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Abstract

Statistical theory of learning considers methods of constructing approximations that con-
verge to the desired function with increasing number of observations. This theory studies
mechanisms that provide convergence in the space of functions in L2 norm, i.e., it studies
the so-called strong mode of convergence. However, in Hilbert space, along with the con-
vergence in the space of functions, there also exists the so-called weak mode of convergence,
i.e., convergence in the space of functionals. Under some conditions, this weak mode of
convergence also implies the convergence of approximations to the desired function in L2

norm, although such convergence is based on other mechanisms.

The paper discusses new learning methods which use both modes of convergence (weak
and strong) simultaneously. Such methods allow one to execute the following: (1) select an
admissible subset of functions (i.e., the set of appropriate approximation functions), and
(2) find the desired approximation in this admissible subset.

Since only two modes of convergence exist in Hilbert space, we call the theory that uses
both modes the complete statistical theory of learning.

Along with general reasoning, we describe new learning algorithms referred to as Learn-
ing Using Statistical Invariants (LUSI). LUSI algorithms were developed for sets of func-
tions belonging to Reproducing Kernel Hilbert Space (RKHS); they include the modified
SVM method (LUSI-SVM method). Also, the paper presents a LUSI modification of Neu-
ral Networks (LUSI-NN). LUSI methods require fewer training examples that standard
approaches for achieving the same performance.

In conclusion, the paper discusses the general (philosophical) framework of a new learn-
ing paradigm that includes the concept of intelligence.
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1. Introduction

1.1. Main Results of VC Theory of Learning

About fifty years ago, the statistical theory of learning, the so-called VC theory1 was de-
veloped [1]. This theory addressed the following question.

Under what circumstances, when using a finite number of i.i.d. observations

(x1, y1), . . . , (x`, y`), x ∈ X, y ∈ {0, 1},

generated according to some unknown distribution function P (x, y), one can find, in
a given set of indicator functions2 {f(x)} : X → {0, 1}, a function f`(x) that is close
to the one that minimizes expected risk

R(f) =

∫
L(y − f(x))dP (x, y),

defined by some nonnegative loss function L(y − f(x)).

The answer to that question was that this is possible if and only if the measure of
capacity (diversity) of the given set of functions {f(x)}, namely, the so-called VC dimension
h of this set of functions (defined below), is finite. The following was proved:

1. If the VC dimension is finite (i.e., h <∞) then, with probability 1− η, the bound

∣∣∣R(f)−R`emp(f)
∣∣∣ ≤ ε

√
1 +

4R`emp(f)

ε
, ε = O

(
h− ln η

`

)
(1)

holds true simultaneously for all functions {f(x)}, where

R`emp(f) =
1

`

∑̀
i=1

L(yi − f(xi)). (2)

Bound (1) implies that the inequality

R(f) ≤ R`emp(f) + ε

√
1 +

4R`emp(f)

ε
(3)

holds for all f ∈ {f(x)} with probability 1 − η. Therefore, the smallest guaranteed
risk R(f) is realized by the function that minimizes the empirical loss Remp(f).

2. If, however, the VC dimension is infinite (i.e., h = ∞), then there exists a generator
P (x) of random vectors x such that, for almost any iid generated sequence x1, . . . , x`
(of any size `), the set of functions {f(x)} contains 2` functions that shatter the
sequence in all 2` possible ways. In this case, one can find a function with training
loss equal to 0 and test loss equal to 1. This means that one cannot find a function
with small guaranteed risk R(f) in {f(x)} by using only given observations.

1. Abbreviation for Vapnik-Chervonenkis theory.
2. Subsequently, this theory was generalized to real-valued functions [2].
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Bound (1) is called uniform convergence bound (it is uniform over all functions from
{f(x)}) and bound (3) is called guaranteed risk bound [1].

Definition of VC dimension. The VC dimension of the set of indicator functions is
equal to h if (i) there exist h vectors x1, . . . , xh such that they can be separated (shattered)
by functions from this set in all 2h possible ways, and (ii) there exist no h+ 1 vectors that
can be separated (shattered) in 2h+1 ways. The VC dimension of the set is infinite if such
vectors exist for any number h.

VC dimension of subsets of linear indicator functions. The combinatorial def-
inition of VC dimension allows one to estimate VC dimension of the following subsets of
linear functions, which are important for applications.

Theorem [2]. Let vectors x ∈ Rn belong to a sphere of radius 1. Consider the subset
of indicator functions θ(f(x,w)) defined by hyperplanes f(x) = (w, x) with bounded norms
||w||2 ≤ B of parameter vectors:

fw(x) = θ[(w, x)], θ(u) =

{
1 if u ≥ 0,
0 if u < 0.

(4)

The VC dimension h of this subset has the bound

h < min(n,B) + 1. (5)

Thus VC dimension is bounded by the smallest of two values: the dimensionality n of Rn

and the bound B of weight norms ||w||2). That is, according to (5), VC dimension can be
much smaller than the dimensionality of the space and it can be effectively controlled by
the value B. This fact plays an important role for constructing learning algorithms.

In order to prove this theorem, one has to construct the largest simplex (i.e., the simplex
with the largest number of vertices) within the sphere of radius 1, where the vertices of that
simplex can be separated in two subsets by functions (4) in all 2h possible ways using
weights with norms ||w||2 ≤ B.

Structural Risk Minimization Principle. Using bound (3), the VC theory intro-
duced the Structural Risk Minimization inductive principle for searching for the desired
approximation in a given set of functions. Let a structure of nested subsets

S1 ⊂ S2 · ·· ⊂ Sp ⊂ · · · (6)

be defined on the given set {f(x)}, where VC dimensions hk of subsets Sk form a non-
decreasing sequence:

h1 ≤ h2 ≤ . . . ≤ hp ≤ . . . .

Then, for any subset Sk, the bound

R(f) ≤ R`emp(f) + εk

√
1 +

4R`emp(f)

εk
, εk = O∗

(
hk − ln η

`

)
(7)
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holds true. Since VC dimension hk is fixed for any Sk (and thus the value εk in (7) is
defined), the smallest guaranteed bound of expected risk is achieved when one chooses the
function fk(x) which minimizes the empirical risk in Sk.

Remark 1. According to bound (1), for functions with empirical loss Remp(f
∗) = 0,

the expected loss is bounded as

R(f∗) ≤ O∗
(
h− ln η

`

)
,

while for functions with loss Remp(f
∗) 6= 0, the expected loss is bounded as

R(f∗) ≤ Remp(f∗) +O∗

(√
h− ln η

`

)
.

Therefore, the upper bound of risk depends on the value of empirical loss (the smaller is
the empirical loss, the smaller is the confidence interval). This fact plays an important role
in constructions of learning algorithms: it increases their reliance on data memorization.

1.2. Beyond Statistical Learning Theory

With all its impact, the statistical learning theory has not addressed the following four
questions:

1. How to choose the loss function L(y − f(x)) in the target functional Remp(f)?

2. How to choose the admissible set of functions {f(x)}?

3. How to construct the nested structure on the admissible set?

4. How to minimize the target functional on the elements of the nested structure?

In this paper, we provide answers to all these questions. We refer to the resulting
extended VC theory, which include answers to these four questions, as Complete Statistical
Learning Theory (or Complete VC theory).

2. Settings of Pattern Recognition Problem

2.1. Phenomenological Learning Model

Below we consider binary classification problem; its generalization to multiclass classification
problems and regression problems is straightforward.

Consider the following model of pattern recognition problem (Figure 1).

Suppose that some generator G generates vectors x ∈ X randomly and independently,
according to an unknown distribution function P (x). Suppose that some object O
transforms any input vector x into y ∈ {0, 1}. We assume that transformation of
vector x into value y is carried out according to some unknown conditional probability
function P (y|x). Without loss of generality, instead of function P (y|x), we consider
function f(x) = P (y = 1|x), where P (y = 0|x) = 1− P (y = 1|x).
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Figure 1: Interaction of Learning Machine with data (which is generated by Nature) and
Object (which provides classification of data).

Consider a Learning Machine that can implement functions from some set of admis-
sible indicator functions {θ(f(x))} (here {f(x)} is a set of real-valued functions). Let
Learning Machine observe ` i.i.d. pairs (xi, yi), where i = 1, . . . , `, generated by an
unknown joint distribution function P (y, x) = P (y|x)P (x).

The goal of Learning Machine is to select, using ` observations, such function f0(x)
in the set of admissible functions that minimizes the probability of error; that is,
minimizes the functional

R(f) =

∫
(y − θ(f(x)))2dP (x, y). (8)

2.2. Why Minimization of Square Loss Functional Is Not The Best Idea

From a computational point of view, the minimization of functional (8) is a hard compu-
tational problem: the loss function L(y, f(x)) = (y − θ(f(x))2 is discontinuous (it takes
only two values, so the gradient of this loss function is either undefined or is equal to
0). Therefore, classical methods replace function θ(f(x)) in (8) with continuous function
f(x) ∈ {f(x)} and target minimizing the loss in the set of functions {f(x)}:

R(f) =

∫
(y − f(x))2dP (x, y). (9)

Minimum f0(x) of functional (9) defines conditional probability function f0(x) = P (y = 1|x)
(assuming that f0(x) ∈ {f(x)}). This function defines the optimal decision rule

r(x) = θ(f0(x)− 0.5). (10)

Note that when one tries to estimate the conditional probability function using a small
number ` of observations, the minimization of (9) may be not the best idea. Indeed, one
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can rewrite this functional as follows:

R(f) =

∫
(y − f(x)2dP (x, y) =∫

((y − f0(x)) + (f0(x)− f(x)))2dP (x, y) =

∫
(y − f0(x))2dP (x, y)+

2

∫
(y − f0(x))(f0(x)− f(x))dP (x, y) +

∫
(f0(x)− f(x))2dP (x). (11)

Since only the last two integrals in (11) depend on function f(x), the minimum of (9) is
defined by the sum of last two integrals, and not by the minimum of the last one. When
one estimates regression from a limited number ` of observations, minimization of the sum
of two integrals (rather than minimization of only the last one) can slow down the rate of
convergence to the desired function.

2.3. Direct Methods of Estimation of Conditional Probability Function

In order to estimate the conditional probability function f0(x) = P (y = 1|x) on the set of
functions {f(x)} (where f0(x) ∈ {f(x)}), consider equality

P (y = 1|x)p(x) = f0(x)p(x) = p(y = 1, x); (12)

here p(y = 1, x) and p(x) are density functions. From (12), we obtain the following equality
for any function G(x− x′) ∈ L2:∫

G(x− x′)f(x)dP (x) =

∫
G(x− x′)dP (y = 1, x). (13)

The solution of Fredholm equation (13) (with respect to f(x) ∈ {f(x)} when the right-hand
side of the equation (13) is known) defines conditional probability function P (y = 1|x). The
estimation of the conditional probability function from given data is thus realized by solving
the corresponding Fredholm integral equation when probability measures P (y = 1, x) and
P (x) are unknown but iid data

(x1, y1), . . . , (x`, y`), x = (x1, . . . , xn), y ∈ {0, 1}

are given.

2.3.1. Constructive Equation for Direct Estimation.

In order to solve equation (13) using data, we use the following inductive step: we replace
the unknown cumulative distribution functions with their estimates:

P`(x) =
1

`

∑̀
i=1

θ(x− xi), θ{x− xi} =
n∏
k=1

θ{xk − xki }.

Replacing P (x) and P (y = 1, x) in (13) with their estimates, we obtain

1

`

∑̀
i=1

G(x− xi)f(xi) =
1

`

∑̀
i=1

yiG(x− xi). (14)
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In order to estimate the condition probability function, we have to solve equation (14) in
the set of functions {f(x)}.

Remark 2. In classical statistics, Nadaraya-Watson estimator of regression for y ∈
{0, 1} defines conditional probability function using the formula

P (y = 1|x) =

∑`
i=1 yiG(x− xi)∑`
i=1G(x− xi)

,

where special kernels (say, Gaussian kernel exp
{
−||x− xi||2/(2σ2)

}
) are used.

This estimator is the solution of the “corrupted” equation

1

`

∑̀
i=1

G(x− xi)f(x) =
1

`

∑̀
i=1

yiG(x− xi)

(which uses a special kernel) rather than the original equation

1

`

∑̀
i=1

G(x− xi)f(xi) =
1

`

∑̀
j=1

yjG(x− xj),

where one can use any kernel G(x− x′) from L2.
The main problem with Nadaraya-Watson estimator is to find the best width parameter

σ > 0 of the kernel. There are several recommendations for choosing the value of this
parameter. Since the solution of equation (14), which defines the conditional probability
function, exists for any function G(x − x′), it seems reasonable to use the parameter that
is optimal for Nadaraya-Watson estimator of conditional probability function.

2.3.2. Solution of Equation.

In order to solve equation (14) in the set of functions {f(x)}, we minimize the distance

ρ2 =

∫ ∑̀
i=1

G(x− xi)f(xi)−
∑̀
j=1

yjG(x− xj)

2

dµ(x),

where µ(x) is a given (probability) measure which defines the required concept of closeness.
This distance can be rewritten as

ρ2 =
∑̀
i,j=1

(f(xi − yi)(f(xj)− yj)v(xi, xj), (15)

where values v(xj , xj) are defined as

v(xi, xj) =

∫
G(x− xi)G(x− xj)dµ(x). (16)

Elements v(xi, xj) form an (`× `)-dimensional matrix, which we refer to as V-matrix.
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Example 1. Consider the case µ(x) = P`(x), where P`(x) is an empirical estimate of
unknown measure P (x). For this measure, we obtain the following elements v(xi, xj) of
V-matrix:

v(xi, xj) =
1

`

∑̀
s=1

G(xs − xi)G(xs − xj).

Example 2. Let G(x − x′) = exp{−0.5∆2(x − x′)2}. Consider one-dimensional case of
x ∈ (−a, a), where x is uniformly distributed on (−a, a) (i.e., µ(x) = (2a)−1x). For this
case,

v(xi, xj) =
1

2a

∫
exp{−0.5∆2(x− xi)2} exp{−0.5∆2(x− xj)2}dx.

After integration, we obtain

v(xi, xj) = C exp

{
−(xi − xj)2

σ2

}[
erf

(
c+ x̂i,j
σ

)
+ erf

(
c− x̂i,j
σ

)]
,

where we have denoted (xi + xj)/2 = x̂i,j .
For multidimensional case of x = (x1, ..., xn) ∈ [−c1, c1] × · · · × [−cn, cn], the elements

v(xi, xj) of V-matrix have the form

v(xi, xj) = C exp

{
−||xi − xj ||

2

σ2

} n∏
k=1

[
erf

(
ck + x̂ki,j

σ

)
+ erf

(
ck − x̂ki,j

σ

)]
.

When minimizing (15), one can ignore constant C in V-matrix.

Target Functional in Matrix Form. For simplicity, we introduce matrix notations.
Consider (` × 1)-dimensional matrix Y = (y1, . . . , y`)

T , where binary values yi are labels
of the elements xi in training data. For any function f(x) from the set {f(x)}, consider
(` × 1)-dimensional matrix F (f) = (f(x1), . . . , f(x`))

T . For the selected kernel function
G(x, x′), consider (`× `)-dimensional V-matrix of elements v(xi, xj).

In these notations, the target functional R(f) has the form

R(f) = (F (f)− Y )TV(F (f)− Y ). (17)

Our goal is to minimize (17) in the set of admissible functions {f(x)}.

Therefore, finding solution of equation (14) in a given set of functions {f(x)} requires
the minimization of the functional (17) rather than the minimization of the classical least
square functional

R(f) = (F (f)− Y )TI(F (f)− Y ),

where the identity matrix I is used instead of V-matrix.

3. Estimation of Conditional Probability Function and Solution of
Ill-Posed Problems

In order to find conditional probability function, we need to solve the approximation (14)
of Fredholm equation (13) in a given set of functions {f(x)}. However, it is known that
solving the Fredholm integral equation is an ill-posed problem, as explained next.
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3.1. Well-Posed and Ill-posed Problems

Let A be a linear operator which maps elements f of a metric space E1 into elements F of
a metric space E2. The solution of operator equation

Af = F (18)

in the set {f} is well-posed if the solution (i) exists, (ii) is unique, and (iii) is continuous.
That is, if the functions F1 and F2 of the right-hand side of equation (43) are close in the
metric of space E2 (i.e., ρE2(F1, F2) ≤ ε), they correspond to the solutions f1 and f2 that
are close in the metric of space E1 (i.e., ρE1(f1, f2) ≤ δ). The problem is called ill-posed
if at least one of the three conditions above is violated. Below we consider the ill-posed
problems where unique solutions exist, but the inverse operator

f = A−1F

could be discontinuous. Inference problems defined by the Fredholm equation∫ 1

0
θ(x− t)f(t)dP (x) = P (y = 1, x)

are ill-posed. Thus the solution of the problem of statistical inference requires to solve
ill-posed problems described by Fredholm equations with both both right-hand side (i.e, F )
and left-hand side (i.e., operator A) of equation (18) defined approximately.

3.2. Regularization of Ill-Posed Problems

The solution of ill-posed problems is based on the following lemma.
Lemma. (Lemma about inverse operator.) If A is a continuous one-to-one operator

defined on compact setM of functions {f}, then the inverse operator A−1 is continuous on
the set N = AM.

Consider a continuous non-negative functional W (f) and the set of functions

MC = {f : W (f) ≤ C}. (19)

defined by a constant C > 0. Let the set of functions MC be convex and compact for any
C. Suppose that the solution of operator equation belongs to compact sets MC .

The idea of solving ill-posed equation (18) is to choose an appropriate compact set (i.e.,
to choose a constant C∗ in (19)) and then to minimize the square of distance between left-
and right-hand sides of equation (18) on this compact set of functions3 defined by C∗. In
other words, the idea is to minimize the square of distance

ρ = ρ2
E2

(Af, F ) (20)

3. Note that this idea of solving ill-posed problems is the same one as in structural risk minimization in VC
theory. In both cases, a structure is defined on the set of functions.When solving well-posed problems,
elements of structure should have finite V C-dimension. When solving ill-posed problems, elements of
structure should be compact sets.
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in E2 space over functions f subject to the constraint

W (f) ≤ C∗. (21)

The equivalent form of this approach is Tikhonov’s regularization method. In this
method, the functional

R(f) = ρ2
E2

(F (x), Af) + γc∗W (f) (22)

is minimized, where γc∗ > 0 is the regularization constant which depends on the value C∗

in (21).
The expression (22) is the Lagrangian functional for the problem of minimizing (20)

subject to (21), where parameter γc∗ is defined by the parameter C∗ that defines the chosen
compact set of functions {f(x)} satisfying (21). The parameter γ = γc∗ in (22) should be
chosen in such a way that the equality

W (f∗) = C∗

holds true for the solution f∗ of the minimization problem.
The following theorem holds true for regularization method (22).

Theorem. Let E1 and E2 be metric spaces and suppose that, for F ∈ E2, there exists a
solution of the equation

Af = F

that belongs to the set f ∈ {WE1(f) ≤ C} for C > C0. Let the right-hand side F of
this equation be approximated with Fδ such that ρ(F, Fδ) ≤ δ. Suppose that the values of
(regularization) parameters γ(δ) are such that

γ(δ) −→ 0, for δ −→ 0

lim
δ→0

δ2

γ(δ)
≤ r ≤ ∞.

Then the elements fγ(δ) minimizing the functional

R(f) = ρ2
E2

(Af, F (δ)) + γ(δ)WE1(f)

converge to the exact solution as δ −→ 0.

Remark 3. This theorem was generalized in [2] for the case where (i) approximately
defined right-hand sides of equation converges to the true right-hand side and (ii) approxi-
mately defined operators Aε converge to operator A.

Remark 4. In the terminology of VC theory, regularization corresponds to (i) con-
structing, in a given set of functions {f(x)}, a structure of compactsMC = {f : W (f) ≤ C}
with bounded VC dimension, and (ii) subsequent selection of an elementMC and a function
in this element that minimizes (22). The choice of γ in (22) is equivalent to the choice of
an element of the structure in Structural Risk Minimization.

10
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4. Selection of Admissible Set of Functions

Strong and Weak Modes of Convergence. In order to select an admissible set of func-
tions from a large set of functions (for instance, the set of continuous bounded functions),
we use the idea of weak convergence of functions in Hilbert space. It is known that there
are two modes of convergence in Hilbert space: the strong mode and the weak mode.

Strong convergence. The sequence of functions f1(x), . . . , f`(x), . . . converges to func-
tion f0(x) in strong mode (in the space of functions) if

lim
`→∞

||f`(x)− f0(x)|| = 0.

Weak convergence. The sequence of functions f1(x), . . . , f`(x), . . . converges to func-
tion f0(x) in weak mode (in the space of functionals) if the equality

lim
`→∞

(φ(x), {f`(x)− f0(x)}) = 0

holds true for all functions φ(x) ∈ L2.

For our problem, the sequence of estimates of conditional probability functions converges
to the desired function f0(x) = P (y = 1|x) in weak mode if

lim
`→∞

∫
φ(x)f`(x)dP (x) =

∫
φ(x)dP (y = 1, x), ∀φ(x) ∈ L2.

It is easy to show (using Cauchy-Schwartz inequality) that if a sequence of functions
f`(x) strongly converges to function f0(x) then it also converges weakly. It is also known
that, under some conditions, the converse theorem holds true ([5], Chapter 7.8):

Theorem. If set of functions {f(x)} is a compact then weak convergence of estimates
implies strong convergence.

In this paper, we estimate conditional probability functions belonging to sets of functions
with bounded norm in Reproducing Kernel Hilbert Space (RKHS). This set is a compact.

Admissible Set of Functions. To select an admissible set of functions, we relax the
concept of weak convergence. We consider a finite set of functions

φs(x), s = 1, . . . ,m,

which we call predicates.
For any predicate φs(x), s = 1, . . . ,m, the following equality holds:∫

φs(x)P (y = 1|x)dP (x) =

∫
φs(x)dP (y = 1, x), s = 1, . . . ,m. (23)

Suppose that one knows the values of right-hand sides of equations (23). Then one can
select, from a large set of functions (for instance, bounded continuous functions), the subset
of functions {f(x)} that satisfy the equalities∫

φs(x)f(x)dP (x) = as, s = 1, . . . ,m. (24)

11
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This set of functions {f(x)} we call the admissible set of functions.
Note that the desired condition probability function f0(x) = P (y = 1|x) belongs to the

set of admissible functions and, with the increasing number of m of predicates, the set of
admissible functions keeps shrinking monotonically4.

In reality, we do not know P (x) and P (y = 1|x) in the left- and the right-hand sides
of equation (23). However, replacing them with their empirical approximations P`(x) and
P`(y = 1, x), we can find the following approximation of (23):

1

`

∑̀
i=1

φs(xi)f(xi) =
1

`

∑̀
i=1

yiφs(xi), s = 1, . . . ,m. (25)

We refer to equalities (25) as statistical invariants defined on the training set (xi, yi).
We consider the functions satisfying (25) as the admissible set {f(x)}.

To simplify notations, we introduce two `-dimensional vectors: vector

Φs = (φs(x1), . . . .φs(x`))
T

of predicate φs(x) and vector

F (f) = (f(x1), . . . , f(x`))
T ,

where F (f) transforms any function from admissible set {f(x)} into `-dimensional vector
of its values defined on training vectors xi. In these notations, we rewrite equation (25) as

ΦT
s F (f) = ΦT

s Y, s = 1, . . . ,m. (26)

Remark 5. Since equation (26) does not depend on the scale of vectors Φs, we use
normalized vectors Φs, so that ||Φs|| = 1.

5. Complete Solution of Learning Problem

5.1. The Exact Solution

The complete solution of our problem of estimating conditional probability function requires
(i) selection of an admissible subset of a large set of functions using both training data and
predicates and then (ii) selection of the desired approximation from the admissible subset
of functions using training data.

Formally, this requires solving the following constrained optimization problem: in a
given set of functions {f(x)}, minimize the functional

R(f) = (F (f)− Y )TV(F (f)− Y ) (27)

subject to the constraints

ΦT
s F (f) = ΦsY, s = 1, . . . ,m. (28)

4. As follows from Section 4, if the conditional probability function belongs to a compact and the set of
predicates consists of all functions φ(x) ∈ L2, the admissible set of functions contains only one function
– namely, the desired one.

12
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Below we present closed-form solution of this optimization problem for sets of functions
that belong to Reproducing Kernel Hilbert Space.

Remark 6. When the number ` of observations is small, the solution of optimiza-
tion problem (27)-(28) is not a good approximation of the solution of equation (13) with
constraints (23).

Indeed, the goal is to minimize the functional (13) in the set of functions satisfying (23).
However, since probability measure that defines (23) is unknown, we replace it in (23) with
empirical estimate (28).

According to Hoeffding inequality, however, for bounded functions a ≤ u(x) ≤ b, the
inequality

P

{∣∣∣∣∣
∫
u(x)dP (x)− 1

`

∑̀
i=1

u(xi)

∣∣∣∣∣ > ε

}
≤ 2 exp

{
− 2ε2`

(b− a)2

}
holds true. That is, with probability 1− η, the inequality∣∣∣∣∣

∫
u(x)dP (x)− 1

`

∑̀
i=1

u(xi)

∣∣∣∣∣ ≤ (a− b)
√
− ln η/2

2`

is valid. Using this fact, we conclude that for any fixed f(x)∣∣∣∣∣
∫
φsf(x)dP (x)− 1

`

∑̀
i=1

φs(xi)f(xi)

∣∣∣∣∣ ≤ εs∣∣∣∣∣
∫
yφs(x)dP (y = 1|x)− 1

`

∑̀
i=1

φs(xi)yi

∣∣∣∣∣ < εs

where

εs = (as − bs)
√
− ln η/2

`
, as = sup

x
φs(x), b = inf

x
φs(x).

Therefore, for small sample size `, instead of equality constraints (28) it is better to use
more accurate inequality constraints∣∣ΦT

s F (f)− ΦT
s Y
∣∣ ≤ `εs, s = 1, . . . ,m. (29)

5.2. Approximate Solutions of Complete Learning Problem

Approximation 1. L2 Unconstrained Minimization. In this approximation of the
problem, instead of minimizing functional (27) subject to constraints (28) in a given set of
functions {f(x)}, we minimize functional

R(f) = τ̂(F (f)− Y )TV(F (f)− Y ) +
τ

m

m∑
s=1

(
ΦT
s F (f)− ΦT

s Y
)2
,

where τ̂ + τ = 1, τ ≥ 0 is a free parameter which describes the relative importance of both
terms of functional R(f).

13
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Simple algebra leads to the following equivalent expression of this functional:

R(f) = (F (f)− Y )T (τ̂V + τP)(F (f)− Y ), (30)

where matrix P is defined as

P =
1

m

m∑
s=1

ΦsΦ
T
s .

Approximation 2. L1 Constrained Minimization. Here we consider the problem
of minimization in given set of functions {f(x)} the functional

R(f) = ||f(x)||2 + C

(
τ

m∑
s=1

ξs + τ̂
∑̀
i=1

ξ(m+i)

)
(31)

subject to the constraints

|yi − f(xi)| ≤ ε+ ξ(m+i), i = i, ..., `. (32)

and constraints
|ΦT
s F (f)− ΦT

s Y | ≤ `εs + ξs, s = 1, ...,m, (33)

where εs > 0, ε, and τ are free parameters of algorithm.

Approximation 3. Hinge Loss Constrained Minimization. Here we consider the
problem of minimization in a given set of functions the functional (31) subject to constraints
(32) and constraints

(2yi − 1)(f(xi)− 0.5) ≥ ε− ξ(m+i), i = 1, . . . , `, (34)

where (2yi − 1) ∈ {−1, 1}. Note that f(x) in (34) is an estimate of conditional probability
function and is an estimate of optimal classification rule (10).

In this paper, we solve complete learning problem in two sets of functions:
1) The set of functions that belong to Reproducing Kernel Hilbert Space (RKHS) of

kernel K(x, x′). For this set of functions, we obtain closed-form solutions for both exact
constrained minimization method and approximate unconstrained minimization method.

2) The set of functions defined by a neural network. For this set of functions, we obtain
solution for L2 unconstrained minimization approximation.

6. Complete Solution in a Set of RKHS

In this section, we present solution of complete learning problem in a set of functions that
belong to RKHS.

14
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6.1. Reproducing Kernel Hilbert Space

We are looking for solutions of our inference problems in the set of functions f(x, α), α ∈ Λ
that belong to Reproducing Kernel Hilbert Space associated with kernel K(x, x′), where
K(x, x′) is a continuous positive semi-definite function of variables x, x′ ∈ X ⊂ Rn:

n∑
i=1

n∑
j=1

K(xi, xj)cicj ≥ 0 (35)

for any {x1, . . . , xn} and {c1, . . . , cn}. Consider linear operator

Af =

∫ b

a
K(x, s)f(s) ds (36)

that maps elements f(s) into elements Af(x) in space H.
According ro Mercer theorem, for any continuous positive semi-definite kernel, there

exists an orthonormal basis ei(x) consisting of eigenfunctions of K(x, x′) of operator (36),
and the corresponding sequence of nonnegative eigenvalues λi such that kernel K(x, x′) has
the representation

K(x, x′) =
∞∑
i=1

λiei(x)ei(x
′), (37)

where the convergence of the sequence is absolute and uniform.
The set {f(x)} of functions f(x) belongs to Reproducing Kernel Hilbert Space (RKHS)

associated with kernel K(x, x′) if the inner product (f1, f2)H between functions f1, and f2

of this set is such that for any function f(x) ∈ {f(x)} the equality

f(x′) = (K(x, x′), f(x))H (38)

holds true. That is, the inner product of functions from {f(x)} with kernel K(x, x′) (where
variable x′ is fixed) has the reproducing property.

Consider the parametric set {f(x)} of functions

fc(x) =
∞∑
i=1

ciei(x), c = (c1, c2, . . .)
T ∈ R∞. (39)

According to representation (37), kernel K(x, x′) as a function of variable x belongs to set
{f(x)} (the values λiφi(x

′) can be considered as parameters ci of expansion.)
In order to define Reproducing Kernel Hilbert Space for set (39), we introduce the

following inner product between two functions fb(x), fd(x), defined by parameters b =
(b1, b2, . . .) and d = (d1, d2, . . .) in (39):

(fb(x), fd(x))H =

∞∑
i=1

bidi
λi

. (40)

It is easy to check that, for such inner product, reproducing property (38) of functions from
RKHS of kernel K(x, x′) holds true and the square of the norm of function fb(x) ∈ Φ is
equal to

||fb(x)||2H = (fb(x), fb(x))H =

∞∑
i=1

b2i
λi

= B. (41)
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6.1.1. Properties of RKHS.

The following three properties of functions from RKHS of kernel K(x, x′) make them useful
for function estimation problems in high-dimensional spaces:

1. Functions from RKHS with bounded square of norms

∞∑
i=1

b2i
λi
≤ C (42)

belong to a compact set and therefore the square of the norm of function can be used
as a regularization functional (see Lemma in Section 3.2).

2. (Representer Theorem) The function that minimizes the empirical loss

R(f) =
∑̀
i=1

L(yi − f(x))

in a set of RKHS with bounded norm (42), along with representation (39), has the
representation

f(x, α) =
∑̀
i=1

αiK(xi, x), (43)

where ` is the number of observations.

3. The square of the norm of the chosen function, along with representation (42), has
the representation

||f(x, α)||2H = (f(x, α), f(x, α))H =
∑̀
i,j=1

αiαjK(xi, xj). (44)

Representation (43) of the function from RKHS and its norm (44) is used to solve
inference problems in high-dimensional spaces.

6.1.2. Properties of Kernels.

Kernels K(x, x′) (also called Mercer kernels) have the following properties:

(1) Linear combination of kernels K1(x, x′) and K2(x, x′) with non-negative weights is
the kernel

K(x, x′) = α1K1(x, x′) + α2K2(x, x′), α1 ≥ 0, α2 ≥ 0.

(2) Product of the kernels K1(x, x′) and K2(x, x′) is the kernel

K(x, x′) = K1(x, x′)K2(x, x′).

In particular, the product of kernels K(xk, x′k) defined on coordinates xk of vectors
x = (x1, . . . , xm) is a multiplicative kernel in m-dimensional vector space x ∈ Rm:

K(x, x′) =

m∏
s=1

Ks(x
s, x′s).
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(3) Normalized kernel is the kernel

K∗(x, x
′) =

K(x, x′)√
K(x, x)K(x′, x′)

.

6.1.3. Examples of Mercer Kernels.

Gaussian kernel in x ∈ R1 has the form

K(x, x′) = exp{−δ(x− x′)2}, x, x′ ∈ R1,

where δ > 0 is a free parameter of the kernel.
In m-dimensional space x ∈ Rm, Gaussian kernel has the form

K(x, x′) =

m∏
k=1

exp{−δ(xk − x′k)2} = exp{−δ|x− x′|2}, x, x′ ∈ Rn.

6.2. Exact Solution of Complete Learning Problem in RKHS

In this section, we estimate the conditional probability function in the form

f(x) = ψ(x) + c, (45)

where ψ(x) belongs to RKHS of kernel K(x, x′) and b ∈ R1 is the bias.
In order to do this, we minimize V-quadratic form (27) in a given set of functions {f(x)}

subject to constraints (28). Below we look for a solution in the set of functions from RKHS
of kernel K(x, x′) with bias, using the representation

f(x) =
∑̀
i=1

aiK(xi, x) + c. (46)

We consider functions from RKHS that have their norm bounded by value B:

||f(x)||2H =

∣∣∣∣∣
∣∣∣∣∣∑̀
i=1

aiK(xi, x)

∣∣∣∣∣
∣∣∣∣∣
2

H

=
∑̀
i,j=1

aiajK(xi, xj) ≤ B. (47)

We introduce vector A = (a1, . . . , a`)
T and rewrite (47) in the form5

||f(x)||2H = ATKA ≤ B. (48)

Vector F (f), which defines estimates of conditional probability function on training data
x1, . . . , x` for RKHS, has the form

F (f) = KA+ 1`c,

where 1` = (1, . . . , 1)T is `-dimensional vector of ones.

5. Note that the functions satisfying (41) constitute the set of smooth functions where smoothness prop-
erties are controlled by the value B: the smaller is the value B, the smoother are the functions.
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In order to estimate the conditional probability function from RKHS with bounded
norm, we minimize target functional (27) subject to constraints (28) written in the form
defined for RKHS.

The target functional 27) for RKHS has the form

R(A) = (KA+ c1` − Y )TV(KA+ c1` − Y ), (49)

and constraints (28) has the form

ΦT
sKA+ cΦT

s 1` = ΦT
s Y, s = 1, . . . ,m. (50)

In order to solve the complete learning problem problem for RKHS, we have to minimize
functional (49) subject to constraints (50) and (48). Consider the Lagrangian

L(A, c, µ) = (KA+ c1` − Y )TV(KA+ c1` − Y ) + γ(ATKA−B)+ (51)

m∑
k=1

µk(Φ
T
sKA+ cΦT

s 1` − ΦT
s Y ).

The necessary conditions of its minimum are as follows:

∂L(A, c, µ)

∂A
=⇒ VKA+ γA+ cV 1` − VY +

m∑
s=1

µsΦs = 0

∂L(A, c, µ)

∂c
=⇒ 1T` VKA+ 1T` V1`c− 1T` VY +

m∑
s=1

µs1
T
` Φs = 0

∂L(A, c, µ)

∂µk
=⇒ ATKΦk + c1T` Φk − Y TΦk = 0, k = 1, . . . ,m.

(52)

From the first line of (52), we obtain the expression

(V K + γI)A = VY − cV1` −
m∑
k=1

µkΦk (53)

and the expression

A = (V K + γI)−1(VY − cV1` −
m∑
s=1

µsΦs). (54)

We then compute (m+ 2) vectors

AV = (VK + γI)−1VY,

Ac = (VK + γI)−1V1`

As = (VK + γI)−1Φs, s = 1, . . . , n.

(55)

The desired vector A has the expression

A = AV − cAc −
m∑
s=1

µsAs. (56)
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Putting expression (56) back into the last two lines of (52), we find that, in order to
compute coefficient c and n coefficients µs of expansion (56), we have to solve the following
system of m+ 1 linear equations:

c[1T` VKAc − 1TV1`] +
m∑
s=1

µs[1
T
` VKAs − 1T` Φs] = [1T` VKAV − 1T` VY ]

c[ATc KΦk − 1T` Φk] +
m∑
s=1

µsA
T
sKΦk = [ATVKΦk − Y TΦk], k = 1, . . . ,m.

(57)

Using estimated vector A and bias c, we obtain the desired function

f(x) = ATK(x) + c. (58)

Parameter γ is a free parameter in the algorithm. It depends on the selected value B in
(48): γ is selected in such a way that equality ATKA = B holds.

6.3. Approximation 1. L2 Conditional Minimization

In order to find vector A and bias c of of approximation (58), we minimize functional (30)
in the set of functions (48). That is, we minimize

R(A) = (KA+ c1` − Y )T (τ̂V + τP)(KA+ c1− Y )

subject to constraint
ATKA ≤ B.

Consider Lagrangian

R(A) = (KA+ c1` − Y )T (τ̂V + τP)(KA+ c1− Y ) + γ(ATKA−B).

From the necessary conditions of minima of this Lagrangian

K(τ̂V + τP)(KA+ c1− Y ) + γKA = 0,

1T` (τ̂V + τP)(KA+ c1` − Y ) = 0,

we obtain vector A and value b of the solution (58):

A = ((τ̂V + τP)K + γI)−1(τ̂V + τP)(Y − c1`)

and

c =
1T` (τ̂V + τP)Yr

1T` (τ̂V + τP)1`
. (59)
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6.4. Approximation 2. LUSI-Regression SVM

To simplify the formulas, we denote, along with m predicate vectors

Φs = (φs(x1), . . . , φs(x`))
T , s = 1, . . . ,m,

` vectors that indicate the indices i of the training vectors xi:

Φm+i = (0, ..., 0, 1, 0, ..., 0)T , i = 1, ..., `.

We also set τs = 1− τ for 1 ≤ s ≤ m and set τs = τ for s > m.

Using these notations, consider Approximation 2 based on L1 unconstrained minimiza-
tion problem (see Section 5): In order to find parameters A and b of approximation (58),
we minimize functional

R = ATKA+ C

m+∑̀
s=1

τsξs (60)

subject to constraints

|ΦT
s (KA+ c1− Y )| ≤ εs + ξs, s = 1, ..., (m+ `), ξs ≥ 0, (61)

For s = (m + 1), ..., (m + `), let εs be a small value εs = ε∗; for s = 1, . . . ,m let εs be
the value

εs = c
√
` ln η/2,

which is proportional to least square deviation (29) (see Remark 6 in Section 5).
Consider the Lagrangian

L(A, b, ξ) = ATKA+ C
m+∑̀
s=1

τsξs +
m+∑̀
s=1

νsξs+ (62)

m+∑̀
s=1

αs[−(εs + ξs) + ΦT
s (KA+ c1− Y )]−

m+∑̀
s=1

βs[(εs + ξs) + ΦT
s (KA+ c1− Y )],

where γ ≥ 0, α ≥ 0, β ≥ 0, ν ≥ 0 are Lagrange multipliers.
From necessary conditions of minima of this Lagrangian, we obtain

∂L

∂A
= 0 =⇒ A =

m+∑̀
s=1

(αs − βs)Φs

∂L

∂c
= 0 =⇒

m+∑̀
s=1

(αs − βs)ΦT
s 1 = 0

∂L

∂ξs
= 0 =⇒ 0 ≤ αs, βs < C(1− τ), s = 1, ...,m

∂L

∂ξs
= 0 =⇒ 0 ≤ αs, βs < Cτ, s = (m+ 1), ..., (m+ `)

(63)
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Putting the expression for A back into Lagrangian and taking into account (63), we obtain
that, in order to minimize the Lagrangian over α and β and ξ, we have to maximize the
quadratic form

R(α, β) = −
m+∑̀
s=1

εs(αs + βs) +

m+∑̀
s=1

(αj − βj)ΦT
s Y −

1

2

m+∑̀
s,r=1

(αs − βs)ΦT
sKΦs(αr − βr) (64)

subject to the constraints
m+∑̀
s=1

(αs − βs)ΦT
s 1 = 0 (65)

0 ≤ αs, βs ≤ C(1− τ), s = 1, ...,m

0 ≤ αs, βs ≤ Cτ, s = (m+ 1), . . . , (m+ `).
(66)

6.5. Approximation 3. LUSI-Classification SVM

Consider, along with the values yi ∈ {0, 1}, the values ŷi = (2yi − 1) ∈ {−1, 1}). In order
to minimize functional

R(f) = ATKA+ C

m+∑̀
s=1

τsξs, ξs ≥ 0 (67)

subject to constraints

ŷi(A
TKΦ(m+i) + c− 0.5) ≥ ε∗ − ξ(m+i), i = i, ..., `, (68)

(which is the SVM idea for constructing classification rule) and the constraints

− (εs + ξs) ≤ ΦT
sKA+ cΦT

s 1` − ΦT
s Y ≤ (εs + ξs), s = 1, . . . ,m. (69)

Consider Lagrangian

L(α, β, δ) = ATKA+ C
m+∑̀
s=1

τsξs +
m+∑̀
s=1

νsξs

+

m∑
s=1

βs[Φ
T
s (KA+ c1− Y )− (εs + ξs)]−

m∑
s=1

αs[(εs + ξs) + ΦT
s (KA+ c1− Y )]−

∑̀
i=1

δi[ŷi(Φ
T
(m+i)KA+ c− 0.5)− ε∗ + ξ(m+i)].
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From necessary conditions of minima of Lagrangian, we obtain

∂L

∂A
= 0 =⇒ A =

m∑
s=1

(αs − βs)Φs +
∑̀
i=1

ŷiδiΦm+i

∂L

∂c
= 0 =⇒

m∑
s=1

(αs − βs)ΦT
s 1 +

∑̀
i=1

ŷiδi = 0

∂L

∂ξs
= 0 =⇒ 0 ≤ αs, βs < C(1− τ), s = 1, ...,m

∂L

∂ξs
= 0 =⇒ 0 ≤ δi < Cτ, s = (m+ 1), ..., (m+ i), ..., (m+ `)

(70)

Putting the expression for A back into Lagrangian and taking into account (70), we
obtain that, in order to minimize the Lagrangian over α, β, δ and ξ, we have to maximize
the quadratic form

R(α, β, δ) = −
m∑
s=1

εs(αs + βs) + ε∗
∑̀
i=1

δi +
m∑
s=1

(αj − βj)ΦT
s Y +

1

2

∑̀
i=1

ŷiδi− (71)

1

2

 m∑
s,r=1

(αs − βs)ΦT
sKΦs(αr − βr) + 2

m∑
s=1

∑̀
i=1

(αs − βs)ΦT
sKΦm+iδiŷi+

∑̀
i,j=1

ŷiδiΦ
T
m+iKΦm+jδj ŷj


subject to the constraints

m∑
s=1

(αs − βs)ΦT
s 1 +

∑̀
i=1

ŷiδi = 0

0 ≤ αs, βs ≤ C(1− τ), s = 1, . . . ,m

0 ≤ δi ≤ Cτ, i = 1, . . . , `.

(72)

6.5.1. Discussion

1) LUSI Classification SVM method (4) is a reinforcement (using invariant constraints) of
the standard SVM method. Indeed, ifτ = 1, then parameters αs = βs = 0 for s = 1, . . . ,m
(see (72)), ΦT

sKΦr = K(xi, xj), and ΦT
i 1 = 1. As a result, we obtain that the desired

function has the form

f(x) =
∑̀
i=1

δ∗ŷiK(xi, x) + b.

To find the parameters of expansion δ∗ one has to maximize the functional (71) which, for
our particular case, has the form

R(δ∗) = ε∗
∑̀
i=1

δ∗i −
1

2

∑̀
i,j=1

ŷiδ
∗
iK(xi, xj)δ

∗
j ŷj (73)
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subject to constraint ∑̀
j=1

ŷiδ
∗
i = 0,

and constraints
0 ≤ δ∗i ≤ C∗, i = 1, ..., `..

Changing the scaling factor for parameters δ∗i = ε∗δ̂i, we obtain that, in order to find the
desired approximation

f(x) =
∑̀
i=1

δ̂iŷiK(xi, x) + b,

one has to maximize the functional

R(δ̂) =
∑̀
i=1

δ̂i −
1

2

∑̀
i,j=1

ŷiδ̂iK(xi, xj)δ̂j ŷj

subject to the constraints ∑̀
j=1

ŷiδ̂i = 0,

and constraints

0 ≤ δ̂i ≤
C∗

ε∗
= Ĉ.

(Ĉ is a parameter of the algorithm). This is the standard SVM estimate of parameters for
pattern recognition problem.

2) When 0 ≤ τ ≤ 1, the obtained solution implements both weak and strong modes of
convergence. Parameter τ defines the balance between these two modes.

Calibration for Multiclass Classification Problems

Consider n-class LUSI classification problems. For such problems, the values yi in training
set can take one of n values yi = 1, . . . , n. In order to solve an n-class classification problem,
we estimate n conditional probability functions P (y = p|x), p ∈ {1, . . . , n}. Using the
obtained estimates, we construct the rule

r(x) = argmax{P`(y = 1|x), . . . , P`(y = n|x)}. (74)

In order to do this, we consider n different pattern recognition problem defined by the
training set (xi, yi) (where yi take n values). For each of these problems, we consider the
training set

(x1, y
s
1), . . . , (x`, y

s
` )

where

ysi =

{
ysi = 1, if yi = s
0, otherwise.

We denote by Ys the vector of values (ys1, . . . , y
s
` ).
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Suppose now that we estimate n conditional probability functions using Approximation
1 method in the same RKHS (defined by the same kernel function K(x, x′)), using the same
set of predicate functions φ1(x), . . . , φm(x) and the same regularization parameter γ. The
estimates of conditional probability P (y = s|x) have the form

fs(x) = ATs K(x) + cs, s = 1, . . . , n.

In order to find n conditional probability functions, one has to estimate n pairs (As, cs).
Using training sets (xi, y

s
i ), s = 1, . . . , n, we estimate n conditional probability functions as

described above.
Since matrices K and P do not depend on s (class y∗s = s, for which we estimate the

conditional probability), and
n∑
p=1

Yp = 1`

from (59) we obtain that
n∑
p=1

cp = 1,
n∑
p=1

Ap = 0`

That is,
n∑
p=1

P`(y = p|x) = 1

for all x ∈ X. In other words, n unconditional minimization solutions form n jointly
calibrated solutions.

6.5.2. Illustrations

The following illustrations show conditional probability functions (the dashed lines corre-
spond to the same ground truth function across all the cases, and the solid lines correspond
to various approximation to that ground truth function) for four algorithms: (1) Least
square method (I-matrix method), (2) V -matrix method, (3) I-matrix +Invariants method,
and (4) V -matrix+Invariant method; the illustrations demonstrate the accuracy of all these
methods for different sizes ` of the training set.

24



Complete Statistical Theory of Learning (Learning Using Statistical Invariants)

I: 0.3756 V : 0.1432
I&I: 0,2166 V&I: 0.1017

I: 0.3212 V : 0.1207
I&I: 0.1808 V&I: 0.0778

I: 0.1672 V : 0.0689
I&I: 0.1072 V&I: 0.0609

6.6. LUSI Using Neural Networks

Neural Networks implements smoothed piecewise linear set of functions {f(x)},. constructed
as a combination of neurons described by function

u = g((w, x) + b), x, w ∈ Rn,

where w is vector of weight parameters, b is bias, and g(z) is a nonlinear function. For
example, g(x) can be threshold function g(z) = θ(z), smoothed threshold function g(z) =
(1 + exp(−z))−1, hinge function g(z) = max(0, z) and so on.

Neural Network consists of several layers of neurons. The initial layer (layer number
zero) is the input vector xi(0) = (x1

i (0), . . . , xni (0))T of dimensionality n. Using n1 neurons
(with n different parameters w, b and the same function g(u)) the n-dimensional input
vector xi(0) is transformed into n1-dimensional vector xi(1) of the next layer and so on.
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We denote parameters w1, . . . , wn of transformation vectors xi(0) of the initial layer into
vectors xi(1) of the next level by (n× n1)-dimensional matrix W (1).

Generally, nk-dimensional vectors xi(k) of layer k is transformed into nk-dimensional
vectors xi(k+1) of layer (k+1) using (nk×nk+1)-dimensional matrixW (k) = (w1(k), ..., wnk

(k))
(every column in the matrix describes weights w of one neuron of level k).

The last layer N of network transform vectors of layer xI(N −1) into scalar xi(N) using
nN -dimensional vector of weights wN .

Learning using Neural Networks requires to find such weights matrix W = (w1, . . . , wN )
of the network which minimizes the functional

R(f) = (Y − F (f))T (Y − F (f)) =
∑̀
i=1

(yi − f(xi))
2, (75)

where (xi, yi) are elements of training set. Using the notation X(N) = (x1(N), . . . , x`(N))T

we can rewrite rewrite in (75) vector F (f) as

F (f) = X(N) = (x1(N), . . . , x`(N))T

6.6.1. Backpropagation Method

Minimization (75) in the set of functions given by the Neuaral Network can be described as
a constrained optimization problem. Indeed, our goal is to minimize

R = (Y −X(N))T (Y −X(N)) (76)

in the set of functions given by construction of the network. The construction can be
described as follows: for all i = 1, . . . , ` and all k the equalities

xi(k) = G([W (k)xi(k − 1)]) (77)

hold true, where we using the notation

G([W (k)xi(k − 1)]) = (g(W T
1 (k)xi(k − 1)), . . . , g(W T

n(k−1)
(k)xi(k − 1)))T .

For k = 1, vectors xi(0) are elements of training data.
In order to minimize functional (76) subject to constraints (77), consider Lagrangian

L(W,X,B) = (X(N)− Y )T (X(N)− Y ) +
∑̀
i=1

N−1∑
k=1

Bi(k)(xi(k)−G([W (k)xi(k − 1)])),

where Bi(k) are Lagrange multipliers. Conditions of minima describe three subconditions

∂L(W,X,B)

∂Bi(k)
= 0,

∂L(W,X,B)

∂xi(k)
= 0,

∂L(W,X,B)

∂W (k)
= 0.

The first subcondition can be decomposed in `×N conditions

xi(k) = G({W (k)xi(k − 1)}), i = 1, ..., `, k = 1, . . . , N.
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The second subcondition can be split into two cases: the case k = N and the case
k 6= N .

The case k = N defines the boundary condition, that define vector B(N) as:

B(N) = 2(Y −X(N)). (78)

The case k 6= N leads to the chain

Bi(k) = Bi(K + 1)W T (k + 1)G′{W (k)xi(k))}Bi(k + 1), k = N − 1, . . . , 1,

where we used the notation

G′{W (k)xi(k)} = {g′(W1(k)xi(k − 1)), . . . , g′nk
(Wnk

(k − 1)x(k − 1))}T ,
The third subcondition requires to find a stationary point with respect to W . This is

equivalent to finding a minimum of Lagrangian L(W,X,W ), while satisfying the first two
subconditions. In order to find a minimum with respect to W (k), the gradient descent
procedure

W (k)←−W (k)− λ∂L(W,X,B)

∂W (k)

is used.

6.7. LUSI Learning: VP-Neural Networks

In this section, we show that, using a slightly modified standard learning procedure for
Neural Networks, one can minimize the functional

R∗(f) = (Y − F (f))T (τ̂V + τP)(Y − F (f)) (79)

(rather than functional (75)) where (τ̂V+τP) matrix takes into account statistical invariants
(see Section 6.3). We call Neural Network that minimizes (79) VP-Neural Network.

To modify the Neural Network method, we rewrite the problem of minimizing functional
(79) in the set of piecewise linear functions as the problem of minimizing the functional

R∗ = (Y −X(N))T (τ̂V + τP)(Y −X(N))

subject to constraints (77). We construct the modified Lagrangian

L∗(W,X,B) =

(X(N)− Y )T (τ̂V + τP)(X(N)− Y ) +
∑̀
i=1

N−1∑
k=1

Bi(k)(xi(k)−G([W (k)xi(k − 1)])).

In order to find the minimum of this Lagrangian, we use the same reasoning as in Section
5.2. This brings us to the same procedure as in the standard Neural Network with just
one correction: In the first case of the second subcondition, we have to replace the border
conditions (78) with the modified boundary condition

B(N) = 2(τ̂V + τP)(Y −X(N)). (80)

Remark 7. The Lagrangian that define classical Neural Networks have many local min-
ima and Neural Networks use several heuristics to find a local minimum of the Lagrangian,
which is close to the smallest possible.

The same remains true for VP-NN: functional (79) also has many local minima; in order
to find a small one, VP-NN uses the same heuristics as standard Neural Networks.

27



Complete Statistical Theory of Learning (Learning Using Statistical Invariants)

6.7.1. Illustration

Below we present the solution of MNIST digit recognition problem using Deep and VP
Neural Networks constructed by Igor Durdanovich from Princeton NEC Research based on
the state-of-the-art DNN of NEC.

Figures below show rate of convergence depending on number of epoch for DNN and for
IP-DNN. In all experiments 1,000 observations (100 per class) and modified back propaga-
tion method with batch 6 were used. For simplicity, instead of V matrix we used I-matrix.
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1 Predicate: φ(ui) = 1.
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2. Predicate: φ(ui) =
∫ 1

0 ui(x
1, x2) cos 2πx1.
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avg-grad(6)
Tau(10)*P[cos 2*Pi*x*pca[0] ]

Error rate: DNNet – 3.4%, VP-NNet – 3.3%

3. 16 predicates (m,n = 1, .., 4).

φm,n(ui) =

∫ 1

0
ui(x

1, x2) cosmπx1 cosnπx2dx1dx2, m, n = 1, 2, 3, 4.

.

 2

 3

 4

 5

 6

 7

 8

 9

 10
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avg-grad(6)
Tau(10)*P[FFT 4x4]

Error rate: DNNet – 3.4%, VP-NNet – 2.8%
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7. Examples of Predicates

Before introducing examples of predicates, we make the following important remark.

The concept of predicates is very different from the concept of features used in the
classical machine learning. Indeed, with the increasing number of features, the ca-
pacity (the VC dimension) of the set of admissible functions constructed using these
features increases while with the increasing number of invariants (predicates), the ca-
pacity of admissible set decreases. In the extreme case, when the set of predicates
contains all the functions from L2, the admissible set consists of just one function, the
desired one.

There exist two type of predicates: (i) general predicates, which take into account only
purely mathematical concepts and (ii) special predicates, which take into account specific
properties of the data (for instance, predicates for 2D images recognition can take into
account existing understanding of mechanisms of images construction). In this section, we
consider examples of both types.

7.1. Examples of General Predicates

1. Predicate φ(x) = 1. This predicate leads to the invariant

∑̀
i=1

f(xi) =
∑̀
i=1

yi, (yi ∈ {1, 0}.

This predicates restricts the functions in the admissible set to those for which the fre-
quency of expected examples of the first class (with y = 1) is equal to their frequency
observed in the training data.

2. Predicates φ(x) = x (here x ∈ Rn). This predicate provides n invariants

∑̀
i=1

xif(xi) =
∑̀
i=1

yixi

(invariants are given coordinate-wise). These invariants require that, for any function from
admissible set of conditional probabilities, the expectation of the center of mass to be equal
to the center of mass of vectors of class y = 1 in training data.

3. Predicate φ(x) = xxT . This predicates form n(n+ 1)/2 invariants

∑̀
i=1

xix
T
i f(xi) =

∑̀
i=1

yixix
T
i

(equalities are considered element-wise). Expectation of covariance matrix computed using
any function from the admissible set is equal to the corresponding matrix computed on
training set.
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4. Predicates ρs(|x − xs|) (for example, ρ(u) = u−δ or ρ(u) = e−au) define function of
distance from vector x to a given vector xs. They lead to the invariants

∑̀
i=1

ρ(|xi − xs|)f(xi) =
∑̀
i=1

yiρ(|xi − xs|).

Choosing different vectors xs, one obtains different predicates ρ(x − xs). Any predicate
ρs(|x− xs|) leads to the invariant that selects the admissible set of conditional probability
functions with the same local (in the vicinity of xs) characteristic.

7.2. Example of Predicates defining structure of 2D images

Below we consider examples of predicates that can be used for 2D images recognition
problems. Consider the images ui(x

1, x2) of (say, handwritten digits) on the plane (x1, x2).

7.2.1. Predicates Based on Fourier (Wavelet) Image Processing.

Consider the following predicates defined by Fourier image analysis. Suppose we are given
the training set of ` images uj(x1, x2) and their classifications yj :

(u1(x1, x2), y1), . . . , (u`(x1, x2), y`).

1. Consider T (T + 1)/2 predicates

ajs,r =

∫
Γ
uj(x

1, x2) cos sx1 cos rx2dx1dx2, s, r = 0, . . . , T,

(computed numerically) which define the first T (T + 1) coefficients of Fourier expansion of
image uJ(x1, x2)

ui(x1, x2) =

T∑
s≥r

ais,r cos sx1 cos rx2 +O(w(x1, x2)).

It is known that if uj(x1, x2) is a smooth function (has bounded joint derivatives), then
O(w(x1, x2)) −→T→∞ 0.

The invariants ∑̀
i=1

ais,rf(ui) =
∑̀
i=1

ais,r, s, r = 0, ..., T

corresponding to these predicates allow one to select such set of functions {f(u)} for which
the equalities holds true.

7.2.2. Predicates defining structure of images.

Let 2D images be defined as functions u(x1, x2) and let every function is defined by 2D
Fourier expansion containing T terms with coefficient Ai, i = 1, ..., T . Then set of T (T −1)
predicates AiAj defines structure of images for the problem.
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7.3. Tangent Distance Based Predicates

Lie operators. Let image be defined by differentiable 2D function f(x1, x2). Consider
small linear transformations of 2D space (x1, x2) ∈ R2:

tα

(
x1

x2

)
=⇒

(
x1 + a1x

1 + a2x
2 + a3

x2 + a4x
2 + a5x

1 + a6

)
For small ak, the function in transformed space tα(x1, x2) has the following representation

in non-transformed space (x1, x2):

f(tα(x1, x2)) ≈ f(x1, x2) +
6∑

k=1

akLkf(x1, x2),

where Lkf(x1, x2) are the so-called Lie derivatives. They provide, for small ak, the following
transformations t−1

α of images from space tα(x1, x2) into (x1, x2): (1) horizontal translation,
(2) vertical translation, (3) rotation, (4) scaling, (5) parallel hyperbolic transformation, (6)
diagonal hyperbolic transformation.

Example (from (3).

Digit 2 in the transformed space and in the original space corrected transformed by the
Lie operator of rotation.

1. Horizontal translation

t−1
α :

(
x1 + a
x2

)
=⇒

(
x1

x2

)
is defined by Lie operator is L1 = ∂

∂x1
as

f(ta(x, y)) ≈ f(x, y) + a
∂f(x, y)

∂x1

2. Vertical translation

t−1
a :

(
x1

x2 + a

)
=⇒

(
x1

x2

)
is defined by Lie operator is L2 = ∂

∂x2
as

f(ta(x, y)) ≈ f(x, y) + a
∂f(x, y)

∂x1
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3. Rotation transformation

t−1
α :

(
x1 cos a− x2 sin a
x1 sin a+ x2 cos a

)
=⇒

(
x1

x2

)
is defined by Lie operator L3 = x2 ∂

∂x1
− x1 ∂

∂x2
as

f(ta(x
1, x2)) ≈ f(x1, x2) + a

(
x2∂f(x1, x2)

∂x1
− x1∂f(x1, x2)

∂x2

)
4. Scaling transformation

t−1
α :

(
x1 + ax
x2 + ax2

)
=⇒

(
x1

x2

)
is defined by Lie operator L4 = x1 ∂

∂x1
+ x2 ∂

∂x2
as

f(ta(x
1, x2)) ≈ f(x1, x2) + a

(
x1∂f(x1, x2)

∂x1
+ x2∂f(x1, x2)

∂x2

)
5. Parallel hyperbolic transformation

t−1
α :

(
x1 + a1x

1

x2 − ax2

)
=⇒

(
x1

x2

)
is defined by Lie operator is L5 = x1 ∂

∂x1
− x2 ∂

∂x2
as

f(ta(x
1, x2)) ≈ f(x1, x2) + a

(
x2∂f(x1, x2)

∂x1
− x2∂f(x1, x2)

∂x2

)
6. Diagonal hyperbolic transformation

t−1
α :

(
x1 + ax2

x2 + ax1

)
=⇒

(
x1

x2

)
defined by Lie operator L6 = x2 ∂

∂x1
+ x1 ∂

∂x2
as

f(ta(x
1, x2)) ≈ f(x1, x2) + a

(
x2∂f(x1, x2)

∂x1
+ x2∂f(x1, x2)

∂x2

)
Tangent Distance Based Predicates. Consider two images defined by functions

u(x1, x2) and us(x
1, x2). We introduce two six-parametric sets of functions

{u(x1, x2)}a = u(x1, x2) +
6∑

k=1

akLku(x1, x2)

{us(x1, x2)}b = us(x
1, x2) +

6∑
k=1

bkLkus(x
1, x2)

defined by parameters ak and bk, where k = 1, . . . , 6.
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Example (from (3))

Digit 3 and its transformations using five Lie operators (scaling, rotation,
expansion-compression, diagonal expansion-compression, thickening).

Tangent distance between functions u(x1, x2) and us(x
1, x2) is defined by the smallest dis-

tance (see [3] for the concept of tangent distance both in continuous and in discrete spaces)
between set {u(x1, x2)}a and set {us(x1, x2)}b

ρtang(u, us) = min
a,b

∣∣∣∣∣u(x1, x2) +
6∑

k=1

akLku(x1, x2)− us(x1, x2)−
6∑

k=1

bkLkus(x
1, x2)

∣∣∣∣∣ .
Using tangent distance between original image and its transformation, one
can construct specific invariants.

7.4. Predicates Describing Levels of Symmetries and Asymmetries of Images.

Let the image f(x) be defined in the discrete 2D space by (n1 × n2) values x of pixels.
Consider the following concepts of symmetries and asymmetries in this space.

1. Predicate for vertical symmetry of image x. Consider, along with image x, its
vertical mirror transformed image x̂, where last line of pixels in x becoming first line in x̂
and first line in x becoming last line x̂:

x =

 x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 , xv =

 xn1 · · · xnn
...

. . .
...

x11 · · · x1n

 .
We consider as predicate of vertical symmetry of image x the tangent distance

φv(x) = dtang(x, x̂v) between two vectors x and xv.

2. Predicate for horizontal symmetry of image x. Consider, along with image x,
the transformed image:

x =

 x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 , xh =

 x1n · · · x11
...

. . .
...

xnn · · · xn1

 .
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We consider the tangent distanceφh(x) = dtang(x, xh) between vectors x and xh as the
predicate of vertical symmetry of image x.

3. Predicate for horizontal antisymmetry of image x (Example character S)).
Consider along with image x the transformed image

x =

 x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 , x̂h =

 xnn · · · xn1
...

. . .
...

x1n · · · x11

 .
We consider as predicate of vertical antisymmetry of image x the tangent distance φh(x) =
dtang(x, x̂h) between vectors x and x̂h.

Similarly, one can introduce concepts of vertical antisymmetry, diagonal symmetry /
antisymmetry (left and right) and many others.

Using these predicates, one can construct invariants that keep corresponding degree of
symmetries/antisymmetries of images.

8. Conclusive Remarks

1. Mathematical mechanisms of learning. The solution of learning problem is based
on two mechanisms: (1) the mechanism of strong convergence (convergence of approxima-
tions to the desired function in L2 metric) and (2) the mechanism of weak convergence
(convergence of approximations to the desired function in the space of functionals). The
strong mode of convergence implies the weak mode convergence. For most learning prob-
lems (when a given set of functions is compact), the weak mode implies strong mode as
well. Thus two different mechanisms of estimation of the desired function can lead to the
same solution.

This paper considers algorithms that use both these mechanisms simultaneously. Since
there are only two mechanisms of convergence for functions of Hilbert space, and since we
use both of them, we call the corresponding theory the complete theory of learning.

2. Concepts of predicates and features in learning models. In order to imple-
ment the weak mode of convergence, we select a finite subset of predicate functions from
Hilbert space. Using these functions and training data, we construct the set of constraints
which allow us to select a set of admissible functions from which we finally choose the
desired approximation.

The concept of predicates is mathematically well defined, which is in contrast to the
concept of features (which is defined only on an intuitive level). As mentioned above, these
concepts play different roles in the models of learning.

With the increasing number of predicates, the capacity of the admissible set of func-
tions decreases. (According to the definition of weak convergence, when predicates are all
the functions of Hilbert space and when we can estimate the right-hand side of invariant
equalities accurately, the admissible set has only one function – the desired one).

With the increasing number of features, the capacity of the set of admissible function
increases. This requires, generally speaking, an increase of the size of training data.
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The only remaining question in the complete statistical learning theory is how to choose
a (small) set of predicates. The choice of predicate functions reflects the intellectual part
of the learning problem; it reflects our understanding of the nature of Real World problems
where Learning Machine acts.

3. Predicate functions for understanding life. In 1928, Vladimir Propp wrote
the book “Morphology of the Folk Tale”, where he formulated 31 functions into which he
decomposed Russian fairy tales. Later, these functions have been successfully applied to
other types of narratives in literature, theater, film, television series, games, etc. In other
words, Propp’s functions reflected understanding of humans relationships not only in World
of Russian fairy tales but also in the wider World of human life.

Similarly, the old Chinese book ’The Art of War” (attributed to Sun Tzu, 5th century
BC) describes 33 general strategic rules (predicates) which reflect intelligent control of
actions in Wars. These rules, however, are wider than just principles for military actions.
They are also studied in business schools of management to teach directions of activities in
real competitive life.

Our hypothesis is that there exists a relatively small number of predicates (including
ones based on idea of structure (Section 7.2) and idea of symmetry (Sections 7.4)) that
reflect our understanding of World of 2D black and white images).

These predicates allow one to introduce invariants (constructed based on training data)
to use them in LUSI algorithms. This can lead to high performance based on a small size
of training data (the additional necessary information is extracted from the invariants).

The solution of the following challenge problem can be one of the first steps in the
selection of “universal” predicates for image understanding.

4. The Challenge. The current solutions of 10 class digit recognition problem (MNIST
dataset) using the training data of size 60,000 (≈ 6, 000 examples per class) achieve the error
rate of about 0.5%.

The challenge is to get approximately the same level of error rate (using LUSI methods)
with the training size that is 100 times smaller (600 examples, that is, only 60 per class).
In order to do this, one has to formulate the appropriate predicates. The challenge is to
formulate a small number of such predicates that would allow to solve this problem. The
hope is that these predicates (as in the Sun Tzu and Propp’s case) will be applicable for
other 2D graphical pattern recognition problems.

5. Plato’s Type of World Model. The philosophy of the methods considered above
can be described in the style of Plato’s understanding of World as consisting of two parts:
World of Ideas and World of Things.

World of Ideas reflects our understanding of the Real World, our intelligence. World of
Things is World of actions which is a result of projection of our understanding of the Real
World into real situation. In our model, the World of Ideas (which reflects the understanding
of Real World) is a set of predicate functions. They allow one to construct invariants for
selection of the admissible set of functions for the problem defined by training data. By
using universal abstract predicates and training data, one constructs statistical invariants
in order to select the admissible set of models for the given problem of interest.
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The new element in such Plato’s type of model is the interaction of Ideal World with
Real World: the mechanism of transformation of universal ideas (predicates) into specific
constraints for action (statistical invariants).

6. Imitation of intelligence and the essence of intelligence. In the study of
Artificial Intelligence, one can differentiate between two problems.

1. Engineering problem: Problem of imitation of intelligence (in order to solve this
problem, one has to construct a machine which passes Turing imitation test) and

2. Scientific problem: Problem of understanding the essence of intelligence (what defines
the abstract understanding of Real World?).

In our model, intelligence is defined by a set of predicate functions that reflect our
understanding of elements of Real World. The challenge is to find them for different type
of problems existing in Real World, in particular, for classification problems in World of 2D
graphical images.
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