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Abstract

In the framework of the theory of prediction with expert advice, we present an algorithm
for online aggregation of the functional predictions. The approach implies that at each time
step some algorithm issues a forecast in the form of a function and then the master algorithm
combines these current and past functional forecasts into one aggregated functional forecast.
We apply the proposed algorithm for the problem of long-term predictions of time series.
By combining the past and current long-term functional forecasts, we obtain a smoothing
mechanism that protects our algorithm from temporary changes in the trend of time series,
noise and outliers. To evaluate the performance of presented aggregating algorithm as
a long-term forecaster we use a new “integral” loss function and the delayed feedback
approach. We apply this algorithm for the regression problems, we present some method
for smoothing regression forecasts.

Keywords: Functional forecasts, Integral loss function, Mixable loss function, Aggregating
algorithm, Long-term online forecasting, Prediction with expert advice, Online smoothing
regression

1. Introduction

In this paper, we propose a method for online aggregation of a dynamically growing set
of forecasting models. Let some algorithm periodically generate forecasting models, which
are later compared with observations obtained online. At any time point, the performance
of any such model is measured by cumulative loss suffered by that time. At any time
moment, we build an aggregating model that has the best performance compared to any of
such models (up to some regret).

We apply the method for the long-term forecasting of time series. The problem of long-
term forecasting of time series is of high practical importance. Many classical (ARMA,
ARIMA Box et al. 2015) and recent (e.g. Facebook Prophet1) time series forecasting ap-
proaches produce a model that is capable of predicting arbitrarily many time steps ahead.

1. https://github.com/facebook/prophet
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More precisely, we consider any long-term forecast as a function that assigns to each future
time moment the corresponding value of the time series.

The task of the learning algorithm is to combine in online regime all available predictions
into one aggregated functional long-term prediction. We solve this problem in the framework
of the theory of prediction with expert advice, we present an algorithm for online aggregation
of the functional predictions. The approach implies that at each moment of time, we obtain
a set of predictions in the form of functions defined on the same domain, and then the
master algorithm combines these current and past forecasts into one aggregated functional
forecast. To evaluate the performance of the presented aggregating algorithm as a long-term
forecaster, we use a new “integral” loss function, which measures the discrepancy between
functional forecasts.

We apply the proposed algorithm to the problem of long-term predictions of time series.
The advantage of this approach is that when building the final forecast at each time step t
for any interval ahead, one may use forecasts made earlier at the steps t′ < t. Forecasts of
each step t′ < t are made using less of the observed data. Nevertheless, they can be more
robust to noise, outliers and novelty of the time interval [t′ + 1, t]. Thus, the usage of such
outdated forecasts may prove useful, especially if time series is stationary.

The first problem we state in the paper is the effective usage of the outdated forecasts.
Formally, the learner is given a basic forecasting algorithm. This algorithm at every step
t produces potentially infinite forecast for the steps t + 1, t + 2, . . . ahead in the form of a
function from all time moments ahead. The goal of the learner at each time step t is to
combine the current forecast and the forecasts made earlier into one aggregated long-term
forecast for the time moments t + 1, t + 2, . . . ahead. We develop an algorithm which to
efficiently combines these forecasts.

It is worth noting that an other important problem of time series prediction is that
some forecasting models use a limited memory. This means than only a fixed number of
previous observations are considered to fit the model and build the next forecast. For
example, regression methods that use a rolling window have this restriction. The usage
of limited history saves computational resources and may catch changing dependencies in
data, but it also can decrease the accuracy of the model. In order to partially compensate
this disadvantage, we use the approach to combine past and current predictions made by
the forecasting method.

In the rest part of out paper, we consider the online supervised learning scenario. The
data is represented by pairs (x, y) of predictor-response variables. Instead of point or interval
predictions, the experts and the learner present predictions in the form of functions f(x)
from signals x. For example, in case of linear regression, f(x) = (w ·x), where w ∈ Rn is a
weight vector and x ∈ Rn is an argument. Signals x = xt and forecasts wt appear gradually
over time t and allow to calculate forecasts as the values ft(x) = (wt ·x) of these functions,
where x ∈ R is arbitrary. We combine these regression functions using the prediction with
expert advice methods.

In general, we consider the game-theoretic on-line learning model in which a master (ag-
gregating) algorithm has to combine predictions from a set of experts. The problem setting
we investigated can be considered as the part of or Prediction with Expert Advice (PEA)
framework (see e.g. Littlestone and Warmuth 1994; Freund and Schapire 1997; Vovk 1990,
1998; Cesa-Bianchi and Lugosi 2006 among others). In this framework the learner is usually
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called the aggregating algorithm. The aggregating algorithm combines the predictions from
a set of experts in the online mode during time steps t = 1, 2, . . . , T .

Adamskiy et al. (2019) showed how Aggregating Algorithm could be applied to predict
a vector of outcomes under the loss equal to the sum of coordinate losses. We generalize
this result to the prediction of a function using the loss equal to the integral w.r.t. the
function’s argument (see also Korotin et al. 2019).

In this paper, we use the general notion of integral mixability (and exp-concavity). We
consider the online scenario to predict the function: at each step t the aggregating algorithm
receive (past) forecasts – the functions fi(x) issued at steps i ≤ t, and has to combine these
functions into a single forecast – a function γt(x). The true output is a function yt(x). For
the function-valued forecasting it is reasonable to measure loss via integral loss functions
which naturally arise from loss functions used for comparing one-dimensional outcomes,
i.e. λ(γt(·), y(·)) =

∫
λ(γt(x), y(x))u(x)dx, where u(x) is a density function. The integral

function is mixable if the basic loss function is mixable. The definition of integral mixability
is a generalization of the notion of vector mixability which was introduced by Adamskiy et
al. (2019).

A natural example of mixable integral loss function is Continuous Ranked Probability
Score (CRPS)

CRPS(F, y) =

∫
(F (x)−H(x− y))2dx,

where F (x) is a cumulative probability distribution function and H(x) is the Heaviside
function: H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0 (Epstein 1969, Matheson and
Winkler 1976, Bröcker 2012, etc). The integral mixability property of CRPS was proved
by V’yugin and Trunov (2019) and further studied by Dzhamtyrova and Kalnishkan (2019).

In practice for time series prediction, the square loss function is widely used. The
square loss function is mixable (see Vovk 1998). Thus, for our goal the Vovk’s aggregating
algorithm (AA) is the most appropriate, since it has theoretically best performance among
all known algorithms for mixable losses. We use the aggregating algorithm as the base and
modify it for the ahead long-term interval forecasting with the usage of additional outdated
forecasts.

The long-term forecasting considered in this paper is a case of the forecasting with a
delayed feedback. As far as we know, the problem of the delayed feedback forecasting was
first considered by Weinberger and Ordentlich (2002).

The article is structured as follows. In Section 2, we give some preliminary notions. In
Section 3, we introduce the notion of integral loss function and study the property of its
mixability. In Section 4, we present the algorithm for combining long-term past forecasts.
Theorem 3 presents a performance bound for regret of this algorithm for adversarial case.
In Section 5, we apply PEA approach for a case of the online supervised learning and the
algorithm from Section 4 for online smoothing regression. Also, we provide experiments
conducted on synthetic data and show the effectiveness of the proposed method.

2. Preliminaries

In this section, we present the main notions which will be used in further analysis.
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2.1. Prediction with expert advice

In this section, we recall the main ideas of prediction with expert advice theory. Let Ω
be a set of outcomes and Γ be a set of all forecasts, λ(γ, y) be a loss function, γ ∈ Γ, y ∈ Ω.
Let also, a pool N of the experts be given. We assume that N = {1, 2, . . . } is a countable
set.

Suppose that outcomes y1, y2, · · · ∈ Ω are revealed online – step by step. Learning pro-
ceeds in steps t = 1, 2, . . . ,. At each time moment t experts i ∈ N present their predictions
fi,t ∈ Γ and the aggregating algorithm presents its own forecast γt ∈ Γ. When the corre-
sponding outcome yt is revealed, the experts suffer their losses li,t = λ(fi,t, yt), i ∈ N , and
the aggregating algorithm suffers a ht = λ(γt, yt).

Protocol 1

FOR t = 1, . . . , T

1. Receive the forecasts fi,t of the experts i ∈ N .

2. Present the forecast γt of the learner.

3. Observe the true outcome yt and compute the losses li,t = λ(fi,t, yt) of the experts and the
loss ht = λ(γt, yt) of the learner.

ENDFOR

The cumulative loss Li,T suffered by any expert i and the loss HT suffered by the learner

during T steps are defined by Li,T =
T∑
t=1

li,t and HT =
T∑
t=1

ht respectively. The performance

of the algorithm with respect to an expert i is measured by the regret Ri,T = HT − Li,T .
The goal of the aggregating algorithm is to minimize the regret with respect to each

expert. In order to achieve this goal, at each time moment t, the aggregating algorithm
evaluates performance of the experts in the form of theirs weights wt = {wi,t : i ∈ N},
where wi,t ≥ 0 for all i and t. For example, we set initial weights wi,1 = 1

i(i+1) for i ∈ N .
The weight wi,t of an expert i is an estimate of the quality of the expert predictions at steps
≤ t. In the classical setting (see Freund and Schapire (1997), Vovk (1990) among others),
the process of experts’ weights updating is based on the method of exponential weighting
with a learning rate η > 0:

wi,t+1 = wi,te
−ηli,t (1)

for every i ∈ N . The normalized weights are defined as

w∗i,t =
wi,t∑

j∈N
wj,t

.

2.2. Aggregating algorithm

The aggregating algorithm (AA) by Vovk (1990), Vovk (1998) is the base algorithm in
our study. Let us explain the main ideas of learning with AA.
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We consider the learning with a mixable loss function λ(γ, y) Here y is an outcome
and γ is a forecast. Each expert i presents forecast ci. In this case, the main tool is a
superprediction function

g(y) = −1

η
ln
∑
i∈N

e−ηλ(ci,y)pi,

where p = (pi : i ∈ N ) is a probability distribution on the set of all experts and c = (ci :
i ∈ N ) is a sequence of the experts predictions.

A loss function λ is η-mixable if for any probability distribution p on the set of experts
and for any set of experts predictions c a forecast γ exists such that

λ(γ, y) ≤ g(y) (2)

for all y.
A closely related, but the more narrow notion, is exponentially concavity. A loss function

λ(γ, y) is η-exponential concave if for any y the function e−ηλ(γ,y) is concave with respect
to γ. By definition for any η-exponential concave function inequality (2) holds, i.e., any
η-exponential concave function is η-mixable.

We fix some rule γ = Subst(c,p) for computing a forecast satisfying (2). Subst is called
a substitution function.

The square loss function λ(γ, y) = (y − γ)2 is η-mixable for any η such that 0 < η ≤
2

(b−a)2 , where y and γ are a real numbers and y ∈ [a, b] for some a < b, see Vovk (1990), Vovk

(1998)). By Vovk (1998) and Vovk (2001), for the square loss function, the corresponding
forecast can be defined as

γ = Subst(c,p) =
a+ b

2
+

1

2η(b− a)
ln

∑
i∈N

pie
−η(b−ci)2∑

i∈N
pie−η(a−ci)

2 . (3)

For the η-exponential concave loss function we can also use a more straightforward
expression for the substitution function:

γ = Subst(c,p) =
∑
i∈N

cipi. (4)

The square loss function is η-exponential concave for 0 < η ≤ 1
2(b−a)2 . However, the

definition (4) results in four times more regret bound (see Kivinen and Warmuth 1999).
Inequality (2) also holds for all y.

2.3. Regret analysis for AA

The performance bound of AA is given by the following theorem (see Vovk 1998).

Proposition 1 Assume that a loss function λ(f, y) is η-mixable. Let HT be the cumulated
loss of the learner and Li,T be the cumulated loss of an expert i. Then for any i,

HT ≤ Li,T +
1

η
ln

1

wi,1

for every T .
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Proof Let w∗t = (w∗i,t : i ∈ N ) be the normalized weights and ft = (fi,t : i ∈ N ) be the
forecasts of the experts at step t. The learner’s forecast is defined ft = Subst(ft,w

∗
t ). By

mixability property

ht = λ(ft, yt) ≤ gt(yt) = −1

η
ln
∑
i∈N

e−ηλ(ft,yt)w∗i,t = −1

η
ln
Wt+1

Wt

for all t, where Wt =
∑
i∈N

wi,t and W1 = 1. From (1) we have wi,T+1 = wi,1e
−ηLi,T . By

telescoping, we obtain for any expert i the time-independent bound HT ≤
T∑
t=1

gt(yt) =

− 1
η lnWT+1 ≤ Li,T + 1

η ln 1
wi,1

for all T .

2.4. AA for delayed feedback

In what follows, we will evaluate the predictive performance of the constructed algo-
rithms as long-term predictors. At each step t of the game the algorithm makes a decision,
and its result will be revealed only at the time point t+ d, where d is some delay. Only at
this moment will we be able to estimate the losses from this long-term prediction. To do
this, we consider a generalization of online learning to handle delays in receiving feedback
to the given prediction.

There exists a bunch of meta-algorithms that allow to produce a version for delayed
feedback setting from the basic non-delayed version, see Weinberger and Ordentlich (2002)
and further developed by Langford et al. (2009), Mesterharm (2007), and Mesterharm
(2009). The authors studied the setting under fixed known feedback delay d. They proved
that the optimal (non-adaptive) algorithm is to run d independent versions of the optimal
non-delayed algorithm on d disjoint time grids Gk = {t : t = dj + k, j = 0, 1, . . . }, where
k = 0, 1, . . . , d − 1. Thus, the optimal worst case adversarial regret for AA with respect
to any expert i is bounded by the sum of the regret bounds for AA on the d grids: HT ≤
Li,T + d

η ln 1
wi,1

for all T . We will use this approach in Section 4.

3. Learning with functional forecasts

Consider a formulation in which some device observes results of a physical process and
presents at any time step t a forecasting model for this process. Let X be a set supplemented
by the corresponding algebra of Borel sets. By a forecasting model we mean a measurable
function f : X → R+, which, with an input value of x ∈ X , yields a real number f(x) (the
model’s output at x).

We consider the problem of online learning (according to Protocol 1) in which an each
round t we get a set of current versions of models f1,t(x), f2,t(x), . . . and build the cur-
rent aggregation model γt(x). After that, as a result of measurements, we obtain (maybe
with some delay) more or less accurate (surrogate) approximations yt(x) of the background
physical process and calculate the discrepancy λ(fi(·), yt(·)) between any model fi and this
approximation. We compute also the discrepancy λ(γt(·), yt(·)) for the aggregated fore-
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cast γt. Here λ is some (integral) loss function which can compute discrepancy between
functional models.

We can construct at each step t an optimal functional model γt(·) by observing the
cumulative losses suffered by functional models obtained in the past. For this we will use
the ideas of prediction with expert advice theory and the concept of integral loss function.
This notion develops the concepts of generalized loss function for vector forecasts introduced
by Adamskiy et al. (2019) and CRPS loss function considered by V’yugin and Trunov (2019).

Let Γ, Ω and X be measurable spaces. Assume that λ : Γ× Ω→ R+ is a measurable
loss function. We refer to this loss function as to basic loss function.

Let u be some non-negative measurable function satisfying
∫
X u(x)dx = 1. By integral

loss function we mean a function λ : ΓX × ΩX → R+ defined by

λ(γ, y) =

∫
X
λ(γ(x), y(x))u(x)dx. (5)

Consider a countable pool N of experts. Assume that an η-mixable loss function λ(f, y)
be given and Subst(f ,p) be the corresponding substitution function, where f ∈ Γ and y ∈ Ω.

Theorem 2 (Korotin et al. 2019) If a basic loss function is η-mixable then the corre-
sponding integral loss function is also η-mixable. The aggregated forecast can be computed
pointwise as γ(x) = Subst(f(x),p), where f(x) = (fi(x) : i = 1, 2, . . . ) be a sequence of
(measurable) forecast functions and p be a probability distribution on the set of all experts.2

Proof By η-mixability property of the basic function, for a distribution p ∈ P(N ) for any
x ∈ X a forecast γ(x) = Subst(f(x),p) exists such that

e−ηλ(γ(x),y(x)) ≥
∑
i∈N

pie
−ηλ(fi(x),y(x))

holds for every function y(·) ∈ ΩX . Taking the logarithm of both sides of the inequality we
obtain

−ηλ(γ(x), y(x)) ≥ ln
∑
i∈N

pie
−ηλ(fi(x),y(x))

for any x ∈ X . Multiply both sides by u(x) ≥ 0 and integrate over x ∈ X :∫
X

(−ηλ(γ(x), y(x))u(x)dx ≥
∫
X

ln
∑
i∈N

pie
−ηλ(fi(x),y(x))u(x)dx (6)

The left part of inequality (6) equals to −ηλ(γ, y). Next, for x ∈ X and i ∈ N define

f(x, i) = e−ηλ(fi(x),y(x)).

By applying the notation change and taking the exponent of both sides of (6), we obtain

e−ηλ(γ,y) ≥ e
∫
X ln

∑
i∈N pi·f(x,i)u(x)dx (7)

2. We assume that the function Subst(f(x),p) is measurable.
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The final step is to apply Continuous Form of Holder Inequality (8) by Dunford and Schwartz
(1958) (see also Nikolova et al. 2017)

∫
Y
e
∫
X ln f(x,y)u(x)dxv(y)dy ≤ e

∫
X ln(

∫
Y f(x,y)v(y)dy)u(x)dx, (8)

where f(x, y) is positive and measurable on X × Y function, and u(x) and v(y) are weight
functions and

∫
X u(x)dx = 1.

We set in (8) Y = N = {1, 2, . . . }, v(i) = pi and obtain

e
∫
X ln

∑
i∈N pi·f(x,i)u(x)dx ≥

∑
i∈N

pie
∫
X ln f(x,i)u(x)dx =∑

i∈N
pie
−η

∫
X λ(fi(x),y(x))u(x)dx =

∑
i∈N

pie
−ηλ(fi,y) (9)

Now we combine (9) with (7) and obtain the desired inequality

e−ηλ(γ,y) ≥
∑
i∈N

pie
−ηλ(fi,y). (10)

for every y ∈ ΩX .

Let us specify Protocol 1 for the case of learning with integral loss function, which is
based on an η-mixable loss function λ(f, y), where f ∈ Γ and y ∈ Ω.

Protocol 1a

Define the initial weights w1 = (wi,1 : i ∈ N ) of the experts.

FOR t = 1, . . . , T

1. Receive the experts’ predictions fi,t(x) for all i ∈ N and a density function ut(x).

2. Present the learner’s forecast γt(x) = Subst(ft(x),w∗
t ), where Subst(f ,p) is a substitution

function for λ(f, y) and ft(x) = (fi,t(x) : i ∈ N ), w∗
t = (w∗

i,t : i ∈ N ) are normalized weights.

3. Observe the true outcome yt(x) and compute the losses li,t =
∫
λ(fi,t(x), yt(x))ut(x)dx of the

experts and the loss ht =
∫
λ(γt(x), yt(x))ut(x)dx of the learner.

4. Update weights: wi,t+1 = wi,te
−ηli,t for i ∈ N .

ENDFOR

The corresponding performance bound is given by Proposition 1.
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3.1. Continuous Ranked Probability Score (CRPS)

A typical application of learning with functional forecasts is learning a probability dis-
tribution function using Continuous Ranked Probability Score (CRPS) as a loss function
(Epstein 1969, Matheson and Winkler 1976, Bröcker 2012, etc).

Let in Protocol 1a the set of outcomes be the real line for some a < b and the set of
forecasts Γ be a set of all probability distribution functions F . 3

The quality of the prediction F in view of the actual outcome y is often measured by
the continuous ranked probability score (loss function)

CRPS(F, y) =

∫ +∞

−∞
(F (x)−H(x− y))2u(x)dx, (11)

where H(x) is the Heaviside function: H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0.
The CRPS score measures the difference between the forecast F (x) and a perfect forecast

H(x− y) which puts all mass on the verification y. The lowest possible value 0 is attained
when F is concentrated at y, and in all other cases CRPS(F, y) will be positive.

For simplicity, we consider integration over a finite interval [a, b], where a < b, with
the uniform density u(x) = 1

b−a if x ∈ [a, b] and u(x) = 0 otherwise. Also, F (a) = 0 and
F (b) = 1 for every F .

CRPS(F, y) =
1

b− a

∫ b

a
(F (u)−H(u− y))2du. (12)

The definition (12) is a special case of definition (11) (up to a factor), where u(x) = 1
b−a

for x ∈ [a, b] and u(x) = 0 otherwise.
By Theorem 2 and analysis of Section 2 the function (12) is η-mixable for 0 < η ≤ 2

and η-exponentially concave for 0 < η ≤ 1
2 .

By (3), where η = 2 and [a, b] = [0, 1], the corresponding learner’s forecast – the probabil-
ity distribution function Ft(x) given the probability distribution functions Fi,t(x) presented
by the experts 1 ≤ i ≤ N can computed in the closed form:

Ft(x) =
1

2
− 1

4
ln

∑N
i=1w

∗
i,te
−2(Fi,t(x))

2∑N
i=1w

∗
i,te
−2(1−Fi,t(u))2

, (13)

where η = 2 and w∗i,t =
wi,t∑N
j=1 wj,t

– the normalized weights of the experts (see V’yugin and

Trunov 2019).4

A natural generalization of CRPS arises if we replace the Heaviside function with an
empirical probability distribution function. Several other examples of mixable integral loss
functions are given by Korotin et al. (2019).

3. A probability distribution function is a non-decreasing function F (y) defined on this interval such that
lim

x→−∞
F (x) = 0 and lim

x→∞
F (x) = 1. Also, it is left-continuous and has the right limit at each point.

4. It is easy to verify that Ft(x) is indeed a probability distribution function.
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4. Mixing long-term forecasts with confidences

In this section, we present an algorithm for mixing past long-term predictions. We use
the delayed feedback approach and the proposed integral generalization of the loss function
to evaluate the predictive ability of long-term forecasting methods.

The learning process is as follows. There is some unknown source generating sequentially
the outcomes y1, y2, . . . . At each moment of time t, some (basic) forecasting algorithm
observing the outcomes y1, . . . , yt outputs a function ft whose values ft(s) are predictions
of the future outputs of this source at time moments s = t+ 1, t+ 2, . . . ; we set ft(s) = ys
for s ≤ t.

At any step t we observe also the forecasting functions f1(s), . . . , ft−1(s) that were issued
by the basic algorithm at the previous steps. Any such function fi, i < t, outputs a forecast
fi(s) at each point s ≥ i+ 1 and fi(s) = ys for s ≤ i.

Assume that a loss function λ(γ, y) be given; we suppose that this function is η-mixable
for some η > 0.

The goal of the learner is to aggregate these long-term forecasts f1(s), . . . , ft(s) into one
long-term forecast γt(s) for s = t+ 1, t+ 2, . . . ; we set also γt(s) = ys for s ≤ t.

4.1. Confidence values

Let at any step t, each prediction function fi(s) be supplemented by a confidence value
pi,t, where 0 ≤ pi,t ≤ 1 if i ≤ t and pi,t = 0 for i > t. If pi,t < 1, then this means that at step
t we use the forecast fi(s) only partially (e.g. it may become obsolete with time). If pi,t = 0
then the corresponding forecasting function is not taken into account at all.5 Confidence
values can be set by the basic algorithm or by the learner.6

Assume that the learner’s forecast γt(s) is known. Consider the auxiliary experts i =
1, 2, . . . and define theirs forecasts at any step t: fi,t(s) = fi(s) if i ≤ t, and fi,t(s) = γt(s)
for every s if i > t. For any t and s, define the random forecasts of these experts

f̃i,t(s) =

{
fi,t(s) with probability pi,t,
γt(s) with probability 1− pi,t.

At any time moment t, the level of confidence can be interpreted as the probability distri-
bution pi,t = (pi,t, 1− pi,t) on a two element set, where pi,t is the probability for the expert
i to follow its own prediction and 1 − pi,t is the probability to follow the prediction of the
aggregating algorithm. We will consider the mean loss

Epi,t [λ(f̃i,t(s), y)] = pi,tλ(fi,t(s), y) + (1− pi,t)λ(γt(s), y), (14)

where y is an outcome and Epi,t denotes the mathematical expectation with respect to the
probability distribution pi,t.

5. For example, in applications, it is convenient for some k to set pi,t = 0 if t > i + k, since too old
predictions become obsolete.

6. The setting of prediction with experts that use the confidences as numbers in the interval [0, 1] was first
studied by Blum and Mansour (2007) and further developed by Cesa-Bianchi et al. (2007) and Gaillard
et al. (2014).

10



Mixing Past Predictions

Let a positive integer number d be given. At each time moment t we want to evaluate
the ability of the learner and of the experts i, where 1 ≤ i ≤ t− d, to make forecasts over d
time points t− d+ 1, . . . , t ahead. To do this, we define the corresponding integral losses.

Define the outcome function yt−d(s), where yt−d(s) = yt−d+s if 1 ≤ s ≤ d and yt−d(s)
be arbitrary otherwise.

Let ut−d(s) be a density on the time line such that ut−d(s) = 0 for s ≤ t− d and s > t.7

At any step t, the learner suffers the (integral) loss

ht =

∫
λ(γt−d(s), yt−d(s))ut−d(s)ds (15)

and each expert 1 ≤ i ≤ t− d suffers the loss

li,t =

∫
Epi,t [λ(f̃i,t(s), yt−d)]ut−d(s)ds

on the time interval [t− d+ 1, t]. Define also, li,t = ht for i > t− d. By (14) this quantity
can be represented as

li,t =

∫
(pi,tλ(fi(s), yt−d(s)) + (1− pi,t)λ(γt−d(s), yt−d(s)))ut−d(s)ds. (16)

By (15) and (16) at any step t > d the regret ri,t = ht − li,t with respect to the ith
prediction for 1 ≤ i ≤ t− d and t > d can be represented as

ri,t =

∫
pi,t(λ(γt−d(s), yt−d(s))− λ(fi(s), yt−d(s)))ut−d(s)ds. (17)

By definition ht = li,t = 0 for t ≤ d; set ri,t = 0 for every t ≤ d and all i. For t > d, ri,t = 0
if i > t− d, since li,t = ht for these i by the definition.

The performance of Algorithm 2, which will be presented below, is measured by the
cumulated regret Ri,T =

∑T
t=1 ri,t with respect to a long term forecast (an expert) i.

First, we provide justification of the auxiliary weights update rule in Algorithm 2. To exit
the logical circle in the definition of f̃i,t(s), we will use the fixed point method by Chernov
and Vovk (2009).

Our goal is to define for any s > t a forecast γt(s) such that

e−ηλ(γt(s),y(s)) ≥
∞∑
i=1

Epi,t [e
−ηλ(f̃i,t(s),y(s))]w∗i,t (18)

for each function y(s), where w∗i,t is the normalized weight of the ith forecast accumulated

at previous steps.8

Since fi,t(s) = fi(s) if i ≤ t and fi,t(s) = γt(s), pi,t = 0 if i > t, we can rewrite inequality
(18) in a more detailed form: for any s,

e−ηλ(γt(s),y(s)) ≥
t∑
i=1

pi,tw
∗
i,te
−ηλ(fi(s),y(s)) + e−ηλ(γt(s),y(s))

(
1−

t∑
i=1

pi,tw
∗
i,t

)
. (19)

7. A natural example of such a density is ut−d(s) = 1
d

for t− d+ 1 ≤ s ≤ t and ut−d(s) = 0 for all other s.
8. The weight updating rule will be given by item 2 of Algorithm 2 below.
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Therefore, inequality (18) is equivalent to the inequality

e−ηλ(γt(s),y(s)) ≥
t∑
i=1

wpi,te
−ηλ(fi(s),y(s)), (20)

where

wpi,t =
pi,twi,t∑t
j=1 pj,twj,t

. (21)

According to the AA rule we can define γt(s) = Subst(ft(s),w
p
t ). Then (20) and its equiv-

alent (18) are valid. Here Subst is the substitution function, wp
t = (wp1,t, . . . , w

p
t,t), and

ft(s) = (f1(s), . . . , ft(s)) for all s.

4.2. Algorithm for mixing past predictions

Now, we present the protocol of the algorithm for mixing past predictions with confi-
dence values.

Algorithm 2

Set initial weights wi,t = 1
i(i+1) for 1 ≤ t ≤ d and i = 1, 2, . . . . Fix a positive integer number d.

FOR t = 1, . . . , T
IF t ≤ d THEN put li,t = ht = 0 for all i. ELSE

Suffer losses and update weights of the experts

1. Observe the outcome function yt−d(s), where yt−d(s) = yt−d+s if t−d+1 ≤ s ≤ t and yt−d(s)
be an arbitrary otherwise. Compute the loss of Algorithm 2 suffered at step t

ht =

∫
λ(γt−d(s), yt−d(s))ut−d(s)ds,

where ut−d(s) is a density on the time line such that ut−d(s) = 0 for s ≤ t − d or s > t.9

Compute the losses incurred at step t by the experts 1 ≤ i ≤ t− d

li,t =

∫
(pi,tλ(fi(s), yt−d(s)) + (1− pi,t)λ(γt−d(s), yt−d(s)))ut−d(s)ds.

Define also li,t = ht for i > t− d.

2. Update weights wi,t = wi,t−de
−ηli,t for 1 ≤ i <∞.

Compute the aggregated long-term forecast

3. Observe the long-term forecasts ft(s) = (f1(s), . . . , ft(s)) and the corresponding confidences
pi,t for 1 ≤ i ≤ t.

4. Compute the auxiliary weights of the experts 1 ≤ i ≤ t:

wpi,t =
pi,twi,t∑t
j=1 pj,twj,t

. (22)

9. An example of such a density is ut−d(s) = 1
d

for t− d+ 1 ≤ s ≤ t and ut−d(s) = 0 for all other s.

12
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5. Compute pointwise the aggregated long-term forecast:

γt(s) = Subst(ft(s),w
p
t ) (23)

for s = t+ 1, t+ 2, . . . , where wp
t = (wp1,t, . . . , w

p
t,t).

ENDFOR

We measure the performance of our algorithm by the regret Ri,T with respect to any
ith forecast.

Theorem 3 For any i,

T∑
t=1

ri,t ≤
d

η
ln(i(i+ 1)) (24)

for all T , where ri,t is defined by (17) and conventions below it.

Proof . The inequality (18) holds for outcomes yt(s) and and for the forecasts γt(s) for all
s ≥ t+ 1.

Let ut(s) be a density on the time interval [t+ 1, t+ d].
By convexity of the exponent the inequality (18) implies

e−ηλ(γt(s),yt(s)) ≥
∞∑
i=1

e−ηEpi,t [λ(yt(s),f̃i,t(s))]w∗i,t. (25)

for all s. We apply the generalized Hölder inequality (10) with the density ut(s) and obtain

e−η
∫
λ(γt(s),yt(s))ut(s)ds ≥

∞∑
i=1

e−η
∫
Epi,t [λ(f̃i,t(s),yt(s))]ut(s)ds]w∗i,t. (26)

The inequality (26) can be rewritten as

e−ηht+d ≥
∞∑
i=1

e−ηli,t+dw∗i,t, (27)

where ht+d =
∫
λ(γt(s), yt(s))ut(s)ds is the (integral) loss of the aggregating algorithm and

for any i ≤ t

li,t+d =

∫
Epi,t [λ(f̃i,t(s), yt(s))]ut(s)ds =∫

(pi,tλ(fi(s), yt(s)) + (1− pi,t)λ(γt(s), yt(s)))ut(s)ds

is the loss of the expert i suffered on the time interval [t+ 1, t+ d].
The sum from the inequality (24) can be split into d sums of regrets on pairwise disjoint

grids:
T∑
t=1

ri,t =
d−1∑
k=0

∑
t∈Gk,t≤T

ri,t, where Gk = {t : t ≡ k(mod d)}. Applying Proposition 1

and (27) to each grid separately, we obtain the bound (24).

The bound (24) implies that supi
T∑
t=1

ri,t ≤ d
η ln((T − d)(T − d+ 1)) for each T > d.

13
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5. Supervised setting: Mixing past regressors

In this section we apply Algorithm 2 to the online learning scenario within the supervised
setting (that is, data are pairs (x, y) of predictor-response variables). At any step i a
forecaster presents a regression function f defined on a set X of objects x, which are called
signals.

An example is a linear regression, where X ⊆ Rk is a set of k-dimensional vectors and a
regression function is a linear function f(x) = (w ·x), where w ∈ Rk is a weight vector and
λ(γ, y) = (γ − y)2 is the square loss. At any step t a forecasting function ft(x) = (wt · x)
is constructed. So, at any step t we have a collection ft = (f1, . . . , ft) of past t− 1 and the
tth current forecasting functions (experts). We compute the forecasting function γt(x) of
the learner by the rule (23).

In the online mode with delayed feedback, at any step t, in item 1 of Algorithm 2 the
learner observes the set of pairs of signals and outcomes Dt = {xt−d+1, yt−d+1), . . . (xt, yt)}
and suffers the loss ht =

∫
λ(γt−d(x), yt−d(x))ut−d(x)dx, where yt−d(x) = y if (x, y) ∈ Dt

and is arbitrary for all other x. Each prediction fi(x), where 1 ≤ i ≤ t, also suffers the loss
defined by (16). The corresponding density can be defined as ut−d(x) = 1

|Dt| if x ∈ D1
t and

ut−d(x) = 0 otherwise, where D1
t = {xt−d+1, . . . ,xt}.

The performance bound is presented by Theorem 3 and the inequality (24).
Experiment. Some time series show a strong dependence on the latest information

instead of all the data. In this case, it is useful to apply regression with a rolling window.
In this regard, we consider the application of Algorithm 2 for the case of online regression
with a rolling window. The corresponding forecast represents some type of dependence
between input and output data. If this relationship is relatively regular the corresponding
forecast based on past data can successfully compete with forecasts based on the latest
data. Therefore, it may be useful to aggregate the predictions of all forecasts based on past
data.

Let ft(x) = (wt · x) be the ridge regression function, where wt = (σI +X ′tXt)
−1X ′tyt

for t > h. Here Xt is the matrix in which rows are formed by vectors xt−h, . . . ,xt−1 ∈ Rk
(X ′t is the transposition of the matrix Xt), I is unit matrix, σ is a parameter, and yt =
(yt−h, . . . , yt−1). For t ≤ h define wt be equal to some fixed value.

We use the square loss function and assume that yt ∈ [−b, b] for all t. For each t we define
the aggregating regression function γt+1 (the learner forecast) by (28) using the regression
functions fi for h < i ≤ t, where each such a function is defined using a learning sample (a
window) (xi−h, yi−h), . . . , (xi−1, yi−1).

For the square loss λ(γ, y) = (γ − y)2, where y ∈ [−b, b], by (3) the learner forecast can
be defined in the closed form:

γt(x) =
1

4ηb
ln

t∑
i=1

wpi,te
−η((wi·x)−b)2

t∑
i=1

wpi,te
−η((wi·x)+b)2

(28)

for each x or by the rule

γt(x) =

((
t∑
i=1

wpi,twt

)
· x

)
, (29)

14
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where the weights wpi,t are defined by (22).10

Let us discuss the details and results of experiments for online regression with a rolling
window which were performed on synthetic data. The initial data was obtained as a result
of sampling from a data generative model.

We start from a sequence x1, . . . ,xT of 20-dimensional signals sampled i.i.d from the
multidimensional standard normal distribution. The signals are revealed online and T =
3000.

The target variable y is generated as follows. First, three random linear dependencies
are generated, i.e. three weights vectors ŵ1, ŵ2, ŵ3 are generated (so yt = (ŵi · xt) for
i = 1, 2, 3 on the corresponding time intervals). The time scale [1, T ] is divided into K = 7
random consecutive plots, at each site data is generated based on one of these three random
regressions yt = (ŵi ·xt) + ε, where i = 1 or i = 2 or i = 3 and ε is a standard normal noise.
That is, the dependence of y on x is switched 7 times.

Each forecast fi(x) corresponds to a linear regression trained in a rolling data window
(xi−h, yi−h), . . . , (xi, yi) of length h = 40. There are a total of such T − h + 1 functional
forecasts.

The result of an experiment is shown on Figure 1, where the graphs of Ht−Li,t present
the regret of Algorithm 2 with respect to the predictions starting at time moments i ≤ t.11

The regret with respect to the ridge regression performed on all data interval is also
presented. In most experiments, Algorithm 2 outperforms linear regression in all realizations
of the random experiment.

Figure 1: The graphs of the regret with respect to the predictions starting at i =
9, 142, 311, 801, 1234, 1426, 2088, 2266 time moments (chosen randomly). The the-
oretical upper bound for the regret is represented by the line located above all
the lines in the graph. The regret with respect to the simple ridge regression is
presented by the dotted line.

10. The most appropriate η = 1
2b2

for the rule (28) and η = 1
8b2

for (29). A a more straightforward definition
(29) results in four times more regret but is easier to compute. Since we set pi,t = 1 in the experiment,
the quantities wp

i,t(x) = w∗i,t are simply normalized weights.

11. The forecast γt(x) is computed by (28), where η = 1
2b2

.
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6. Conclusion

In this paper, we have presented a generalization of the prediction with expert advice
(PEA) approach for the case when experts present functions as their forecasts instead of
point forecasts. For the case of functional forecasts, we use the concept of the integral loss
function and of integral mixability.

We use PEA approach for mixing long-term forecasts. We consider any long-term fore-
cast as a functional forecast and apply the delayed feedback approach and the proposed
integral generalization of the loss function to evaluate the predictive ability of long-term
forecasting methods.

Combining past and current long-term forecasts allows to protects the algorithm from
temporary changes in the trend of the time series, noise and outliers. Our mechanism
can be applied to the time series forecasting models that are capable of predicting for the
infinitely many time moments ahead, e.g. widespread ARMA-like models. For the developed
algorithm we proved the time independent regret bound. We have applied PEA approach
for the case of online supervised learning, the experts and the learner present predictions
in the form of regression functions. The method for smoothing regression using expert
advice was presented. Experiments conducted on synthetic data show that the proposed
regression algorithm outperforms the ridge regression on the whole data. It would be helpful
to compare the performance of this algorithm against AAR by Vovk (2001) and other online
regression algorithms.
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