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Abstract

Conformal predictive systems (CPSs) provide probability distributions for real-valued la-
bels of test examples, rather than point predictions (as output by regular regression models)
or confidence intervals (as output by conformal regressors). The performance of a CPS is
dependent on both the underlying model and the way in which the quality of its predictions
is estimated; a stronger underlying model and a better quality estimation can significantly
improve the performance. Recent studies have shown that conformal regressors that use
random forests as the underlying model may benefit from using out-of-bag predictions for
the calibration, rather than setting aside a separate calibration set, allowing for more data
to be used for training and thereby improving the performance of the underlying model.
These studies have furthermore shown that the quality of the individual predictions can be
effectively estimated using the variance of the predictions or by k-nearest-neighbor models
trained on the prediction errors. It is here investigated whether these methods are also ef-
fective in the context of split conformal predictive systems. Results from a large empirical
study are presented, using 33 publicly available datasets. The results show that by using
either variance or the k-nearest-neighbor method for estimating prediction quality, a signif-
icant increase in performance, as measured by the continuous ranked probability score, can
be obtained compared to omitting the quality estimation. The results furthermore show
that the use of out-of-bag examples for calibration is competitive with the most effective
way of splitting training data into a proper training set and a calibration set, without re-
quiring tuning of the calibration set size.
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1. Introduction

Inductive conformal prediction (ICP) (Papadopoulos et al., 2002) was proposed to ad-
dress the computational cost of the original, transductive, approach to conformal predic-
tion (Gammerman et al., 1998). While the original approach requires re-training for each
new test example, ICP requires training of one model only. This however requires that
the training set is divided into a proper training set and a calibration set, which reduces
the number of examples that are available for model building. Conformal regressors is a
class of conformal predictors with a continuous label set. They have been combined with
several different machine learning algorithms, e.g., ridge regression (Papadopoulos et al.,
2002), neural networks (Papadopoulos and Haralambous, 2010), kNN (Papadopoulos et al.,
2011a), and random forests (Johansson et al., 2014; Bostrom et al., 2017). The benefit
of using these algorithms within the conformal regression framework is that the resulting
models are valid; the true labels are within the output prediction sets (intervals) with a
specified probability (confidence level). The size of a prediction set indicates the degree
of uncertainty in the prediction, and also provides information of what labels are unlikely.
This has been explored and used in a number of applications, such as in air pollution
prediction (Ivina et al., 2012) and in early drug discovery (Svensson et al., 2018).

However, in a decision making context, one typically needs more fine-grained information
than just the prediction set; instead, probability distributions over the possible labels may
be needed. In the case of classification, the Venn-ABERS predictors (Vovk and Petej,
2012) was developed to generate valid probabilities. Recent developments (Vovk et al.,
2017) has introduced probability distributions in the regression setting based on conformal
transducers. This approach has been made more computationally efficient in (Vovk et al.,
2019), in which split conformal predictive systems were introduced.

In the present work, we investigate whether previous findings on techniques for generat-
ing effective conformal regressors carry over to conformal predictive systems. Specifically,
we investigate whether the use of a quality estimate, indicating the difficulty on an example-
level rather than assuming a uniform quality, leads to more effective conformal predictive
systems; using k-nearest neighbors, as have been employed for conformal regressors in e.g.,
(Papadopoulos and Haralambous, 2011; Johansson et al., 2014), and a computationally
more efficient variance-based approach, evaluated in (Bostrom et al., 2017). Furthermore,
we investigate potential performance gains from using out-of-bag predictions for obtaining
the calibration scores, rather dividing the training examples into proper training examples
and calibration examples, which has been investigated for conformal regressors, when em-
ploying random forests as the underlying model, in (Johansson et al., 2014; Bostrém et al.,
2017).

The remainder of this paper is organized as follows; in section 2 we will, for convenience,
restate the definition of the split conformal predictive system (Vovk et al., 2019) and also
describe the proposed modification, which allows for using all training examples for model
construction. Next, in section 3, we will describe how the approach is assessed, followed by
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the results from the empirical investigation. Finally, we discuss the results and summarize
the main findings in section 4 and section 5, respectively.

2. Methods

2.1. Conformal predictive systems

Conformal predictive systems (CPS) is a modification of conformal predictors. CPS arranges
the p-values into a predictive distribution for each example, thus providing probabilities of
various outcomes. The CPS used in this paper is the split conformal predictive systems
(SCPS) which is a computationally efficient method presented in (Vovk et al., 2019). SCPS
guarantees validity when the data is i.i.d. In this section, we briefly describe SCPS.

Let X be the object space and Z : X x R be the example space such that (z,y) = z € Z,
y € R. Now we can define the split conformity measure, 4,, : Z™"*! — R U {—o0, 00}, m =
1,2, ..., which makes up the core of SCPS. It is defined as a means to compare the size
of a new label with previously observed labels. We can now use this to define the SCPS
algorithm, see Algorithm 1.

Algorithm 1 Split Conformal Predictive System

Let {z1,..., zm} be a training set and {zp41, ..., 2z, } be a calibration set.
foriel,...,n—mdo
| Define C; by Ap (21, -y 2my Zm+1) = Am (21, ey 2m, (T, C3))

end
Sort C; in increasing order such that C(1) < ... < C(yp)
Set Cyp = —o0 and Cp_ipt1 = 0

Return the predictive distribution Q.

In Algorithm 1 the predictive distribution @) is defined as,

T ify e (C(i)vc(i—i-l)) fori e {0, 1,..,n— m},

n—m+1

Q(Zla ceey Zmy ({L‘7 y)» T) =
142" = +2)7
n—m-+1

it y=_Cp) forie{l,...,n—m},

(1)
where ' := min{j|C(;) = C;)}, i" := max{j|C(;) = C;)} and 7 ~ U(0,1) is independently
sampled for each y;. Let y be a prediction for y and 6 an estimate of the quality of §. The
conformity measure may then be defined as

y—y
A (21,5 ooy Zmy Zmp1) 1= pa (2)

There are other ways of defining the conformity measure but the above definition makes
it computationally efficient to calculate C; and thus making Algorithm 1 computation-
ally efficient. With the conformity measure defined as (2) and A, (21, ..., Zm, Zm+1) =
A (21, oy 2m, (2, Cy)), C; is defined as
N o N
Ci =9+ ——Um+1 — Im+i)- (3)
Om+i
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The performance of conformal predictors is often evaluated by the efficiency, i.e., the size
of the produced prediction intervals. CPSs may in principle also be evaluated with respect
to efficiency, but this would require a significance level to be chosen and would furthermore
not fully capture the quality of the predictive distribution generated by CPSs. To evaluate
the performance of the predictive distribution, we instead consider the same loss function
used in (Vovk et al., 2019), namely continuous ranked probability score (CRPS). If we let
F : R — [0,1] be the distribution function and y; the label, then the CRPS is defined as

oo

CRPS(F, y;) = / (F(y) — 1yoy)2dy. (4)
—0o0

The lower the CRPS, the better the performance, with a lowest possible value of 0. Due

to the fuzziness of SCPS, CRPS cannot be computed directly. However, with the follow-

ing modification of @, (Vovk et al., 2019), the fuzziness is ignored and using CRPS as a

measurement of performance becomes viable,

im if y € (C;,Ciqq) for i € {0,1,...,n —m},
Q(Zl7"'7zn?(xay)77—) = (5)
im if y=C; and y # Cijyq for i € {1,...,n —m}.

2.2. Underlying model

Random forests are ensembles of random trees (Breiman, 2001). Each random tree is a
decision tree trained on a bootstrap replicate of the training examples, i.e., n examples are
sampled with replacement from the original n training examples. Thus each tree will be
constructed from only a subset of the training set. The examples which are not used during
training of a particular tree are said to be out-of-bag (oob) examples for that tree.

SCPS uses a training set to train the underlying model and a calibration set to generate
the predictive distribution. With a finite number of examples in a dataset, there is a trade-
off between the number of examples to use for training versus calibration. In general, the
more examples in the training set, the stronger will the underlying model be. However
with fewer examples in the calibration set, the more coarse the distribution will be. As
suggested in (Devetyarov and Nouretdinov, 2010) and further investigated in (Johansson
et al., 2014), in the context of conformal prediction, an alternative to splitting the dataset
is to use the oob predictions of a random forest when obtaining the calibration scores. The
advantage of this method is that all examples can be used for both training and calibration.
There is however a potential down-side to the method. When predicting the label for an
oob example, only the trees that were not trained from that particular example will be
used, i.e., only a subset of the trees in the forest are used for each oob example. Hence, the
predictions by such subsets of the forest can be expected to be less accurate than when using
the entire forest to form the predictions. Moreover the validity is lost, however, (Johansson
et al., 2014) and (Bostrom et al., 2017) show that when using oob predictions within the
framework of conformal prediction, validity holds empirically.

By accurately estimating the quality of the predictions of the underlying model, the
performance of the SCPS may be improved. In (Bostrom et al., 2017), two methods for
estimating the quality of predictions in the context of conformal regression forests were
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investigated. The first method employed the variance of the predictions of the trees in
the random forest. The second method, which was first proposed in (Papadopoulos et al.,
2011b), used a weighted average of the prediction error of the k nearest neighbours.

2.3. No quality estimation

Conformal predictive distributions can be used without estimating the quality of each pre-
diction. By setting 6 = 1 for all examples, i.e., both in the calibration set and the test
set, we assume that all predictions will be of equal quality. Thus the characteristics of the
predictive distribution will be the same differing only by a shift depending on the predic-
tion of the underlying model. Although an SCPS without quality estimation provides more
information than a point prediction, it is of interest to be able to estimate the quality and
thus get a unique predictive distribution for each example.

2.4. Variance

The first method used for estimating the quality of predictions is to use the variance of
the predictions for the different trees. For easily predicted examples, the trees in the forest
can be expected to agree more and hence the variance will be small. On the contrary, for
uncertain predictions, the trees will typically differ in their predictions, which results in
a larger variance. Assuming that the forest has N trees and that {pi,pe,...,pn} are the
predictions of the trees in the forest and that 5 > 0 is some small number to avoid division
by zero in (3). The quality estimation, &, for an example using the variance is then defined

as
1Y AR
A 2
U—N;pt—]\ﬂ(;pt) + 8 (6)

In the case of using the oob method, only a subset of the trees are used for the calibration
set. The variance will also be calculated from this subset of trees. To best replicate this for
the quality estimation of the test examples, trees are selected by a bootstrap replicate and
the variance of the predictions of the trees which are not included in the bootstrap replicate
is calculated.

2.5. kNN

The second method used for estimating the quality of predictions is by calculating the
average out-of-bag error of the k nearest examples weighted by the Euclidean distance. This
is motivated by the assumption that the quality of predictions of examples that are separated
by a small Euclidean distance will differ less than those further apart. Let {o1,09,...,01}
be the oob errors, d; the Euclidean distance between the (calibration or test) example and
its k nearest neighbors and 8 > 0 a small number to avoid division by zero in (3). Then &
is defined as

Yr_ i 0i/d;

7
> ya, g

é‘:
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3. Experiments

The experiments were designed to compare the performance of splitting the dataset into a
test set and calibration set with the use of the entire dataset for training and using oob pre-
dictions for the calibration in the conformal predictive distribution setting. Another purpose
of the experiment was to compare and evaluate the two above quality estimation methods
in the conformal predictive distribution setting. In these experiments, the performance was
measured by CRPS.

3.1. Experimental setup

For the experiments in this paper, the same 33 publicly available datasets were used as
considered in (Bostrom et al., 2017) and (Johansson et al., 2014). Details of these datasets
are listed in Table A.1 in the Appendix. The number of instances in the datasets ranges
roughly from 500 to 10000 and the number of attributes ranges from 2 to 15. To allow for
comparing the results, the labels (y) were normalized by

gl — ymax yZ (8)

Ymax — Ymin

In the experiments, the different quality estimation methods were employed and for each
method, different sizes of the training and calibration sets were considered together with
using the entire dataset for training and the oob examples for calibration. The considered
ratios of the sizes of the training and calibration sets were 1:9, 2:8, ..., 9:1. In all exper-
iments, 30% of each dataset was used as a test set. The experiments were repeated 10
times with each dataset split randomly into the proper training set, calibration set and test
set. The CRPS score for each dataset and experiment was calculated by taking the average
of the CRPS of all examples in the test sets. The parameters used were the same for all
datasets. Following (Johansson et al., 2014) and (Bostrom et al., 2017), the parameter (3
in equation (6) and (7) was set to 0.01 and the number of trees in the forest was set to 500.
When the kNN method was used for estimating the quality of the predictions, the 25 nearest
neighbors were used, as suggested in (Johansson et al., 2014). To compare the results of
the different methods and determine if there was a significant difference, a Friedman test
was performed, where the null hypothesis states that there is no difference in performance
between the methods. To detect pairwise differences, the Friedman test was followed by a
Nemenyi test (Demsar, 2006).

3.2. Experimental results

For each combination of dataset, quality estimation method and training set size, ten CRPS
scores were obtained and averaged, yielding a mean CRPS for each combination. Figures
1, 2, and 3 show box plots of the mean CRPS scores. Each figure shows the results from
one of the quality estimation methods. For all three methods, the plots show that the more
data that is used for training, the lower the average CRPS; i.e., an increase in performance.
However, the spread of the results remains large for all sizes of the training and calibration
set. The average CRPS scores from the ten runs for all the experiments are included in the
Appendix in Tables A.2, A.3 and A .4.
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In Fig. 4 and 6, the results from the corresponding Nemenyi tests are shown. The figures
show the average rank of the CRPS for the different training set sizes and the oob method.
They also show the critical difference (CD) for an o = 0.05. The methods which are not
connected by a black bar are significantly different from each other. As seen from the box
plots, the performance increases with the size of the training set, while the oob method
has the best ranking in all three setups. However, there is no significant difference in the
performance between using most (80% or 90%) of the available data for training and the
rest for calibration compared to using the oob method. In Fig. 7, the performances of the
oob methods for each quality estimation method are compared. The plot shows that, again
at o = 0.05, there is a significant difference between omitting the quality estimation and
using either of the employed quality estimation methods; both comparisons yield a p-value
of 0.001. There is however no significant difference between the two quality estimation
methods.

0.10 A

0.08 -

0.06 -

CRPS

0.04

0.02 A

10% 20% 30% 40% 50% ©60% 70% 80% 90% OOB
Training fraction

Figure 1: Results for different calibration approaches without quality estimation, i.e., 6 = 1.
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Figure 2: Results for different calibration approaches when estimating quality by variance.
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Figure 3: Results for different calibration approaches when estimating quality by kNN.
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Figure 4: Nemenyi test of the results without quality estimation, i.e., & = 1.
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Figure 5: Nemenyi test of the results when estimating quality by variance.
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Figure 6: Nemenyi test of the results when estimating quality by kNN.

cDh

Figure 7: Nemenyi test of the results for all methods using oob.

10



EVALUATING DIFFERENT APPROACHES TO CALIBRATING CONFORMAL PREDICTIVE SYSTEMS

4. Discussion

In this paper, the first, according to the best of our knowledge, large scale evaluation of
approaches to generating split conformal predictive systems has been reported. We have
mainly considered approaches that have earlier been demonstrated to be effective in the
context of conformal regressors. One of the main results in our study shows that the oob
approach is top-ranked more often than not, when compared to splitting the training data
into a proper training and calibration set. This result is in line with previous results for
conformal regressors, presented in (Johansson et al., 2014). Similar to when considering
conformal regressors, one may explain the strong relative performance of the oob approach,
by the stronger underlying models generated from the full training set, compared to using
only a subset of the training examples. However, the difference between training using
90% versus 100% of the available data is marginal in many cases, which explains why
a significant difference of the resulting conformal predictive systems was not observed in
these cases. However, when comparing the oob method against using 70% or less of the data
for training, there is indeed a significant difference in favor of the former. It should be noted
that we have not investigated the case of using less than 10% for calibration when splitting
the training set; results presented in (Vovk et al., 2019) showed that the performance
started to decline when more than 90% was used for training, and we expect this to have
been the case also in the considered setup. A major positive aspect of employing the oob
approach is hence that there is one important parameter less to tune; the proper amount
of data to use for training and calibration, respectively. The improvement in CRPS can be
regarded as small in absolute values, but the relative improvement of several percent may
have a large effect in decision making applications. Furthermore, no parameter tuning of
the underlying model (random forests) was performed, which could have further improved
the overall performance and perhaps also reduced the variance that was observed in the
box plots. Tuning of the quality estimation methods parameters may also lead to that
the performance is further improved and thus increasing the performance gap to not using
quality estimation. However, we do not expect such tuning to dramatically change the
outcome and conclusions of the study.

As discussed earlier, accurately estimating the quality of predictions can significantly
improve the performance of SCPS. Similar to the results in earlier studies on conformal
regression (Johansson et al., 2014; Bostrom et al., 2017), the methods used in this paper
to estimate the quality of predictions together with SCPS were observed to significantly
improve the performance. The results indicate that using kNN to estimate the quality ap-
pears to be the better option, which was also observed for conformal regressors in (Bostréom
et al., 2017). However, the observed p-value of 0.366 do not allow for safely rejecting the null
hypothesis, i.e., that there is no difference in performance between the kNN-based and the
variance-based approach. Furthermore, since the computational cost of the kNN method is
much higher than using the variance-based approach, the latter may be preferable.

5. Concluding remarks

We have investigated the effectiveness of alternative approaches to obtain calibration scores
for conformal predictive systems; using various amounts of available training data for gen-
erating the underlying model and obtaining calibration scores, respectively, and using the

11
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full training set for both model building and calibration, which is an option when bag-
ging is employed for the former, as calibration scores can be calculated using out-of-bag
predictions. Moreover, three approaches to estimate the quality of the individual predic-
tions were considered; using a constant quality for all predictions, using the variance among
the predictions of the individual trees of the underlying random forest and employing a
k-nearest-neighbor method.

Results from a large empirical study were presented, using 33 publicly available datasets
together with random forests as the underlying model, and using the continuous ranked
probability score (CRPS) as a performance metric. The results show that compared to
omitting the quality estimation of the individual predictions, a significant increase in per-
formance is obtained by using either the variance or the k-nearest-neighbor method. As no
significant difference between the two latter methods was observed, the use of the variance
method could be motivated based on its lower computational cost. The results furthermore
show that the use of out-of-bag examples for calibration is competitive with the most ef-
fective way of splitting the training data into a proper training set and a calibration set,
without requiring tuning of the calibration set size.

One direction for future research concerns analyzing and evaluating the computational
cost of the various approaches, something which has been mainly ignored in this study.
Also, comparing the approaches in this study to the recently proposed cross-conformal pre-
dictive systems (Vovk et al., 2019) is a natural extension. The latter are computationally
more costly than the considered approaches, but could potentially lead to improved perfor-
mance. Another direction for future work includes investigating and evaluating additional
approaches to estimating the quality of the individual prediction. An important direction
for future work includes considering additional ways of evaluating the split conformal pre-
dictive systems, e.g., using alternative performance metrics that more directly relate to the
use of such systems in decision-making contexts,
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Appendix A.
Name # instances # attributes source
abalone 4177 8 UCI
anacalt 4052 7 KEEL
bank8fh 8192 8 Delve
bank&fm 8192 8 Delve
bank8nh 8192 8 Delve
bank8nm 8192 8 Delve
boston 506 13 UCI
comp 8192 12 Delve
concreate 1030 8 UCI
cooling 768 8 UCI
deltaA 7129 5 KEEL
deltaE 9517 6 KEEL
friedm 1200 5 KEEL
heating 768 8 UCI
istanbul 536 7 UcCI
kin8fh 8192 8 Delve
kin8fm 8192 8 Delve
kin8nh 8192 8 Delve
kin8nm 8192 8 Delve
laser 993 4 KEEL
mg 1385 6 (Flake and Lawrence, 2001)
mortage 1048 15 KEEL
plastic 1649 2 KEEL
pumagfh 8192 8 Delve
puma8fm 8192 8 Delve
puma8nh 8192 8 Delve
puma8nm 8192 8 Delve
quakes 2178 2 KEEL
stock 950 9 KEEL
treasury 1048 15 KEEL
wineRed 1599 11 UCI
wineWhite 4898 11 UCI
wizmir 1461 2 KEEL

Table A.1: Datasets used in the experiments.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 OOB
abalone 0.044 0.042 0.041 0.042 0.041 0.040 0.040 0.041 0.040 0.040
anacalt 0.020 0.015 0.012 0.010 0.009 0.009 0.009 0.008 0.008 0.008
bank8fh 0.059 0.056 0.055 0.0564 0.064 0.054 0.053 0.054 0.053 0.053
bank8fm 0.042 0.037 0.035 0.034 0.033 0.032 0.032 0.032 0.031 0.031
bank8nh 0.060 0.058 0.057 0.057 0.057 0.057 0.057 0.056 0.056 0.057
bank8nm  0.032 0.030 0.028 0.028 0.028 0.027 0.027 0.026 0.026 0.026
boston 0.066 0.051 0.047 0.045 0.044 0.042 0.043 0.039 0.040 0.039
comp 0.018 0.017 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.015
concreate  0.074 0.065 0.057 0.054 0.051 0.048 0.048 0.043 0.042 0.041
cooling 0.038 0.031 0.029 0.026 0.026 0.024 0.024 0.025 0.022 0.022
deltaA 0.021 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
deltall 0.030 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029
friedm 0.059 0.055 0.052 0.048 0.046 0.047 0.046 0.045 0.045 0.043
heating 0.034 0.026 0.019 0.017 0.017 0.014 0.013 0.012 0.012 0.011
istanbul 0.047 0.045 0.045 0.044 0.047 0.044 0.044 0.043 0.045 0.043
kin8th 0.048 0.046 0.045 0.044 0.044 0.043 0.043 0.043 0.043 0.043
kin8fm 0.036 0.032 0.031 0.030 0.029 0.028 0.027 0.027 0.026 0.026
kin8nh 0.080 0.077 0.077 0.075 0.075 0.074 0.073 0.073 0.073 0.073
kin8nm 0.075 0.071 0.068 0.066 0.065 0.064 0.063 0.063 0.062 0.061
laser 0.031 0.023 0.018 0.018 0.017 0.015 0.015 0.014 0.013 0.013
mg 0.068 0.060 0.0564 0.052 0.049 0.047 0.047 0.046 0.043 0.044
mortage 0.013 0.009 0.007 0.006 0.006 0.005 0.005 0.005 0.004 0.004
plastic 0.101 0.097 0.098 0.100 0.097 0.098 0.101 0.099 0.098 0.097
pumag8th 0.087 0.085 0.084 0.084 0.083 0.083 0.083 0.083 0.082 0.082
puma8fm  0.058 0.052 0.049 0.047 0.046 0.045 0.044 0.043 0.043 0.043
pumaS8nh  0.094 0.089 0.088 0.086 0.085 0.084 0.083 0.083 0.083 0.082
pumaS8nm  0.079 0.070 0.066 0.063 0.060 0.059 0.057 0.057 0.055 0.055
quakes 0.099 0.097 0.099 0.099 0.098 0.098 0.098 0.097 0.097 0.097
stock 0.036 0.025 0.023 0.019 0.019 0.017 0.017 0.016 0.015 0.014
treasury 0.011 0.009 0.008 0.007 0.006 0.006 0.005 0.005 0.005 0.004
wineRed 0.074 0.072 0.070 0.069 0.068 0.066 0.066 0.064 0.064 0.063
wineWhite 0.067 0.064 0.063 0.062 0.060 0.059 0.058 0.056 0.056 0.055
wizmir 0.018 0.015 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.011

Table A.2: Mean CRPS for each dataset and training fraction size with 6 = 1.
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EVALUATING DIFFERENT APPROACHES TO CALIBRATING CONFORMAL PREDICTIVE SYSTEMS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 OOB

abalone 0.043 0.041 0.040 0.041 0.041 0.039 0.039 0.040 0.039 0.039
anacalt 0.018 0.014 0.011 0.009 0.009 0.009 0.008 0.008 0.007 0.008
bank8fh 0.059 0.057 0.056 0.054 0.054 0.054 0.053 0.054 0.053 0.053
bank8fm 0.042 0.038 0.035 0.035 0.033 0.033 0.032 0.032 0.031 0.031
bank8nh 0.060 0.058 0.057 0.057 0.057 0.057 0.056 0.056 0.056 0.056
bank8nhm  0.032 0.030 0.028 0.027 0.028 0.026 0.026 0.026 0.026 0.025
boston 0.065 0.051 0.046 0.044 0.043 0.041 0.041 0.038 0.039 0.038
comp 0.018 0.017 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.015
concreate  0.073 0.063 0.056 0.053 0.050 0.046 0.046 0.042 0.041 0.040
cooling 0.037 0.029 0.028 0.025 0.025 0.023 0.023 0.024 0.021 0.021

deltaA 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.019 0.020 0.019
deltaE 0.030 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029
friedm 0.060 0.056 0.052 0.048 0.047 0.047 0.046 0.046 0.045 0.044

heating 0.033 0.025 0.019 0.017 0.016 0.014 0.013 0.012 0.011 0.011
istanbul 0.047 0.045 0.045 0.044 0.047 0.044 0.044 0.043 0.045 0.043

kin8fh 0.048 0.046 0.045 0.044 0.044 0.043 0.043 0.043 0.042 0.042
kin8fm 0.036 0.033 0.031 0.029 0.029 0.028 0.027 0.027 0.026 0.026
kin8nh 0.079 0.077 0.076 0.074 0.074 0.074 0.073 0.073 0.072 0.072
kin8nm 0.075 0.070 0.067 0.066 0.064 0.064 0.062 0.062 0.061 0.060
laser 0.029 0.022 0.017 0.017 0.016 0.014 0.014 0.013 0.012 0.012
mg 0.063 0.056 0.050 0.047 0.044 0.042 0.042 0.041 0.038 0.039
mortage 0.012 0.009 0.007 0.006 0.006 0.0056 0.005 0.005 0.004 0.004
plastic 0.106 0.100 0.100 0.101 0.098 0.100 0.102 0.100 0.100 0.098

pumadth 0.087 0.084 0.083 0.083 0.082 0.082 0.082 0.082 0.081 0.081
puma8fm  0.059 0.053 0.049 0.048 0.046 0.045 0.044 0.044 0.043 0.043
puma8nh  0.093 0.089 0.087 0.085 0.084 0.083 0.082 0.082 0.082 0.082
puma8nm  0.078 0.070 0.066 0.063 0.060 0.059 0.057 0.057 0.055 0.055
quakes 0.100 0.099 0.100 0.100 0.098 0.099 0.100 0.098 0.098 0.098
stock 0.035 0.024 0.022 0.019 0.018 0.017 0.017 0.015 0.015 0.014
treasury 0.011 0.009 0.007 0.007 0.006 0.006 0.005 0.005 0.005 0.004
wineRed 0.074 0.072 0.069 0.068 0.067 0.065 0.064 0.062 0.062 0.062
wineWhite 0.067 0.064 0.062 0.061 0.058 0.058 0.057 0.055 0.054 0.053
wizmir 0.018 0.015 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.011

Table A.3: Mean CRPS for each dataset and training fraction size when the variance was
used to determine &.
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EVALUATING DIFFERENT APPROACHES TO CALIBRATING CONFORMAL PREDICTIVE SYSTEMS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 OOB

abalone 0.043 0.042 0.041 0.041 0.041 0.039 0.039 0.040 0.039 0.040
anacalt 0.019 0.015 0.011 0.009 0.009 0.009 0.008 0.008 0.007 0.007
bank8fh 0.059 0.056 0.055 0.054 0.054 0.054 0.053 0.054 0.053 0.053
bank8fm 0.042 0.037 0.035 0.034 0.033 0.032 0.031 0.032 0.030 0.030
bank8nh 0.060 0.058 0.057 0.057 0.057 0.057 0.056 0.056 0.056 0.056
bank8nhm  0.031 0.029 0.028 0.027 0.027 0.026 0.026 0.025 0.026 0.025
boston 0.065 0.051 0.047 0.044 0.043 0.042 0.042 0.039 0.039 0.038
comp 0.018 0.017 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.014
concreate  0.074 0.064 0.057 0.053 0.050 0.047 0.047 0.043 0.041 0.040
cooling 0.037 0.029 0.028 0.024 0.024 0.022 0.022 0.023 0.020 0.020

deltaA 0.021 0.020 0.020 0.020 0.020 0.019 0.020 0.019 0.019 0.019
deltaE 0.030 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029
friedm 0.059 0.054 0.051 0.047 0.045 0.045 0.045 0.044 0.044 0.042

heating 0.034 0.026 0.019 0.017 0.016 0.014 0.013 0.012 0.011 0.011
istanbul 0.047 0.045 0.045 0.044 0.047 0.044 0.044 0.043 0.045 0.043

kin8fh 0.047 0.045 0.045 0.044 0.043 0.043 0.043 0.043 0.042 0.042
kin8fm 0.034 0.031 0.029 0.028 0.027 0.027 0.026 0.025 0.025 0.025
kin8nh 0.079 0.077 0.076 0.074 0.074 0.074 0.073 0.072 0.072 0.072
kin8nm 0.074 0.070 0.067 0.065 0.064 0.063 0.061 0.061 0.060 0.059
laser 0.030 0.022 0.017 0.017 0.016 0.014 0.014 0.013 0.012 0.013
mg 0.066 0.058 0.051 0.049 0.046 0.044 0.043 0.043 0.040 0.040
mortage 0.013 0.009 0.006 0.006 0.006 0.006 0.005 0.005 0.004 0.004
plastic 0.101 0.097 0.098 0.099 0.097 0.098 0.101 0.098 0.098 0.096

pumadth 0.087 0.085 0.084 0.083 0.082 0.082 0.083 0.082 0.082 0.082
puma8fm  0.057 0.052 0.049 0.047 0.046 0.045 0.044 0.043 0.043 0.043
puma8nh  0.094 0.089 0.087 0.086 0.085 0.084 0.083 0.083 0.082 0.082
puma8nm  0.078 0.070 0.066 0.062 0.060 0.059 0.057 0.056 0.055 0.054
quakes 0.099 0.098 0.099 0.099 0.097 0.098 0.098 0.097 0.097 0.097
stock 0.036 0.024 0.022 0.019 0.019 0.017 0.017 0.015 0.015 0.014
treasury 0.011 0.009 0.007 0.006 0.006 0.006 0.005 0.005 0.005 0.004
wineRed 0.074 0.072 0.070 0.068 0.068 0.066 0.066 0.064 0.064 0.063
wineWhite 0.067 0.064 0.063 0.062 0.059 0.059 0.058 0.056 0.056 0.054
wizmir 0.018 0.015 0.013 0.013 0.012 0.012 0.012 0.012 0.012 0.011

Table A.4: Mean CRPS for each dataset and training fraction size when the kNN method
was used to determine 6.
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