-side is shown for these instances in the “Recovery error bound” column of Table 1, and the true
value of 1

2n ||x̂V − x̂
MAP
V ||1 (i.e., the true recovery error) is shown in the identically titled column of Table 1. On

these instances, 1
n

(
〈θ̄, x̂〉 − 〈θ̄, x̂MAP 〉

)
is close to 0, so our curvature bound “explains” a large portion of x̂’s

recovery of x̂MAP . These instances are close to (2, 1, ψ)-stable instances where x̂ and x̂MAP have close objective,
and this implies by Theorem 5.2 that x̂ approximately recovers x̂MAP .

However, this result relies on a property of the LP solution x̂: that it has good objective in the stable instance
discovered by the procedure (5). Compare this to Corollary 5.3, which only depends on properties of the observed
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instance θ̂ and the stable instance θ̄ (in particular, some notion of “distance” between them). Given an observed
instance θ̂ and stable instance θ̄, we can try to compute d(θ̄, θ̂) from Corollary 5.3 to give a bound that does not
depend on x̂. Unfortunately, this distance can be large, leading to a bound that can be vacuous (i.e., normalized
Hamming recovery > 1). The following refinement of Corollary 5.3 gives much tighter bounds.
Corollary F.1 (LP solution is good if there is a nearby stable instance, refined). Let x̂MAP and x̂ be the
MAP and local LP solutions to an observed instance (G, ĉ, ŵ). Also, let x̄ be the MAP solution for a latent
(2, 1, ψ)-expansion stable instance (G, c̄, w̄). If θ̂ = (ĉ, ŵ) and θ̄ = (c̄, w̄), define

d(θ̄, θ̂) := sup
x∈L∗(G)

〈θ̄, x〉 − 〈θ̄, x̄〉 − (〈θ̂, x〉 − 〈θ̂, x̄〉).

Note that while we still use the name d(·, ·), evoking a metric, d is not symmetric. Then

1
2‖x̂V − x̂

MAP
V ‖1 ≤

d(θ̄, θ̂)
ψ

+ 1
2‖x̂

MAP
V − x̄V ‖1.

Proof. Note:

1
2‖x̂V − x̂

MAP
V ‖1 ≤

1
2‖x̂V − x̄V ‖1 + 1

2‖x̂
MAP
V − x̄V ‖1.

By the definition of d, for any x ∈ L∗(G),

〈θ̄, x〉 − 〈θ̄, x̄〉 ≤ d(θ̄, θ̂) + (〈θ̂, x〉 − 〈θ̂, x̄〉).

Now if we set x = x̂, the LP solution to the observed instance, we have 〈θ̂, x̂〉 − 〈θ̂, x̄〉) ≤ 0, so

〈θ̄, x̂〉 − 〈θ̄, x̄〉 ≤ d(θ̄, θ̂).

Theorem 5.2 then implies 1
2‖x̂V − x̄V ‖1 ≤ d(θ̄, θ̂)/ψ, which gives the claim.

Given an observed instance θ̂ and a (2, 1, ψ)-expansion stable instance θ̄ output by (5) with x̄MAP = x̂MAP , we
can upper bound d(θ̄, θ̂) by computing

dup(θ̄, θ̂) := sup
x∈L(G)

〈θ̄, x〉 − 〈θ̄, x̄〉 − (〈θ̂, x〉 − 〈θ̂, x̄〉),

which is a linear program in x because we relaxed L∗(G) to L(G). Corollary F.1 then implies that the recovery
error of x̂ is at most dup(θ̄, θ̂)/ψ, which we can compute. Table 2 shows the results of this procedure on two of
the same instances from Table 1 in the “Unconditional bound” column. While the values of this bound are much
larger than the “Curvature bound” of Theorem 5.2, they are much more theoretically appealing, since they only
depend on the difference between θ̂ and θ̄ rather than on a property of the LP solution x̂ to θ̂. For Table 2, we
did a grid search for ψ over {1, . . . , 10}; ψ = 4 gave the optimal unconditional bound for both instances. The
difference in ψ explains the slight differences between the other columns of Tables 1 and 2.

Table 2: Results from the output of (5) on three stereo vision instances. Curvature bound shows the bound
obtained from Theorem 5.2, which depends on the observed LP solution x̂. Unconditional bound shows the bound
from the refined version of Corollary 5.3, which depends only on the observed instance and the stable instance.
This “unconditional” bound explains a reasonably large fraction of the LP solution’s recovery for these instances:
because the instance is close to a stable instance, the LP solution approximate recovers the MAP solution.

Instance Costs changed Weights changed Curvature bound Unconditional bound ||x̂V − x̂MAP
V ||1/2n

tsukuba 4.9% 2.8% 0.0173 0.4878 0.0027
cones 2.81% 2.31% 0.0137 0.2819 0.0022


