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Abstract

Quantizing large Neural Networks (nn) while
maintaining the performance is highly desir-
able for resource-limited devices due to re-
duced memory and time complexity. It is
usually formulated as a constrained optimiza-
tion problem and optimized via a modified
version of gradient descent. In this work, by
interpreting the continuous parameters (un-
constrained) as the dual of the quantized ones,
we introduce a Mirror Descent (md) frame-
work (Bubeck (2015)) for nn quantization.
Specifically, we provide conditions on the pro-
jections (i.e., mapping from continuous to
quantized ones) which would enable us to de-
rive valid mirror maps and in turn the respec-
tive md updates. Furthermore, we present a
numerically stable implementation of md that
requires storing an additional set of auxiliary
variables (unconstrained), and show that it is
strikingly analogous to the Straight Through
Estimator (ste) based method which is typ-
ically viewed as a “trick” to avoid vanishing
gradients issue. Our experiments on CIFAR-
10/100, TinyImageNet, and ImageNet classifi-
cation datasets with VGG-16, ResNet-18, and
MobileNetV2 architectures show that our md
variants yield state-of-the-art performance.
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1 Introduction

Despite the success of deep neural networks in various
domains, their excessive computational and memory
requirements limit their practical usability for real-time
applications or in resource-limited devices. Quantiza-
tion is a prominent technique for network compression,
where the objective is to learn a network while restrict-
ing the parameters (and activations) to take values
from a small discrete set. This leads to a dramatic
reduction in memory (a factor of 32 for binary quanti-
zation) and inference time – as it enables specialized
implementation using bit operations.

Neural Network (nn) quantization is usually formulated
as a constrained optimization problem minx∈X f(x),
where f(·) denotes the loss function by abstracting out
the dependency on the dataset and X ⊂ IRr denotes
the set of all possible quantized solutions. Majority
of the works in the literature (Ajanthan et al. (2019);
Hubara et al. (2017); Yin et al. (2018)) convert this
into an unconstrained problem by introducing auxiliary
variables (x̃) and optimize via (stochastic) gradient
descent. Specifically, the objective and the update step
take the following form:

min
x̃∈IRr

f(P (x̃)) , x̃k+1 = x̃k − η ∇x̃f(P (x̃))|x̃=x̃k ,

(1)
where P : IRr → X is a mapping from the uncon-
strained space to the quantized space (sometimes called
projection) and η > 0 is the learning rate. In cases
where the mapping P is not differentiable, a suitable
approximation is employed (Hubara et al. (2017)).

In this work, by noting that the well-known Mirror
Descent (md) algorithm, widely used for online convex
optimization (Bubeck (2015)), provides a theoretical
framework to perform gradient descent in the uncon-
strained space (dual space, IRr) with gradients com-
puted in the quantized space (primal space, X ), we
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introduce an md framework for nn quantization. In
essence, md extends gradient descent to non-Euclidean
spaces where Euclidean projection is replaced with a
more general projection defined based on the associated
distance metric. Briefly, the key ingredient of md is
a concept called mirror map which defines both the
mapping between primal and dual spaces and the exact
form of the projection. Specifically, in this work, by
observing P in Eq. (1) as a mapping from dual space to
the primal space, we analytically derive corresponding
mirror maps under certain conditions on P . This en-
ables us to derive different variants of the md algorithm
useful for nn quantization.

Note that, md requires the constrained set to be convex,
however, the quantization set is discrete. Therefore,
as discussed later in Sec. 3, to ensure quantized solu-
tions, we employ a monotonically increasing annealing
hyperparameter similar to Ajanthan et al. (2019); Bai
et al. (2019). This translates into time-varying mirror
maps, and for completeness, we theoretically analyze
the convergence behaviour of md in this case for the
convex setting. Furthermore, as md is often found
to be numerically unstable (Hsieh et al. (2018)), we
discuss a numerically stable implementation of md by
storing an additional set of auxiliary variables. This
update is strikingly analogous to the popular Straight
Through Estimator (ste) based gradient method (Bai
et al. (2019); Hubara et al. (2017)) which is typically
viewed as a “trick” to avoid vanishing gradients issue
but here we show that it is an implementation method
for md under certain conditions on the mapping P .
We believe this connection sheds some light on the
practical effectiveness of ste.

In summary, we make the following contributions:

• We introduce an md framework with time-varying
mirror maps for nn quantization by deriving mirror
maps from projections (P in Eq. (1)) and present
two md algorithms for quantization.

• Theoretically, we first show that md with time-
varying mirror maps converges at the same rate
as the standard md in the convex setting. Second,
we discuss conditions for the convergence to a
discrete solution when a monotonically increasing
annealing hyperparameter is employed.

• For practical usability, we introduce a numerically
stable implementation of md and show its connec-
tion to the popular ste approximation.

• With extensive experiments on CIFAR-10/100,
TinyImageNet, and ImageNet classification
datasets using VGG-16, ResNet-18, and Mo-
bileNetV2 architectures we demonstrate that our
md variants yield state-of-the-art performance.

2 Preliminaries

Here we provide a brief background on the md algo-
rithm and nn quantization.

2.1 Mirror Descent

The Mirror Descent (md) algorithm was first introduced
in Nemirovsky and Yudin (1983) and has extensively
been studied in the convex optimization literature ever
since. In this section, we provide a brief overview and
refer the interested reader to Chapter 4 of Bubeck
(2015). In the context of md, we consider a problem of
the form:

min
x∈X

f(x) , (2)

where f : X → IR is a convex function and X ⊂ IRr is a
compact convex set. The main concept of md is to ex-
tend gradient descent to a more general non-Euclidean
space (Banach space1), thus overcoming the depen-
dency of gradient descent on the Euclidean geometry.
The motivation for this generalization is that one might
be able to exploit the geometry of the space to optimize
much more efficiently. One such example is the sim-
plex constrained optimization where md converges at a
much faster rate than the standard Projected Gradient
Descent (pgd).

To this end, since the gradients lie in the dual space,
optimization is performed by first mapping the primal
point xk ∈ B (quantized space, X ) to the dual space B∗
(unconstrained space, IRr), then performing gradient
descent in the dual space, and finally mapping back
the resulting point to the primal space B. If the new
point xk+1 lie outside of the constraint set X ⊂ B, it is
projected to the set X . Both the primal/dual mapping
and the projection are determined by the mirror map.
Specifically, the gradient of the mirror map defines the
mapping from primal to dual and the projection is done
via the Bregman divergence of the mirror map. We first
provide the definitions for mirror map and Bregman
divergence and then turn to the md updates.

Definition 1 (Mirror map). Let C ⊂ IRr be a convex
open set such that X ⊂ C̄ (C̄ denotes the closure of set
C) and X ∩ C 6= ∅. Then, Φ : C → IR is a mirror map if
it satisfies:

1. Φ is strictly convex and differentiable.
2. ∇Φ(C) = IRr, i.e., ∇Φ takes all possible values in

IRr.
3. limx→∂C ‖∇Φ(x)‖ = ∞ (∂C denotes the boundary

of C), i.e., ∇Φ diverges on the boundary of C.
1A Banach space is a complete normed vector space

where the norm is not necessarily derived from an inner
product.
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Definition 2 (Bregman divergence). Let Φ : C → IR
be a continuously differentiable, strictly convex function
defined on a convex set C. The Bregman divergence
associated with Φ for points p,q ∈ C is the difference
between the value of Φ at point p and the value of
the first-order Taylor expansion of Φ around point q
evaluated at point p, i.e.,

DΦ(p,q) = Φ(p)− Φ(q)− 〈∇Φ(q),p− q〉 . (3)

Notice, DΦ(p,q) ≥ 0 with DΦ(p,p) = 0, and DΦ(p,q)
is convex on p.

Now we are ready to provide the mirror de-
scent strategy based on the mirror map Φ. Let
x0 ∈ argminx∈X∩C Φ(x) be the initial point. Then, for
iteration k ≥ 0 and step size η > 0, the update of the
md algorithm can be written as:

∇Φ(yk+1) = ∇Φ(xk)− η gk , (4)

xk+1 = argmin
x∈X∩C

DΦ(x,yk+1) ,

where gk ∈ ∂f(xk) and yk+1 ∈ C. Note that, in Eq. (4),
the gradient gk is computed at xk ∈ X ∩ C (solution
space) but the gradient descent is performed in IRr

(unconstrained dual space). Moreover, by simple alge-
braic manipulation, it is easy to show that the above
md update (4) can be compactly written in a proximal
form where the Bregman divergence of the mirror map
becomes the proximal term (Beck and Teboulle (2003)):

xk+1 = argmin
x∈X∩C

〈η gk,x〉+DΦ(x,xk) . (5)

Note, if Φ(x) = 1
2 ‖x‖

2
2, then DΦ(x,xk) = 1

2

∥∥x− xk
∥∥2

2
,

which when plugged back to the above problem and
optimized for x, leads to exactly the same update rule
as that of pgd. However, md allows us to choose various
forms of Φ depending on the problem at hand.

2.2 Neural Network Quantization

Neural Network (nn) quantization amounts to training
networks with parameters (and activations) restricted
to a small discrete set representing the quantization lev-
els. Here we discuss how one can formulate parameter
quantization as a constrained optimization problem and
activation quantization can be similarly formulated.

Parameter Space Formulation. Given a dataset
D = {xi,yi}ni=1, parameter quantization can be written
as:

min
w∈Qm

L(w;D) :=
1

n

n∑
i=1

`(w; (xi,yi)) . (6)

Here, `(·) denotes the input-output mapping composed
with a standard loss function (e.g ., cross-entropy loss),

w is the m dimensional parameter vector, and Q with
|Q| = d is a predefined discrete set representing quan-
tization levels (e.g ., Q = {−1, 1} or Q = {−1, 0, 1}).

The approaches that directly optimize in the parameter
space include BinaryConnect (bc) (Courbariaux et al.
(2015)) and its variants (Hubara et al. (2017); Rastegari
et al. (2016)), where the constraint set is discrete. In
contrast, recent approaches (Bai et al. (2019); Yin et al.
(2018)) relax this constraint set to be its convex hull:

conv(Qm) = [qmin, qmax]m , (7)

where qmin and qmax represent the minimum and max-
imum quantization levels, respectively. In this case, a
quantized solution is obtained by gradually increasing
an annealing hyperparameter.

Lifted Probability Space Formulation. Another
formulation is to treat nn quantization as a discrete
labelling problem based on the Markov Random Field
(mrf) perspective (Ajanthan et al. (2019)). Here, the
equivalent relaxed optimization problem corresponding
to Eq. (6) can be written as:

min
u∈∆m

L(uq;D) :=
1

n

n∑
i=1

`(uq; (xi,yi)) , (8)

where q is the vector of quantization levels withw = uq
and the set ∆m takes the following form:

∆m =

{
u

∑
λ uj:λ = 1, ∀ j

uj:λ ≥ 0, ∀ j, λ

}
. (9)

We can interpret the value uj:λ as the probability of
assigning the discrete label λ to the weight wj . There-
fore Eq. (8) can be interpreted as optimizing the prob-
ability of each parameter taking a discrete label.

3 Mirror Descent Framework for
Network Quantization

Before introducing the md formulation, we first
write nn quantization as a single objective unify-
ing (6) and (8) as:

min
x∈X

f(x) , (10)

where f(·) denotes the loss function by abstracting out
the dependency on the dataset D, and X denotes the
constraint set. As discussed in Sec. 2.2, many recent
nn quantization methods optimize over the convex hull
of the constraint set. Following this, we consider the
solution space X in Eq. (10) to be convex and compact.

To employ md, we need to choose a mirror map (re-
fer Definition 1) suitable for the problem at hand. In
fact, as discussed in Sec. 2.1, mirror map is the core
component of an md algorithm which determines the
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Projection (Pβk) Space Mirror Map (Φβk) Update Step

tanh(βkw̃) w
Φβk(w) = 1

2βk

[
(1 + w) log(1 + w)

+(1− w) log(1− w)
] wk+1 =

1+wk

1−wk
exp(−2βkηg

k)−1

1+wk

1−wk
exp(−2βkηgk)+1

softmax(βkũ) u Φβk(u) = 1
βk

[∑
λ∈Q uλ log(uλ)− uλ

]
uk+1
λ =

ukλ exp(−βkηgkλ)∑
µ∈Q ukµ exp(−βkηgkµ)

∀λ ∈ Q

Table 1: Example projections, corresponding mirror maps, and update steps obtained using Theorem 1. Here, k
is the iteration index, η > 0 is the learning rate, gk is the gradient of f computed in the primal space, βk ≥ 1
is the annealing hyperparameter, and we assume m = 1 without loss of generality. Notice the obtained mirror
maps vary at each iteration due to βk and the softmax update resembles the popular Entropic Descent Algorithm
(eda) (Beck and Teboulle (2003)).

Figure 1: md formulation where mirror map is derived
from the projection P . Note, gk is computed in the
primal space (X ) but it is directly used to update the
auxiliary variables in the dual space.

effectiveness of the resulting md updates. However,
there is no straightforward approach to obtain a mir-
ror map for a given constrained optimization problem,
except in certain special cases.

To this end, we observe that the usual approach to
optimize the above constrained problem is via a version
of projected gradient descent, where the projection is
the mapping from the unconstrained auxiliary variables
(full-precision) to the quantized space X . Now, noting
the analogy between the purpose of the projection
operator and the mirror maps in the md formulation,
we intend to derive the mirror map analogous to a given
projection. Precisely, we prove that if the projection is
strictly monotone (and hence invertible), a valid mirror
map can be derived from the projection itself. Even
though this does not necessarily extend the theory of
md, this derivation is valuable as it connects existing
pgd type algorithms to their corresponding md variants.
For completeness, we state it as a theorem for the case
X ⊂ IR and the multidimensional case can be proved
with an additional assumption that the vector field
P−1(x) is conservative.

Theorem 1. Let C be a finite open interval and
P : IR→ C be a strictly monotonically increasing con-
tinuous function. Then, Φ(x) =

∫ x
x0
P−1(y)dy is a valid

mirror map.

Proof. This can be proved by noting that P is invert-
ible, ∇Φ(x) = P−1(x), and Φ(x) is strictly convex.

The md update based on the mirror map derived from

a given projection is illustrated in Fig. 1. Note that,
to employ md to the problem (10), in theory, any
mirror map satisfying Definition 1 whose domain (i.e.,
its closure) is a superset of the constraint set X can
be chosen. The above theorem provides a method to
derive a subset of all applicable mirror maps, where
the closure of the domain of mirror maps is exactly
equal to the constraint set X .

We now provide mirror maps and update steps for two
different projections (tanh for w-space (Eq. (6)) and
softmax for u-space (Eq. (8))) useful for nn quanti-
zation in Table 1. Given mirror maps (from Theo-
rem 1), the md updates are straightforwardly derived
based on Eq. (5) using kkt conditions (Boyd and Van-
denberghe (2009)). For the detailed derivations and
pseudocode for md-tanh, please refer to Appendix. Fur-
thermore, the tanh projection, its inverse, and the cor-
responding mirror map are illustrated in Fig. 2, showing
monotonicity of the inverse and strict convexity of the
derived mirror map.

According to the update steps in Table 1, our md
variants corresponding to tanh and softmax projections
can be performed directly in the primal space. However,
for some projections (e.g ., multi-bit quantization), it
might be non-trivial to derive the exact form of mirror
maps (and the md update), nevertheless, the md update
can be easily implemented by storing an additional set
of auxiliary variables. This as discussed in Sec. 3.2 also
improves the numerical stability of md.

Note that, to ensure a discrete solution at the end of
the training, the projection P is parametrized by a
scalar βk ≥ 1 and it is annealed throughout the opti-
mization. This annealing hyperparameter translates
into a time varying mirror map (refer to Table 1) in our
case. Intuitively, such an adaptive mirror map grad-
ually constrains the solution space X to its boundary
and in the limit enforces a quantized solution.

3.1 Annealing and Convergence Analysis

The classical md literature studied the convergence be-
haviour of md for the convex setting, and the adaptive
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Figure 2: Plots of tanh, its inverse and corresponding
mirror map. Note that, the inverse is monotonically
increasing and the mirror map is strictly convex. More-
over, when β →∞, tanh approaches the step function.

mirror maps are considered in online learning (McMa-
han (2017)). We now prove that, in the convex setting,
if the annealing hyperparameter βk is bounded, then
md with an adaptive mirror map converges to the opti-
mal value at the same rate of O(1/

√
t) as the standard

md.

Theorem 2. Let X ⊂ IRr be a convex compact set
and C ⊂ IRr be a convex open set with X ∩ C 6= ∅ and
X ⊂ C̄ ( C̄ denotes the closure of C). Let Φ : C → IR
be a mirror map ρ-strongly convex2 on X ∩ C with re-
spect to ‖·‖, R2 = supx∈X∩C Φ(x)− Φ(x0) where x0 =
argminx∈X∩C Φ(x) is the initialization and f : X → IR
be a convex function and L-Lipschitz with respect to
‖·‖. Then md with mirror map Φβk(x) = Φ(x)/βk with

1 ≤ βk ≤ B and η = R
L

√
2ρ
Bt satisfies

f

(
1

t

t−1∑
k=0

xk

)
− f(x∗) ≤ RL

√
2B

ρt
, (11)

where βk is the annealing hyperparameter, η > 0 is the
learning rate, t is the iteration index, and x∗ is the
optimal solution.

Proof. The proof is a slight modification to the proof
of standard md noting that, effectively Φβk is ρ/B-
strongly convex. Please refer to Appendix.

Theoretical analysis of md for nonconvex, stochas-
tic setting is an active research area (Zhou et al.
(2017a,b)) and md has been recently shown to con-
verge in the nonconvex stochastic setting under certain
conditions (Zhang and He (2018)). We believe, similar
to Theorem 2, the convergence analysis in Zhang and
He (2018) can be extended to md with adaptive mirror
maps. Nevertheless, md converges in all our experi-
ments while outperforming the baselines in practice.

2A convex function Φ : C → IR is ρ-strongly con-
vex with respect to ‖·‖ if Φ(x) − Φ(y) ≤ 〈g,x − y〉 −
ρ
2
‖x− y‖2 , ∀x, y ∈ C and g ∈ ∂Φ(x).

Ensuring a discrete solution. Our original objec-
tive Eq. (10) is to obtain a discrete solution via anneal-
ing the hyperparameter βk →∞. However, according
to Theorem 2, βk is capped at an arbitrarily chosen
maximum value B. To this end, we now derive a con-
straint on the auxiliary variables x̃ such that the primal
variables converge to a discrete solution with a chosen
precision ε > 0 for a given B.

We consider the tanh projection with m = 1 without
loss of generality and a similar derivation is possible for
the softmax projection as well. Since βk ≤ B, x̃ has to
be constrained away from zero to ensure that tanh(Bx̃)
is close to the set {−1, 1} with a desired precision ε.
We now state it as a proposition below.

Proposition 1. For a given B > 0 and 0 < ε < 1,
there exists a γ > 0 such that if |x̃| ≥ γ then
1− | tanh(Bx̃)| < ε. Here | · | denotes the absolute
value and γ > tanh−1(1− ε)/B.

Proof. This is derived via a simple algebraic manipula-
tion of tanh. Please refer to Appendix.

3.2 Numerically Stable form of md

We showed two examples of valid projections, their cor-
responding mirror maps, and the final md updates in
Table 1. Even though, in theory, these updates can be
used directly, they are sometimes numerically unstable
due to the operations involving multiple logarithms,
exponentials, and divisions (Hsieh et al. (2018)). To
this end, we provide a numerically stable way of per-
forming md by storing a set of auxiliary parameters
during training.

A careful look at the Fig. 1 suggests that the md update
with the mirror map derived from Theorem 1 can be
performed by storing auxiliary variables x̃ = P−1(x).
In fact, once the auxiliary variable x̃k is updated using
gradient gk, it is directly mapped back to the constraint
set X via the projection. This is mainly because of the
fact that the domain of the mirror maps derived based
on the Theorem 1 is exactly the same as the constraint
set. Formally, with this additional set of variables,
one can write the md update (4) corresponding to the
projection P as:

x̃k+1 = x̃k − η gk , update in the dual space (12)

xk+1 = P (x̃k+1) ∈ X , projection to primal space

where η > 0 and gk ∈ ∂f(xk). Experimentally we ob-
served these updates to show stable behaviour and per-
formed remarkably well for both the tanh and softmax.
We provide the pseudocode of this stable version of
md in Algorithm 2 for the tanh (md-tanh-s) projection.
Extending it to other valid projections is trivial.
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Note, above updates can be seen as optimizing the func-
tion f(P (x̃)) using gradient descent where the gradient
through the projection (i.e., Jacobian) JP = ∂P (x̃)/∂x̃
is replaced with the identity matrix. This is exactly
the same as the Straight Through Estimator (ste) for
nn quantization (following the nomenclature of Bai
et al. (2019); Yin et al. (2018)). Despite being a crude
approximation, ste has shown to be highly effective
for nn quantization with various network architectures
and datasets (Yin et al. (2018); Zhou et al. (2016)).
However, a solid understanding of the effectiveness of
ste is lacking in the literature except for its conver-
gence analysis in certain cases (Li et al. (2017); Yin
et al. (2019)). In this work, by showing ste based
gradient descent as an implementation method of md
under certain conditions on the projection, we provide
a justification on the effectiveness of ste.

Mirror Descent vs. ProxQuant. The connection
between the dual averaging version of md and ste was
recently hinted in ProxQuant (pq) (Bai et al. (2019)).
However, no analysis of whether an analogous mirror
map exists to the given projection is provided and their
final algorithm is not based on md.

Briefly, pq optimizes a objective of the following form:

min
x∈IRr

f(x) + βR(x) , (13)

where f is the loss function, the regularizer R is a
“W” shaped nonconvex function and β is an annealing
hyperparamter similar to ours. Notice, even when the
loss function f is convex, the above pq objective would
be nonconvex and has multiple local minima for a range
of values of β. Therefore pq is prone to converge to any
of these local minima, whereas, our md algorithm (even
pgd) is guaranteed to converge to the global optimum
regardless of the value of β.

4 Related Work

In this work, we mainly consider parameter quanti-
zation, which is usually formulated as a constrained
problem and optimized using a modified projected gra-
dient descent algorithm, where the methods (Ajanthan
et al. (2019); Bai et al. (2019); Carreira-Perpinán and
Idelbayev (2017); Chen et al. (2019); Courbariaux et al.
(2015); Yang et al. (2019); Yin et al. (2018)) mainly
differ in the constraint set, the projection used, and
how backpropagation through the projection is per-
formed. Among them, ste based gradient descent is
the most popular method as it enables backpropagation
through nondifferentiable projections and it has shown
to be highly effective in practice (Courbariaux et al.
(2015)). In fact, the success of this approach lead to
various extensions by including additional layerwise

scalars (Rastegari et al. (2016)), relaxing the solution
space (Yin et al. (2018)), and even to quantizing acti-
vations (Hubara et al. (2017)), and/or gradients (Zhou
et al. (2016)). Some recent works (Leng et al. (2018); Ye
et al. (2019)) employ Alternating Direction Method of
Multipliers (admm) framework to learn low-bit neural
networks. In contrast to these, recently Helwegen et al.
(2019) proposed Binary Optimizer (bop) to avoid using
“latent” real-valued weights during training. Moreover,
there are methods focusing on loss aware quantiza-
tion (Hou et al. (2017)), quantization for specialized
hardware (Esser et al. (2015)), and quantization based
on the variational approach (Achterhold et al. (2018);
Louizos et al. (2017, 2019)). Some recent works (Liu
et al. (2018); Martinez et al. (2019); Liu et al. (2020))
have also explored architectural modifications beneficial
to increase the capacity of binarized neural networks.
We have only provided a brief summary of relevant
methods and for a comprehensive survey, we refer the
reader to Guo (2018).

5 Experiments

Due to the popularity of binary neural networks (Cour-
bariaux et al. (2015); Rastegari et al. (2016)), we mainly
consider binary quantization and set the quantization
levels as Q = {−1, 1}. We perform two sets of extensive
experiments for comparisons against the state-of-the-
art nn binarization methods.

First, we perform full binarization experiments similar
to Ajanthan et al. (2019) where all learnable param-
eters are binarized and activations are kept floating
point on small scale datasets such as CIFAR-10/100
and TinyImageNet3 with VGG-16, ResNet-18 and Mo-
bileNetV2 architectures. Note, this is more difficult than
the standard setup used in the quantization literature
where the first and last layers are usually kept in high
precision to enhance the performance. To ensure fair
comparison, we ran the comparable baselines in this
setup and performed extensive cross-validation, e.g .,
up to 3% improvement for pmf (Ajanthan et al. (2019))
due to this. In summary, our results indicate that
the binary networks obtained by the md variants out-
perform comparable baselines yielding state-of-the-art
performance.

Secondly, we evaluated our md-tanh-s approach on
large scale ImageNet dataset with ResNet-18 in two
different setups: 1) only parameters are binarized; and
2) both activations and parameters are binarized. We
follow a similar experimental setup for our approach
as has been used in baselines. For both the setups, our
md-tanh-s variant outperforms all the recent baselines
even without requiring layerwise scalars and sets new

3https://tiny-imagenet.herokuapp.com/

https://tiny-imagenet.herokuapp.com/
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Algorithm Space CIFAR-10 CIFAR-100 TinyImageNet
VGG-16 ResNet-18 VGG-16 ResNet-18 ResNet-18

ref (float) w 93.33 94.84 71.50 76.31 58.35
bc w 89.04 91.64 59.13 72.14 49.65
pq w 85.41 90.76 39.61 65.13 44.32
pq* w 90.11 92.32 55.10 68.35 49.97
pmf u 90.51 92.73 61.52 71.85 51.00
pmf* u 91.40 93.24 64.71 71.56 51.52
gd-tanh w 91.47 93.27 60.67 71.46 51.43

O
ur
s

md-softmax u 90.47 91.28 56.25 68.49 46.52
md-tanh w 91.64 92.97 61.31 72.13 54.62
md-softmax-s u 91.30 93.28 63.97 72.18 51.81
md-tanh-s w 91.53 93.18 61.69 72.18 52.32

Table 2: Classification accuracies on the test set where all the parameters are binarized. pq* denotes performance
with biases, fully-connected layers, and shortcut layers in float (original pq setup) whereas pq represents full
quantization. pmf* denotes the performance of pmf after crossvalidation and the original results from the paper
are denoted as pmf. Note our md variants obtained accuracies virtually the same as the best performing method
and it outperformed the best method by a large margin in much harder TinyImageNet dataset.

Algorithm CIFAR-10 CIFAR-100

ref (float) 93.67 73.97
bc 86.84 65.04

O
ur
s md-softmax-s 89.71 66.40

md-tanh-s 89.99 66.63

Table 3: Classification accuracies on the test set for
MobileNetV2 where all the parameters are binarized.
Our stable md variants significantly outperformed bc
while md-tanh-s is slightly better than md-softmax-s.

state-of-the-art for binarized networks on ImageNet.

For all the experiments, standard multi-class cross-
entropy loss is used unless otherwise mentioned. We
crossvalidate the hyperparameters such as learning rate,
learning rate scale, rate of increase of annealing hy-
perparameter β, and their respective schedules. We
provide the hyperparameter tuning search space and
the final hyperparameters in Appendix B. Our algo-
rithm is implemented in PyTorch (Paszke et al. (2017))
and the experiments are performed on NVIDIA Tesla-
P100 GPUs. Our PyTorch code is available online4.

5.1 Full Binarization of Parameters

We evaluate both of our md variants corresponding
to tanh and softmax projections and their numerically
stable counterparts as noted in Eq. (12). The results
are compared against parameter quantization meth-
ods, namely BinaryConnect (bc) (Courbariaux et al.
(2015)), ProxQuant (pq) (Bai et al. (2019)) and Prox-
imal Mean-Field (pmf) (Ajanthan et al. (2019)). In
addition, for completeness, we also compare against a

4https://github.com/kartikgupta-at-anu/md-bnn

standard pgd variant corresponding to the tanh projec-
tion (denoted as gd-tanh), i.e., minimizing f(tanh(x̃))
using gradient descent. Note that, numerous tech-
niques have emerged with bc as the workhorse algo-
rithm by relaxing constraints such as the layer-wise
scalars (Rastegari et al. (2016)), and similar extensions
are straightforward even in our case though our variants
perform well even without using layer-wise scalars.

The classification accuracies of binary networks ob-
tained by both variants of our algorithm, namely, md-
tanh and md-softmax, their numerically stable versions
(denoted with suffix “-s”) and the baselines bc, pq,
pmf, gd-tanh and the floating point Reference Network
(ref) are reported in Table 2. Both the numerically
stable md variants consistently produce better or on
par results compared to other binarization methods
while narrowing the performance gap between binary
networks and floating point counterparts to a large
extent, on multiple datasets.

Our stable md-variant perform slightly better than
md-softmax, whereas for tanh, md updates either per-
form on par or sometimes even better than numerically
stable version of md-tanh. We believe, the main rea-
son for this empirical variation in results for our md
variants is due to numerical instability caused by the
floating-point arithmetic of logarithm and exponential
functions in update steps for md (refer to Table 1). Fur-
thermore, even though our two md-variants, namely
md-softmax and md-tanh optimize in different spaces,
their performance is similar in most cases.

Note, pq (Bai et al. (2019)) does not quantize the fully-
connected layers, biases, and shortcut layers. For fair
comparison as previously mentioned, we crossvalidate
pq with all layers binarized and original pq settings,

https://github.com/kartikgupta-at-anu/md-bnn
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Figure 3: Training curves for binarization for CIFAR-10 (first two) and CIFAR-100 (last two) with ResNet-18.
Compared to original md variants, stable md variants are less noisy and after the initial exploration phase (up to
60 in CIFAR-10 and 25 epochs CIFAR-100), the validation accuracies rise sharply and show gradual improvement
afterwards.

and report the results denoted as pq and pq* respec-
tively in Table 2. Our md-variants outperform pq
consistently on multiple datasets in equivalent exper-
imental settings. This clearly shows that entropic or
tanh-based regularization with our annealing scheme
is superior to a simple “W” shaped regularizer and
emphasizes that md is a suitable framework for quan-
tization. Furthermore, the superior performance of
md-tanh against gd-tanh and on par or better perfor-
mance of md-softmax against pmf for binary quanti-
zation empirically validates that md is useful even in
a nonconvex stochastic setting. This hypothesis along
with our numerically stable form of md can be par-
ticularly useful to explore other projections that are
useful for quantization and/or network compression in
general.

The training curves for our md variants for CIFAR-
10 and CIFAR-100 datasets with ResNet-18 are shown
in Fig. 3. The original md variants show unstable
behaviour during training. Regardless, by storing aux-
iliary variables, the md updates are demonstrated to be
quite stable. This clear distinction between md variants
emphasizes the significance of practical considerations
while implementing md especially in nn optimization.

To further demonstrate the superiority of md, we tested
on a more resource efficient MobileNetV2 (Sandler et al.
(2018)) and the results are summarized in Table 3.
In short, our md variants are able to fully-binarize
MobileNetV2 with minimal loss in accuracy on CIFAR
datasets. For more experiments such as training curves
comparison to other methods and ternary quantization
results please refer to the Appendix B.

5.2 Binarization on ImageNet

We evaluated our md-tanh-s against state-of-the-art
methods on ImageNet with ResNet-18 for parameter
binarization and the results are reported in Table 4.
Following the standard practice, we do not quantize
the first convolution layer, last fully-connected layer,

Algorithm Top-1 Top-5

ref (float) 70.61 89.40

bwn* (Rastegari et al. (2016)) 60.80 83.00
br (Yin et al. (2018)) 63.20 85.10
elq (Zhou et al. (2018)) 64.72 86.04
admm (Leng et al. (2018)) 64.80 86.20
qn (Yang et al. (2019)) 66.50 87.03

O
ur
s md-tanh-s*+ 56.67 79.66

md-tanh-s* 65.92 86.29
md-tanh-s 66.78 87.01

Table 4: ImageNet classification accuracies for bi-
nary quantization (only parameters) on ResNet-18.
Here, * indicates training from scratch and + indi-
cates full-binarization except the batchnorm parame-
ters. Note md-tanh-s outperforms all other methods
setting new state-of-the-art on ImageNet binarization.
It might seem that the improvement over qn is marginal,
however, qn requires layerwise scalars and pretrain-
ing (Yang et al. (2019)), whereas md-tanh-s does not
require layerwise scaling and obtains near state-of-the-
art results even without pretraining.

biases, and batchnorm parameters for all the compared
methods and in this case, we set a new state-of-the-art
for binarization with achieving merely < 4% reduction
compared to the floating-point network. Note that,
the standard practice to quantize on ImageNet is to
use floating-point scalars in each layer (Rastegari et al.
(2016); Yang et al. (2019)), however, our method out-
performs all the methods without requiring layerwise
scalars. In addition, md-tanh-s yields the best results
even when trained from scratch with < 1% reduction
compared to finetuning from a pretrained network. Fur-
thermore, md enables the training of fully-binarized
networks with no additional scalars (except the batch-
norm parameters) from scratch, which is considered
to be difficult for ImageNet (Rastegari et al. (2016)).
More ablation study experiments can be found in Ap-
pendix B.

Similar to the above, the results for both parameters
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Algorithm Top-1 Top-5

ref (float) 70.6 89.4

BinaryNet (Hubara et al. (2016)) 42.2 67.1
Dorefa-Net (Zhou et al. (2016)) 52.5 76.7
XNOR-Net (Rastegari et al. (2016)) 51.2 73.2
Bireal-Net (Liu et al. (2018)) 56.4 79.5
Bireal-Net (Liu et al. (2018)) (PReLU) 59.0 81.3
PCNN (J=1) (Gu et al. (2019)) 57.3 80.0
QN (Yang et al. (2019)) 53.6 75.3
BOP (Helwegen et al. (2019)) 54.2 77.2
GBCN (Liu et al. (2019)) 57.8 80.9
IR-Net (Qin et al. (2020)) 58.1 80.0
Noisy Supervision (Han et al. (2020)) 59.4 81.7

O
ur
s md-tanh-s 60.3 82.3

md-tanh-s (kl div. loss) 62.8 84.3

Table 5: ImageNet classification accuracies for bi-
nary quantization (both parameters and activations) on
ResNet-18. Here, our md-tanh-s and Han et al. (2020)
use Bireal-Net-18 (Liu et al. (2018)) with PReLU acti-
vations as baseline architecture. We also show results
of our method with kl divergence loss between softmax
output of our binary network and ref (trained ResNet-
34 on ImageNet). Note, md-tanh-s clearly outperforms
all the methods.

and activations binarized networks are reported in Ta-
ble 5. For this experiment, we use Bireal-Net-18 (Liu
et al. (2018)) with PReLU activations as network archi-
tecture for our proposed algorithm. Even in this exper-
iment, the first convolution layer, last fully-connected
layer, biases, and batchnorm parameters are not bi-
narized for all the methods. Our md-tanh-s achieves
state-of-the-art results even when both parameters and
activations are binarized, beating all the comparable
baselines by almost 1%. In addition, similar to Zhuang
et al. (2018); Martinez et al. (2019); Liu et al. (2020),
we ran md-tanh-s with kl Divergence loss (replacing
the cross-entropy loss) between the softmax output
of our binary network and ref (trained ResNet-34 on
ImageNet). Our md-tanh-s with kl divergence loss
outperforms previous methods by a significant margin
of > 3%, which clearly reflects the efficacy of md.

6 Discussion

In this work, we have introduced an md framework for
nn quantization by deriving mirror maps corresponding
to two projections useful for quantization and provided
two algorithms for quantization. Theoretically, we
provided a convergence analysis in the convex setting
for time-varying mirror maps and discussed conditions
to ensure convergence to a discrete solution when an
annealing hyperparameter is employed. In addition, we
have discussed a numerically stable implementation of

md by storing an additional set of auxiliary variables
and showed that this update is strikingly analogous to
the popular ste based gradient method. The superior
performance of our md formulation even with simple
projections such as tanh and softmax is encouraging
and we believe, md would be a suitable framework for
not just nn quantization but for network compression
in general. In the future, we intend to focus more
on the theoretical aspects of md in conjunction with
stochastic momentum based optimizers such as Adam.
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