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Abstract

Standard (non-normalized) conformal regressors produce intervals that are of identical size
and hence non-informative in the sense that they provide no information about the uncer-
tainty at the instance level. A common approach to handle this limitation is to normalize
the produced interval using a difficulty estimate, which results in larger intervals for in-
stances judged to be more difficult and smaller intervals for instances judged to be easier.
A problem with this approach is identified; when the difficulty estimation function provides
little or no information about the true error at the instance level, one would expect the
predicted intervals to be more similar in size compared to when using a more accurate diffi-
culty estimation function. However, experiments on both synthetic and real-world datasets
show the opposite. Moreover, the intervals produced by normalized conformal regressors
may be several times larger than the largest previously observed prediction error, which
clearly is counter-intuitive. To alleviate these problems, we propose Mondrian conformal
regressors, which partition the calibration instances into a number of categories, before
generating one prediction interval for each category, using a standard conformal regressor.
Here, binning of the difficulty estimates is employed for the categorization. In contrast
to normalized conformal regressors, Mondrian conformal regressors can never produce in-
tervals that are larger than twice the largest observed error. The experiments verify that
the resulting regressors are valid and as efficient as when using normalization, while being
significantly more efficient than the standard variant. Most importantly, the experiments
show that Mondrian conformal regressors, in contrast to normalized conformal regressors,
have the desired property that the variance of the size of the predicted intervals correlates
positively with the accuracy of the function that is used to estimate difficulty.

Keywords: Conformal regression, normalization, Mondrian conformal predictors.

1. Introduction

Conformal predictive regression is an established technique for producing valid regressors us-
ing a number of different machine learning techniques, e.g., ridge regression (Papadopoulos
et al., 2002), neural networks (Papadopoulos and Haralambous, 2010), kNN (Papadopou-
los et al., 2011), and random forests (Johansson et al., 2014a; Boström et al., 2017). In
addition to being valid, conformal regressors are often regarded as more informative than
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their underlying models since they output prediction intervals instead of point predictions.
Specifically, the size of the prediction interval is a vital indication of the uncertainty in that
prediction. In the standard inductive setting, however, the size of the prediction intervals is
identical for all test instances, i.e., there is no information available about the uncertainty
of the predictions on the instance level. To obtain more specific predictions, a procedure
called normalization has been used extensively. In normalized conformal regressors, the
non-conformity function contains a component measuring the difficulty of individual test
instances, resulting in individualized intervals for each prediction. Previous studies, see
e.g., (Papadopoulos and Haralambous, 2011; Johansson et al., 2014a) show that normaliza-
tion also results in tighter intervals on average, at least for the significance levels typically
used. While normalization has these nice properties, few if any studies have investigated
the results of utilizing it in more detail.

In this work, we will highlight two problems with normalized conformal regressors, which
may lead to that the resulting intervals are of questionable utility; i) the produced inter-
vals do not accurately reflect the degree to which the difficulty estimate actually provides
information about the true error, and ii) the resulting intervals may be unreasonably large
or small. We discuss these problems in more detail below.

When we have little or no information about the uncertainty at the instance level, i.e.,
when the difficulty estimate has a low correlation with the true error, one may argue that
the size of the predicted intervals should be similar for all instances, as we have no or little
support for claiming that some predictions are more uncertain than others. Conversely, the
higher the correlation between the difficulty and the prediction error, the larger should the
variance of the prediction intervals be, if the interval sizes should reflect the uncertainty. We
will show that on the contrary, the more random (and hence less informative) the difficulty
function is, the more varies the size of the intervals produced by normalized conformal
regressors. This will be illustrated with results from experiments with both synthetic and
real-world data.

Moreover, as will be shown in Section 2, the intervals produced by normalized conformal
regressors may, at least in theory, be several times larger (or smaller) than what have been
previously observed, which means that we in such cases directly can conclude that they
with high probability are either too conservative or even invalid. We will see also from
experiments with both synthetic and real-world datasets, using state-of-the-art conformal
regressors, that this problem may be manifested in reality and not only in theory.

In order to overcome the above two problems, an alternative approach to producing
prediction intervals is proposed, which falls in between of the standard approach, which
produces fixed-size, non-informative intervals (independently of whether or not we can ac-
curately estimate the difficulty), and normalized conformal regressors, which may generate
unique intervals for each prediction. The alternative approach borrows the idea of Mon-
drian conformal prediction (Vovk et al., 2005), which to the best of our knowledge has been
applied to conformal classification only, to form categories based on the difficulty estimate.
In this study, we consider the straightforward formation of categories by binning the dif-
ficulty estimates. A prediction interval is then formed for each category using a standard
(non-normalized) conformal regressor.

We will compare the novel type of model, which we refer to as Mondrian Conformal
Regressors, to both standard (non-normalized) and normalized conformal regressors, and
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demonstrate that the novel model addresses the above problems successfully, without sig-
nificantly sacrificing efficiency.

In the next section, we briefly describe conformal regressors and provide an extreme-case
analysis of the size of the produced intervals. In Section 3, we introduce the alternative
Mondrian-based approach; Mondrian Conformal Regressors. In Section 4, we present results
from comparing the novel approach to normalized (and standard) conformal regressors on
both synthetic and real-world datasets. Finally, in Section 5, we discuss the main findings
and outline directions for future work.

2. Preliminaries

Conformal prediction was originally developed for the transductive case (Gammerman et al.,
1998), requiring re-training of the underlying model for each new instance to be predicted,
something which often is computationally infeasible. Inductive conformal prediction (ICP)
was proposed as a computationally less costly approach (Papadopoulos et al., 2002), requir-
ing only one underlying model to be generated, at the cost of having to set aside part of
the training examples for calibration, which leaves less examples to use for model building.

An inductive conformal predictor relies on a nonconformity function A to assess the
strangeness of a label yi to assign to some object xi, with respect to some underlying
model h. For regression problems, the absolute error is a common choice for defining
nonconformity:

A (xi, yi, h) = |yi − h (xi)| , (1)

A standard (inductive) conformal regressor is constructed as follows:

1. Divide the training data Ztr into two disjoint subsets:
the proper training set Zt and the calibration set Zc.

2. Train the underlying model h using Zt.

3. Use Eq. 1 to measure the nonconformity of the examples in Zc, producing a list of
calibration scores S = α1, ..., αq where q = |Zc| and S is sorted in descending order.

A valid prediction interval at the confidence level 1−ε for a test instance xl+1 is obtained
from a standard conformal regressor by:

1. Make a prediction h(xl+1).

2. Find the calibration score αp where p = bε(q + 1)c.

3. The prediction interval for xl+1 is

Ŷ ε
l+1 = h (xl+1)± αp, (2)

The probability that the underlying model h will make an absolute error larger than
αp is ε. Note that all predictions output by a standard conformal regressor for a certain
confidence level are of the same size, namely 2αp. In order to produce a more informative
conformal regressor, normalization can be added. Here, the size of the prediction intervals

3



Mondrian Conformal Regressors

vary based on the estimated difficulty of the test examples, with easier instances having
tighter intervals.

A normalized (inductive) conformal regressor modifies the standard conformal regres-
sor by employing the following nonconformity function, given an object xi, label yi and
underlying model h:

A (xi, yi, h) =
|yi − h (xi)|
σi + β

, (3)

where σi is a difficulty estimate of xi and β is a parameter.
The prediction interval output by a normalized conformal regressor is

Ŷ ε
l+1 = h (xl+1)± αp (σl+1 + β) . (4)

Normalization is supposed to provide two benefits: (i) the sizes of the prediction intervals
give information on a per-instance basis and (ii) the prediction intervals should be tighter
on average, i.e., the model is more efficient. However, we now show that the intervals
produced by normalized conformal regressors may be unreasonably large or small. To see
this, consider the largest possible interval that may be produced by a normalized conformal
regressor:

2
emax

σmin + β
(σmax + β) (5)

where emax is the largest observed absolute error, σmin and σmax are the smallest and
largest observed difficulty estimates.

Assuming a normalized σ, i.e., σmin = 0 and σmax = 1, then the largest possible interval
becomes:

2
emax
β

(1 + β) = 2(
emax
β

+ emax) = 2emax(1 +
1

β
) (6)

Similarly, the smallest possible interval that can be produced is:

2
emin

σmax + β
(σmin + β) (7)

Under the same assumptions as above:

2
emin
1 + β

β = 2emin
β

1 + β
(8)

Hence, depending on β, the largest possible interval may be several times larger than the
largest previously observed error (emax), and the smallest possible interval may be many
times smaller than the smallest previously observed interval (emin).
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3. Mondrian Conformal Regressors

In Mondrian conformal predictors (Vovk et al., 2005), the available calibration instances
are somehow divided into different categories, and then a valid conformal predictor is built
for each category. The most common Mondrian conformal predictor is probably the class-
conditional conformal predictor (Shi et al., 2013), where the categories represent the pos-
sible class labels, thus providing guarantees for each label, i.e., the errors will be evenly
distributed over the classes. The problem space can also be divided w.r.t. to the feature
space, e.g., for tree models, a very natural division is to regard each leaf (path) as a sep-
arate category, resulting in that each such leaf is independently valid, see e.g., (Johansson
et al., 2014b). Until now, however, Mondrian conformal prediction has, to the best of our
knowledge, only been applied to classification and not to regression.

A Mondrian (inductive) conformal regressor is constructed as follows:

1. Divide the training data Ztr into two disjoint subsets:
the proper training set Zt and the calibration set Zc = {(x1, y1), . . . , (xq, yq))}.

2. Train the underlying model h using Zt.

3. Divide Zc into k disjoint subsets Zc1, . . . , Zck, according to a Mondrian taxonomy κ
with categories κ1, . . . , κk

4. Use Eq. 1 to measure the nonconformity of the examples in Zci, for each i = 1, . . . , k,
producing a list of calibration scores Si = αi1, ..., αiqi where qi = |Zci| and Si is sorted
in descending order.

A valid prediction interval at the confidence level 1−ε for a test instance xl+1 is obtained
from a Mondrian conformal regressor by:

1. Make a prediction h(xl+1).

2. Find the category κi ∈ {κ1, . . . , κk} for xl+1

3. Find the calibration score αip where p = bε(qi + 1)c.

4. The prediction interval for xl+1 is

Ŷ ε
l+1 = h (xl+1)± αip (9)

It should be noted that in contrast to Mondrian conformal predictors for finite label sets,
i.e., Mondrian conformal classifiers, we will here not consider Mondrian taxonomies that
take the true labels of the calibration instances ({y1, . . . , yq}) into account when assigning
the categories. The reason for this is that when forming the predictions (step 2 above),
we do not have access to the true value (yl+1) and it is not obvious how to test an infinite
number of values for this, although we do not exclude this possibility in the future. Another
constraint on the Mondrian taxonomy is that each category must contain a sufficient number
of instances to allow for finding a calibration score (step 3 above), which is dependent on
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the chosen confidence level. For example, a confidence level of 0.95 requires that at least 19
instances are included in each category.

There are many different possibilities for forming categories, e.g., based on properties
of the objects, but in this work we will focus on forming categories based on the difficulty
scores {σ1, . . . , σq}, as considered also by normalized conformal regressors. Again, this might
be approached in many different ways, but we settle for a very straightforward approach;
equal-sized binning of the difficulty estimates, which means that approximately the same
number of instances will fall into each bin (category). The number of bins (categories) is
hence a parameter of the approach, and it should be chosen in a way such that the above
constraint is satisfied; the size of the calibration set and the degree of confidence put limits
on the the number of bins that can be used.

If the Mondrian taxonomy maps only to one category (bin), the resulting Mondrian
conformal regressor is identical to the standard conformal regressor, while by increasing the
number of bins, the Mondrian conformal regressor will approach the normalized conformal
regressor. However, as discussed earlier. some important differences to these existing two
approaches still remain. We investigate this further in the next section.

4. Experiments

Here, we present experimental results from applying the various conformal regressors to
both synthetic and real-world datasets.

4.1. Synthetic data

The actual (yi) and the predicted (hi) values for the synthetic calibration and test datasets
are generated in the following way, where the number of instances was set to 10 000 for
both the calibration and test sets:

yi ∼ N (0, 1) (10)

ni ∼ N (0, 1) (11)

ui ∼ U(0, 1) (12)

hi = yi + ni · ui (13)

In Fig. 1, the predicted vs. actual values for the calibration set are plotted (left) together
with the cumulative distribution of the calibration intervals, i.e., twice the absolute residuals
(right). The 95th percentile of these intervals is 2.51, which corresponds to the length of
the intervals predicted by the standard approach for a confidence level of 0.95.

The above formulation allows us to investigate difficulty functions that are either uni-
formly or normally distributed, i.e., using either |ni| or ui as an estimate of the difficulty.
Moreover, we can experiment with various amounts of randomness; with some probability
the difficulty estimate is replaced with a random value, sampled from either the normal or
uniform distribution (depending on which difficulty function we use, and using the absolute
value for the normal distribution). Three levels of randomness are investigated here; 0.0,
0.5 and 1.0 (corresponding to that none, about half and all difficulty estimates are replaced
by random values). The choice of randomness clearly affects the correlation between the
difficulty estimate and the true error; see Fig. 2(a) where the difficulty vs. residuals are
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plotted for the three levels of randomness, using the normally distributed difficulty function.
The corresponding plots for the uniform difficulty function are shown in Fig. 2(b). One may
observe that complete randomness leads to non-correlated difficulty estimates, while when
there is no replacement of difficulty estimates (randomness = 0), the correlation with the
true error is quite high (but not perfect), where the use of a normal difficulty function gives
a higher correlation compared to using the uniform difficulty function.

Figure 1: Predicted vs. actual values

(a) Residual vs. normal difficulty

(b) Residual vs. uniform difficulty

Figure 2: Residual vs. difficulty
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We now present results for normalized conformal regression, when calibrating and testing
on the above datasets, using three different values for β; 0.01, 0.1 and 1.0. In Fig. 3, the
results for when using normally distributed difficulty values are shown. One may note that
the median predicted interval size for normalized regression are sometimes higher than for
the standard (non-normalized) approach, depending on the correlation between the difficulty
function and the true error; for higher degrees of randomness, and in particular for lower
values of β, the median efficiency of the normalized approach exceeds that of the standard
approach.

Figure 3: Cumulative interval sizes for the normal difficulty function

In Fig. 4, results are shown for when using uniformly distributed difficulty values. One
may note the completely different distribution of interval sizes compared to when using the
normally distributed difficulty function, here resulting in that the cumulative distribution
increases linearly with the size of the predicted intervals. It can again be observed that the
median efficiency is worse for the normalized approach, for lower values of β and higher
degrees of randomness.
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Figure 4: Cumulative interval sizes for the uniform difficulty function

In Fig. 5 and Fig. 6, predicted vs. actual (twice the observed absolute error) interval sizes
are shown for when using normally and uniformly distributed difficulty values, respectively.
One may note that the actual intervals are larger than the predicted ones in approximately
5% of the cases, as expected given the confidence level of 0.95, independently of the value
for β and randomness level. One may also see that, independently of the employed difficulty
function, the variance of the predicted interval size increases with the randomness (for any
fixed β), hence demonstrating that the spread of the interval sizes indeed increases, as
the correlation between the difficulty and true error decreases. In the extreme case, when
there is no correlation between the difficulty and true error, the predicted intervals may be
several times larger than the largest observed actual interval; more than five times larger for
normally distributed difficulty estimates and two times for uniformly distributed difficulty
estimates.
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Figure 5: Predicted vs. actual interval sizes using normal difficulty

We now present results for Mondrian conformal regressors (MCR), using various number
of bins (20, 50 and 100 bins); see Fig. 7 for results when using normally distributed difficulty
values and Fig. 8 for when using uniformly distributed difficulty values, with the same
levels of randomness as before. In contrast to the above results for normalized conformal
regressors, the median predicted interval sizes are generally lower than for the standard
approach, with the former approaching the latter with a higher degree of randomness in
the difficulty function. Note that the efficiency is not very much affected by the number of
bins, but clearly deteriorates as the quality of the difficulty function degrades, as expected.

Finally, in Fig. 9 and Fig. 10, predicted vs. actual interval sizes are shown for MCR
when using normally and uniformly distributed difficulty values, respectively. One may
note that the actual intervals are again larger than the predicted ones in approximately
5% of the cases, as expected, independently of the number of bins and randomness level.
One may also see that, independently of the employed difficulty function, the variance of
the predicted interval size decreases with the randomness (for any fixed number of bins),
hence demonstrating that the size of the predicted intervals indeed becomes more uniform,
as the difficulty function becomes less informative, as opposed to when using normalized
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Figure 6: Predicted vs. actual interval sizes using uniform difficulty

11



Mondrian Conformal Regressors

Figure 7: Cumulative interval sizes for MCR with the normal difficulty function
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Figure 8: Cumulative interval sizes for MCR with the uniform difficulty function
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conformal regression. One may also observe that the predicted intervals are never larger
than the largest observed actual interval.

Figure 9: Predicted vs. actual interval sizes for MCR using normal difficulty
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Figure 10: Predicted vs. actual interval sizes for MCR using uniform difficulty

4.2. Real-world datasets

4.2.1. Experimental setup

In the experiments with real-world datasets, we consider the same 33 datasets as used in
e.g., (Johansson et al., 2014a; Boström et al., 2017); for characteristics of these datasets, see
Table 1. We use random forests with 500 binary regression trees as the underlying model,
with 1/3 of the available features randomly selected for evaluation at each node during tree
generation. We employ 10-fold cross validation and investigate the output of the resulting
conformal regressors for the confidence level 0.95. Since the underlying model employs
bagging, we have here opted to employ out-of-bag calibration, rather than dividing the
training data into a proper training set and a calibration set, leaving all training instances
for both generating the underlying model and obtaining calibration scores. As proposed in
(Boström et al., 2017), the variance of the predictions of the individual trees in the forest,
was employed as an estimate of the difficulty for both normalized regression and Mondrian
conformal regression. For the former, we employed a β of 0.01, as also used in (Boström
et al., 2017). For the latter, a small random number was added to each difficulty estimate
to resolve ties during binning, and the minimum bin size was set to 99, resulting in that
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Table 1: Real-world datasets

Dataset #Instances #Features Dataset #Instances #Features

abalone 4177 8 kin8nh 8192 8
anacalt 4052 7 kin8nm 8192 8
bank8fh 8192 8 laser 993 4
bank8fm 8192 8 mg 1385 6
bank8nh 8192 8 mortage 1048 15
bank8nm 8192 8 plastic 1649 2
boston 506 13 puma8fh 8192 8
comp 8192 12 puma8fm 8192 8
concreate 1030 8 puma8nh 8192 8
cooling 768 8 puma8nm 8192 8
deltaA 7129 5 quakes 2178 3
deltaE 9517 6 stock 950 9
friedm 1200 5 treasury 1048 15
heating 768 8 wineRed 1599 11
istanbul 536 7 wineWhite 4898 11
kin8fh 8192 8 wizmir 1461 9
kin8fm 8192 8

a various number of bins were produced for the different datasets (the number of resulting
bins for each dataset is reported in Table. 2 below).

4.2.2. Results

Table. 2 below shows the empirical error rates and the number of bins used by the Mondrian
approach, averaged over the ten folds. From these results, it is evident that all setups
produce valid conformal regressors. As seen in the last column, the number of bins varies
a lot over the different datasets; from only four to 86.
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Table 2: Empirical error rates. ε = 0.05

Dataset Std Norm Bin #Bins Dataset Std Norm Bin #Bins

abalone .049 .051 .049 37 kin8nh .050 .048 .052 74
anacalt .051 .048 .019 36 kin8nm .048 .048 .050 74
bank8fh .050 .049 .049 74 laser .048 .047 .059 9
bank8fm .052 .052 .047 74 mg .052 .051 .045 12
bank8nh .050 .049 .048 74 mortage .049 .046 .046 9
bank8nm .051 .050 .048 74 plastic .047 .050 .039 14.1
boston .047 .057 .041 4 puma8fh .049 .048 .049 74
comp .050 .050 .049 74 puma8fm .050 .048 .048 74
concreate .050 .050 .039 9 puma8nh .049 .050 .050 74
cooling .049 .043 .043 6 puma8nm .050 .050 .050 74
deltaA .049 .050 .051 64 quakes .052 .051 .050 19
deltaE .049 .049 .051 86 stock .044 .042 .039 8
friedm .052 .052 .050 10 treasury .054 .051 .045 9
heating .047 .053 .043 6 wineRed .050 .051 .049 14
istanbul .054 .054 .052 4 wineWhite .051 .049 .051 44
kin8fh .050 .049 .049 74 wizmir .053 .051 .042 13
kin8fm .050 .050 .049 74 Mean .050 .050 .047 41.7

Turning to the efficiency results in Table. 3 below, we see that both the normalized
and the Mondrian versions obtained tighter intervals (using both the mean size and the
median size) compared to a standard conformal regressor. This is confirmed by a Friedman
test (Friedman, 1937), followed by Bergmann-Hommel’s dynamic procedure (Bergmann and
Hommel, 1988), showing the differences to be significant at α=0.05. There are no significant
differences between the normalized and the Mondrian version though.

Looking specifically for unreasonable large intervals produced by the normalized ap-
proach, i.e., larger than twice the size of the largest observed absolute error on the calibra-
tion and test instances, such intervals exist on a majority of the datasets. While on most
datasets, this applies only to a few instances, i.e., less than 1%, for a couple of datasets, the
proportion is much larger. Specifically, for the Plastic dataset, approximately 16.6% of all
intervals are unreasonably large. As follows from their construction, no such large intervals
can be produced by the standard and Mondrian approaches.

The two first columns (Diff. est.) in Table. 4 below show the quality of the difficulty
estimation, measured as the correlation between the estimated difficulty and the absolute
error over all test instances. The following two columns (Var.) show the variance in interval
sizes over the test instances. As stated above, a better difficulty estimation should lead to
a larger variance in intervals, but here we see that this is the case only for the Mondrian
version. In fact, the correlation between Diff. est. and Var. is negative (−0.301) for the
normalized conformal regressor, but positive (0.253) for the Mondrian.

17



Mondrian Conformal Regressors

Table 3: Efficiency. ε = 0.05

Mean Median Mean Median
Dataset Std Norm Bin Std Norm Bin Dataset Std Norm Bin Std Norm Bin

abalone .321 .283 .302 .321 .258 .278 kin8nh .493 .482 .486 .493 .478 .485
anacalt .074 .051 .059 .074 .045 .000 kin8nm .415 .396 .399 .415 .385 .389
bank8fh .391 .343 .358 .391 .324 .362 laser .092 .067 .091 .092 .055 .037
bank8fm .228 .175 .183 .228 .165 .156 mg .357 .209 .231 .357 .162 .152
bank8nh .458 .417 .445 .458 .385 .443 mortage .036 .033 .026 .036 .032 .017
bank8nm .237 .149 .159 .237 .119 .097 plastic .659 .803 .701 .659 .695 .644
boston .287 .261 .276 .287 .202 .222 puma8fh .562 .523 .533 .562 .515 .543
comp .114 .108 .104 .114 .103 .100 puma8fm .280 .274 .274 .280 .277 .279
concreate .275 .246 .260 .275 .220 .240 puma8nh .553 .523 .524 .553 .490 .502
cooling .187 .141 .131 .187 .125 .115 puma8nm .331 .319 .316 .331 .301 .320
deltaA .156 .144 .150 .156 .138 .135 quakes .704 .839 .742 .704 .745 .727
deltaE .214 .214 .219 .214 .208 .214 stock .096 .091 .096 .096 .085 .091
friedm .298 .312 .308 .298 .309 .305 treasury .042 .039 .032 .042 .038 .021
heating .073 .068 .073 .073 .064 .066 wineRed .498 .454 .449 .498 .438 .506
istanbul .320 .334 .323 .320 .319 .321 wineWhite .418 .371 .359 .418 .366 .397
kin8fh .296 .291 .295 .296 .283 .278 wizmir .079 .078 .086 .079 .076 .076
kin8fm .183 .177 .181 .183 .172 .169 Mean .295 .279 .278 .295 .260 .263

Mean rank 2.67 1.45 1.88 2.79 1.55 1.67

Table 4: Difficulty estimation and variance in interval sizes

Diff. est. Var. Diff. est. Var.
datasets Norm Bin Norm Bin datasets Norm Bin Norm Bin

abalone .358 .361 .007 .016 kin8nh .212 .213 .008 .005
anacalt .559 .567 .001 .025 kin8nm .298 .298 .008 .007
bank8fh .298 .300 .010 .008 laser .658 .655 .002 .018
bank8fm .483 .479 .003 .007 mg .778 .774 .016 .029
bank8nh .282 .282 .021 .019 mortage .699 .699 .000 .001
bank8nm .683 .679 .006 .025 plastic .034 .035 .133 .036
boston .565 .564 .031 .016 puma8fh .277 .274 .016 .011
comp .273 .271 .000 .002 puma8fm .166 .165 .004 .003
concreate .444 .449 .010 .010 puma8nh .301 .303 .020 .011
cooling .720 .728 .002 .008 puma8nm .229 .231 .009 .004
deltaA .404 .406 .000 .004 quakes .159 .158 .160 .016
deltaE .185 .181 .001 .002 stock .351 .349 .000 .001
friedm -.048 -.055 .002 .001 treasury .547 .551 .000 .001
heating .497 .515 .000 .002 wineRed .403 .399 .024 .041
istanbul .085 .091 .004 .001 wineWhite .437 .437 .014 .034
kin8fh .216 .219 .003 .004 wizmir .222 .214 .000 .001
kin8fm .262 .262 .001 .002 Mean .365 .365 .016 .011
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5. Concluding remarks

We have in this paper investigated conformal regressors using a difficulty estimation function
to produce individualized prediction intervals. Experiments using both synthetic and real-
world datasets show that such normalized conformal regressors suffer from two inherent
but subtle drawbacks. First of all, the normalization can lead to unreasonably small or
large intervals, in comparison to errors on the calibration set. Second, in order to improve
the informativeness, better difficulty estimators should lead to more specific models, i.e.,
a larger variation in prediction intervals. The experimental results, however, conclusively
show that this is not the case. As a solution to these problems, we suggested Mondrian
conformal regressors, which bins the difficulty estimations into categories and then generates
one prediction interval for each such category, using standard conformal regression. By
their construction, the intervals of Mondrian conformal regressors can never be larger than
twice the largest calibration set error. The experiments verify that the Mondrian variant is
valid, as efficient as using normalization and significantly more efficient than the standard
approach. Finally, it was shown that in contrast to when normalization is employed, for
Mondrian conformal regressors, more informative difficulty estimators will indeed lead to
more varied interval sizes.

Directions for future work include investigating alternative ways of forming the cate-
gories for the Mondrian conformal regressors, e.g., based on features of the objects, possibly
in addition to using the difficulty estimates. Alternative binning procedures, which do not
necessarily result in equal-sized bins, could also be investigated. Dynamic formation of bins,
similar to Venn-Abers predictors (Vovk and Petej, 2012), is one such possibility. Previous
approaches to handle small calibration sets, e.g., as suggested in (Johansson et al., 2015),
are expected to be effective also for Mondrian conformal regressors, making the approach
less conservative for smaller bin sizes.
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