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Abstract

The problem of regression in the inductive conformal prediction framework is addressed
to provide prediction intervals that are optimized by predictive efficiency. A differentiable
function is used to approximate the exact optimization problem of minimizing predictive
inefficiency on a training data set using a conformal predictor based on a parametric nor-
malized nonconformity measure. Gradient descent is then used to find a solution. Since
the optimization approximates the conformal predictor, this method is called surrogate
conformal predictor optimization. Experiments are reported that show that it results in
conformal predictors that provide improved predictive efficiency for regression problems on
several data sets, whilst remaining reliable. It is also shown that the optimal parameter
values typically differ for different confidence levels. Using house price data, alternative
measures of inefficiency are explored to address different application requirements.
Keywords: Conformal prediction, regression, gradient descent.

1. Introduction

Conformal predictors (CP) are predictive algorithms that are reliable, meaning they are able
to output prediction sets with a guarantee of accuracy at a user-defined confidence level,
assuming only that the data is distributed identically and is exchangeable (Vovk et al.,
2005). Higher confidence levels are achieved at the cost of large prediction sets. Larger
prediction sets are called less efficient and since confidence levels are fixed, optimization of
CPs is based on maximizing predictive efficiency, in some sense. In this study, inefficiency
of a CP is measured based on the size of the prediction set. The optimization problem can
be expressed formally, but is based on step functions and so is difficult to solve directly.
This study proposes an approximate method to express the optimization problem in a way
that gradient descent can be used. In particular, the problem of regression in the inductive
conformal prediction (ICP) framework is specifically addressed. The ICP is the CP in batch
mode and mirrors the usual machine learning setting, having separate training and test sets,
although additionally requiring a calibration data set (Papadopoulos et al., 2002).
Previous work to improve the efficiency of ICP typically involves developing and refining
the nonconformity measure (NCM) which is central to the operation of CP and is described
in Section 2 below. In particular, the development of the normalized NCM (Papadopoulos
et al., 2002) was important for regression. Another appoach is to make use of quantile
regression to construct CPs (Romano et al., 2019) which is also found, empirically, to provide

© 2020 A. Bellotti.



relatively efficient predictions. The approach taken in this study is to directly optimize a
parametized normalized NCM with respect to predictive inefficiency whilst holding accuracy
approximately fixed.

The objective of minimizing inefficiency measured as the mean width of prediction in-
tervals subject to an acceptable user-defined accuracy level has been studied by Khosravi
et al. (2011) and Pearce et al. (2018), but outside the context of CPs. The latter authors
refer to this as the HQ (high-quality) principle for generating prediction intervals. In par-
ticular, Pearce et al. (2018) propose an approximate differentiable loss function to allow the
use of gradient descent to find a minima. They show that this approach performs well on
several data sets. However, their methods do not have a guaranteed inherent validity as
CP does. In this study, the approach used by Pearce et al. (2018) is borrowed to develop
an approximation to the ICP for regression and to use it to estimate parameters for a pa-
rameterized NCM. Since we are specifically considering regression, we use the normalized
NCM (Papadopoulos et al., 2002) with a linear parametric structure in the denominator
and numerator. More complex structures are possible and these can be considered in future
work. Indeed, Pearce et al. (2018) apply their method within a neural network framework.

Typically ICPs are built upon underlying regression algorithms. These regression algo-
rithms will typically optimize on a loss function based on point estimates (eg mean square
error) and so do not directly optimize for the efficiency of predictions. The approach pro-
posed here allows for direct estimation of the NCM used in CP that is specifically aligned
to the objective of maximizing efficiency, albeit through an approximation. Since this op-
timization method emulates ICP approximately but does not have guarantee of validity,
we refer to it as surrogate conformal predictor optimization (SCPO). We can suppose that
this approach will improve performance of the CP in terms of predictive efficiency. In this
study, this supposition is tested using experiments on a simulated data set and on several
real world data sets. It is also shown that the optimal model parameter values typically
differ for different confidence levels. The notion of estimating the CP directly based on an
objective function involving efficiency is rather new. Colombo and Vovk (2020) propose a
method for classification using CP based on a probabilistic efficiency measure. They use
an exhaustive search which is computationally expensive for a sufficiently large parameter
space, but their method could potentially be modified to use gradient descent too.

Although SCPO is not inherently valid itself, it is used to estimate parameters for the
NCM which is then used in an ICP which we know is inherently valid (see Figure 1). Hence
the overall method is valid.

Inefficiency does not need to be measured simply as the size of the prediction set and,
indeed, Vovk et al. (2016) provide a study of alternative measures. The choice of measure
should depend largely on the application and use of the CP. So, for example, in applications
for which we wish to avoid especially large prediction intervals, a square term may be
appropriate. Using house price data, different measures of inefficiency are explored to
address different business uses.

The remainder of this article is arranged as follows. The ICP for regression and its va-
lidity are introduced and the SCPO proposed in Section 2. Experimental setting and results
using simulated data and multiple real data sets are given in Section 3. It is shown that the
optimization method proposed here improves predictive efficiency whilst maintaining the
reliability of predictions. Finally, conclusions and future work are discussed in Section 4.



2. Methodology

e Let zy,---,2, be an exchangeable (or i.i.d.) sequence of examples z; = (x;,y;) with
vector of v predictor variables x; € R" and response variable y; € R.

e Without loss of generality, let 1 to k index training data, k + 1 to [ index calibration
data and [ + 1 to n index test data, for 1 < k < < n.

e A nonconformity measure (NCM) is a function A(x,y) = A(z1, -, zk, (X,¥)).

e Let a; = A(x;,y;) denote NCM for observation i.

The inductive conformal predictor (ICP) gives the prediction set at confidence level 1 — ¢,

l
T(x)=qyeR: Y TARXy)>a)+1>e(l—-k+1) (1)
j=k+1
where I is the indicator function. Given that zg4q,--- , 2z, are exchangeable (or i.i.d.), ICP
predictions are valid; ie for all i € {{+1,--- ,n},
P(y; e T°(x;)) > 1 —e. (2)

See Vovk et al. (2005) for details and Papadopoulos et al. (2002) for ICP for regression, in
particular. Consider a special case of NCM, the normalized NCM,

Ao () = Q
where m and o are parametric forms with parameter vectors 1 and 6 respectively, such that
(n,0) = r(z1,--- ,2;) and o(0;x) > 0, given by Papadopoulos et al. (2002). Typically we
think of r as a regression algorithm that estimates the parameters based on the training
data. So in previous studies, m and o are linear models, 1 are coefficients estimated using
linear regression of y on x and # are coeflicients estimated using linear regression of the
absolute value of residual in model m on x, although other regression algorithms have
been used such as artificial neural networks (Papadopoulos and Haralambous, 2011). The
normalized NCM with this set-up have been shown to be effective for several regression
problems (Papadopoulos et al., 2002; Papadopoulos and Haralambous, 2011; Johansson
et al., 2014). However, the use of two separate models or predictive algorithms for the
functions m and o is a heuristic. In this article, we attempt to estimate the parameters of
these two functions together by minimizing the width of the prediction interval.

It is known that for the normalized NCM,

I'(x) = [m(n; x) — qo(0;x), m(n; x) + qo(0;x)] (4)

where ¢ is the (1 —¢)th quantile of the sample of NCMs in the calibration set, ag41,- - , .
With this prediction interval we can rewrite (2) as

P (I(y; — (f (05 %) — qo(0;%:)) > O)I(f(n;%:) +qo(05%x;) —y; >0) =1) > 1 —e.



The indicator functions I(x > 0) can be replaced with the Heaviside step function H(x)
since their values will only differ at a single point « = 0, so the LHS is equal to

P(H(yi — f(n;%) + qo(05x:))H(f (n;%i) + qo(0;%x;) — i) = 1)
and writing as an expected value gives

E(H(yi — f(n;x:) + qo(0;%:))H(f(n; %) + qo(0;%:) —yi)) > 1 —¢ (5)

which expresses the validity of the conformal predictor with a normalized NCM.

Since accuracy is fixed by the confidence level, the optimization goal is to maximize the
efficiency of the prediction set. There are several alternative approaches to measuring the
(in)efficiency of a conformal prediction, such as the sum of p-values, the S criterion, which
is not dependent on €, or the size of the prediction set, the N criterion, which is dependent
on e. See Vovk et al. (2016) for a comprehensive study. In this study we focus on the N
criterion. The size of the prediction set for the normalized NCM is given as the length of
the prediction interval (4) which is 2qo(6;x), so across a sequence of examples S we can set
the goal to minimize the mean loss,

5 2 (a0

€S

for some power p > 0, so p = 1 expresses a linear loss and p = 2 is a square loss, in
particular. This is minimized whilst ensuring that accuracy is at the required confidence
level; ie ensuring (5). The inequality in (2) and hence (5) deals with the case when two or
more examples have the same value of a;. It is possible to construct NCMs where this is
likely to happen, but with the normalized NCM (3), this is an unlikely outcome so long as
predictor variable values are at sufficient granularity. Hence, if the probability is greater
than the confidence level, it will not be by very much and (5) will be very nearly an equality.
Given this, we can consider the manifestation of (5) on the sample S as the accuracy given
by

> H(yi —m(n:x) + qo(0; %)) H(m(n; x) + qo(0;x) —y;) ~ 1 —e.
€8

1
Accg 5
This approximation is more accurate with larger sample size in S and could be stated more
precisely since the events y; € I'°(x;) are i.i.d and so Accg follows a binomial distribution
around 1 — e. However, for the purpose of optimizing efficiency it is only necessary that
Accg does not deviate substantially from the confidence level and so a simple square loss
term can be used for this purpose. Hence combining this with the mean loss on interval
size gives a loss function,

1
Ls(n,0) = 5l > (2q0(0;%))” + MAces — (1 - ¢))? (6)
€S
where A > 0 is a constant expressing the relative cost of controlling accuracy. Since we
want to maintain accuracy closely, we would expect A to be quite large. Minimizing this
loss gives

(7,0) = r(z1, - ,21,) = argmin Ls (1, 0). (7)



This optimization problem does not express the ICP and, in particular, does not have the
inherent property of validity, but is empirically valid through the loss function. It is an
approximation to ICP so that by using the estimates (7, é) in the NCM for ICP, this will
lead to predictions that are close to optimally efficient for the model structures given by
m and d. A similar optimization problem jointly minimizing predictive efficiency along
with accuracy has been studied by Pearce et al. (2018). The main differences are that (6)
intends for accuracy to be a specific confidence level whereas Pearce et al. (2018) form a
loss function that allows for an inequality, so accuracy can be greater than the confidence
level, and (6) has the power term p. We follow a similar strategy as Pearce et al. (2018) by
using a differentiable approximation of the problem so that gradient descent can be applied.

For (7) to emulate ICP, it would be ideal to set S to be an independent test set and for ¢
to be computed on an independent calibration set since this is what ICP does. However, we
should not use data zy1,- - ,Zy to do this, as this would mean that the estimates (7, é) are
computed from these data, violating the conditions to ensure the ICP is valid. Therefore,
(7) must only involve the training data. One way to do this is divide the training set into
three parts just for the purposes of optimization: a proper training set, a second calibration
set and a second test set. However, it is unlikely we will have sufficient data for the luxury
of having so many data subsets. Hence the training data is used for all three purposes.
This will mean that validity on the training set will not hold and we should expect some
overfit. However, this is not a problem since the optimization will result in a fixed NCM
parametized by (7, 6), ie (3), that can then be used by an ICP which will be valid on the
test set. The overfitting will likely mean that efficiency on the test data will be less than
on the training data, but overfitting is not an unusual problem to face in machine learning.

The strategy of using training data in all roles for the purpose of optimization means
(1) the sequence S = (1,--- ,k) and (2) the quantile ¢ is from the distribution a1, --- , ag,
instead of from the true calibration set. Let us call this quantile ¢’ to express this difference.
One thing to notice about the NCM is that the CP is invariant to changes in the scaling
of the NCM. This can be seen in (1), since the prediction set is unchanged by rescaling by
a constant factor, as all the NCM values will be rescaled by the same amount. For this
reason, we can choose whatever scaling we want. In particular we will choose a scaling that
sets ¢’ = 1. Intuitively this does not seem right since ¢’ is a function of the distribution of
a;’s and this in turn is a function of (7, §), therefore ¢’ is also a function of (7, ). However,
changing the scaling of the NCM, by setting ¢’ to a fixed value, has no impact on the
performance of ICP: the ICP will perform the same for any value of ¢’. Setting ¢ = 1
means ¢ can be dropped from Accg and Lg(n,6). In experiments given in Section 3, we
find that ¢ ~ ¢’ = 1 and the deviation of ¢ from 1 is a consequence of the ICP adjusting for
the overfitting of (7) on the training data and the size of the data sample.

The final difficulty for solving optimization problem (7) is that Accg is formed from a
series of Heaviside step functions H, hence Lg(n,0) is discontinuous at many places. To
resolve this problem, we use

H(z) = lim (1 + exp(—yz))~!
Y— 00
and for practical purposes the Heaviside step function can be approximated by the expit

sigmoid function, H(x) ~ (1 + exp(—vz))~" for sufficiently large v. This leads to a new



loss function that approximates Lg(n,0):

k
L(n, ) Z (20 (x5 0))P 4+ A\V?

??' \

where
V=_>1-¢) Zl Uj,
1

li = (14 exp(y[ys — m(xs;n) + o(xi:0)])) ",
= (1 + exp(y[m(xi;n) + o (xi;0) —y:]))
remembering ¢ is replaced with ¢’ = 1. This leads to the SCPO problem defined as

(7,0) = arg min L(n, ). (8)
m,

that approximates (7). Finally, o is expressed in the form,
o(x;;0) = exp(d(x;;0))

to ensure that o(x;;6) > 0.
Gradients can then be used in a gradient descent algorithm as follows,

OL(n,9) _ Ayu;

om(x;;
— 2/\77{/ Ei:l lzuz(uz = li)#’

OL(n,0 n ad(x;; iU
a(gj) =} 2in 2ppexp(pd(xz‘;9))¥ AV 1859

= % Zle [2Ppexp(pd(x;;0)) + 2/\’yVlZu,(lZ + u; — 2) exp(d(x;;60))] %{92;0)

These gradients can be computed so long as m and d are both differentiable. Different forms
are possible, but for this study we use simple linear parameterizations, m(x;;7) = n-x; and
d(x;;m) = 6 - x;. Note that an intercept term is included using a variable that always takes
the value 1 in x;.

To recap, validity is not a property of SCPO, but SCPO is empirically valid through
minimizing V2 on training data. We use its estimates (7, é) in the NCM to then implement
the ICP using the calibration set to get predictions on the test set, as illustrated in Figure
1. The parameter ¢ in ICP measures the difference between the SCPO and ICP: the closer
q is to 1, then the closer the two predictors are. In particular, ¢ = 1 means the SCPO and
ICP are the the same region predictors. We expect ¢ > 1 to account for overfitting in the
process of fitting SCPO to just the training data.

‘ SCPO ‘ — ’ (n,0) ‘ — ’ ICP ‘ — ’ Prediction intervals

Figure 1: Using SCPO with ICP



3. Experimental Results

We use a normalized NCM with a separate linear model to predict outcome and a separate
linear model to predict log absolute residual, both using OLS linear regression, as a Baseline
ICP to compare SCPO against. This structure of ICP with separate modelling for m and
o in (3) is typical in the literature for CP applied to regression.

A simple gradient descent algorithm is applied. However, it was found that performing
a random change in (7, 6) every 10,000 iterations helped in reaching a good minima. The
random change consisted of adding a term Jump xn;s to each n; where Jump is a hyper-
parameter and s is randomly drawn from a standard normal distribution, and similarly for
each ¢;. The number of times a random jump is made is called Cycles in the Results given
below. As with other methods such as neural networks, data needs to be standardized prior
to applying gradient descent. This is done by dividing all predictor variables through by
their sample standard deviations computed on the training data set, for each experiment.

The learning rate was set to 10/(yA) in all experiments, by trial and error. Experiments
suggest this may be too small since the observed change in loss from one iteration to another
is small. However, it is better to have a smaller value than a larger one so that it does not
overshoot the minimum.

All ICPs are evaluated by predictive accuracy (Acc) which corresponds to (5) and hence
should be approximately equal to the confidence level if the ICP is valid and by predictive
inefficiency (Ineff) which is measured simply as mean predictive interval width across the
test data set.

We tested the proposed method on a simple simulated data set with just two predictor
variables, x1,x2, both generated as absolute values of standard normal random numbers
and one outcome variable y = 0.5x; + x93 + € where error term is generated as 0.5x; times
standard normal random numbers. Therfore the simulation is deliberately set up with
heterogeneous errors and we would expect that predictive intervals will be wider for test
examples with larger values of x1. Results for different parameter settings are shown in
Table 1. In all cases, p = 1. We see that all ICPs are valid (ie accuracy matches confidence
level), the optimized ICP performs better than the baseline (ie Ch > 0) and the results are
robust to different parameter settings. Table 2 shows differencies between parameters for
the simulated data with settings N = 10000, v = 100, A = 100, Cycles=5, Jump=0.2. The
values of 1 model the generating function for y and is stable across all ICPs. For 0, we see
that 0, has a major effect compared to 05 and it is positive. This is what we expect given
the way the error term is generated as positively correlated with x; and not xo. Higher
confidence levels require larger values of 61 to enable wider predictive intervals. The final
column (Ineff at 95%) shows how the NCM formed from the estimated (7, #) perform at the
fixed confidence level 95%. Surprisingly, at least in this setting, all optimized ICPs perform
approximately as well as each other.

Figure 2 shows a contour plot of log L(n,#) across a range of values of 7 and 6, for
the simulated training data. It shows that the loss function is well-behaved with a clear
minima.

We tested this method on several publicly available data sets as described in Table 3.
Most data sets are sourced from the UCI machine learning repository (Frank and Asuncion,
2010). The Ames data set was compiled by De Cock (2011) for educational purposes and



Experiment settings Baseline ICP | SCPO ICP
N l—e |~y A Cycles | Jump | Acc | Ineff | Acc | Ineff | Ch

1 | 500 0.9 100 | 100 |5 0.2 0.916 | 2.015 | 0.898 | 1.590 | 0.211
2 | 1000 | 0.9 100 | 100 |5 0.2 0.904 | 2.347 | 0.908 | 1.616 | 0.312
3 | 10000 | 0.9 100 | 100 |5 0.2 0.903 | 2.123 | 0.902 | 1.529 | 0.280
4 | 50000 | 0.9 100 | 100 |5 0.2 0.899 | 2.158 | 0.897 | 1.545 | 0.284
5 | 10000 | 0.95 | 100 | 100 |5 0.2 0.955 | 2.449 | 0.952 | 1.890 | 0.228
6 | 10000 | 0.95 | 10 100 |5 0.2 0.940 | 2.549 | 0.946 | 1.900 | 0.255
7 | 10000 | 0.95 | 1000 | 100 | 5 0.2 0.950 | 2.701 | 0.948 | 1.958 | 0.275
8 | 10000 | 0.95 | 100 | 10 5 0.2 0.949 | 2.723 | 0.948 | 1.978 | 0.274
9 | 10000 | 0.95 | 100 | 1000 | 5 0.2 0.951 | 2.708 | 0.950 | 1.947 | 0.281
10 | 10000 | 0.95 | 100 | 100 | 1 0.2 0.951 | 2.717 | 0.955 | 1.959 | 0.279
11 | 10000 | 0.95 | 100 | 100 | 1 0.2 0.951 | 2.851 | 0.953 | 1.980 | 0.306
12 | 10000 | 0.95 | 100 | 100 |5 1 0.945 | 2.628 | 0.954 | 1.928 | 0.266
13 | 10000 | 0.99 | 100 | 100 |5 0.2 0.989 | 3.561 | 0.993 | 2.715 | 0.238

Table 1: Results with simulated data. N = number of examples in each of training, calibra-
tion and test data sets. Ch is change ratio between inefliciency for SCPO method
against baseline; ie Ch = 1 - Ineff(SCPO ICP)/Ineff(Baseline ICP).

1—c¢ Mo m M2 90 91 92 Ineff at 95%
Baseline 0.0000 | 0.356 | 0.718 | —1.745 | 0.879 | —0.0124 2.557
0.8 0.0097 | 0.362 | 0.729 | —0.682 | 0.338 | —0.0186 1.958
0.9 —0.0197 | 0.409 | 0.727 | —0.399 | 0.394 | —0.0282 1.910
0.95 —0.0028 | 0.366 | 0.746 | —0.278 | 0.415 0.0310 1.918
0.99 —0.0276 | 0.362 | 0.723 | —0.191 | 0.473 0.0180 1.906

Table 2: Parameter estimates for ICP at different confidence levels. Baseline refers to the
baseline linear regression, not SCPO. Ineff at 95% is inefficiency measure when
using these parameters for prediction at 95% confidence level.
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Figure 2: Contour plot of log L(n,#) across a range of values of n; and 6; for the simulated
training data, for 1 —e = 0.95, v = 100 and A = 100.

the KC data set is available from the Kaggle competition site '. For the Ames data set, only
the 9 most predictive variables are included based on stepwise variable selection using OLS
linear regression. To check the robustness of the results, the experiments were repeated
with different random selections of training, calibration and test sets. They give similar
results from which we can draw the same conclusions.

Results at various confidence levels are shown in Tables 4 and 5. Settings were fixed
at p = 1, v = 100, A = 1000, Cycles=10, Jump=0.2. For all six data sets, accuracy
approximately matches the confidence level, as we would expect of ICP. In four out of the
six experiments, using SCPO improves performance in terms of efficiency. For those two
data sets where performance is not improved, the magnitude of difference in Ineff is relatively
small (Ch > —0.011). For contrast, the mean Ch over all six data sets is 0.063, 0.060, 0.061
and 0.149 for confidence levels 80%, 90%, 95% and 99% respectively, demonstrating an
overall improvement in performance across these data sets. The tables also show that in
general ICP optimized for one confidence level are not particularly good when applied for
a different confidence level, contrary to results on the simulated data.

If we look at the two data sets, for which the method does not perform well, Bias and
CCPP, they exhibit poor model fit for the model of absolute value of residual, ¢ in the
normalized NCM (3) for the baseline ICP with R? = 0.051 and 0.0079 for Bias and CCPP
respectively. This makes sense since it means that the denominator of the normalized NCM
is not greatly influenced by the predictor variables and therefore suggests that the joint
estimation of m and ¢ provided by SCPO is less likely to provide an advantage. However,

1. https://www.kaggle.com/harlfoxem/housesalesprediction



Name | Description Response y | n v | #Train | #Cal | #Test
Ames | US housing data | Sale price 2928 9 | 1464 732 732
Bias Bias correction on | Minimum 7752 24 | 3000 2000 | 2590
temperature esti- | tempera-
mate (Cho et al., | ture
2020)
CCPP | Combined Cy- | Energy out- | 9568 4 | 4000 3000 | 2568
cle Power Plant | put
(Kaya et al,
2012)
KC US housing data | Sale price 21613 | 24 | 10000 5000 | 6613
GPU | GPU perfor- | Performance| 241600 | 14 | 20000 20000 | 20000
mance data | time (aver-
(Nugteren  and | age)
Codreanu, 2012)
Super | Superconductor Critical 21263 | 81 | 10000 5000 | 6263
(Hamidieh, 2018) | tempera-
ture

Table 3: Data sets. n = number of examples; v = number of predictor variables; # refers
to numbers of examples used in the training, calibration and test set respectively
for ICP. For the Bias data set, 162 rows were removed due to missing values.

this is not the whole explanation since the GPU data set also has poor fit for o (R? = 0.015)
but still shows improved performance using SCPO.

Tables 4 and 5 also report the value of ¢ which shows how close the SCPO predictor is
to ICP with ¢ = 1 meaning they are the same. In particular, ¢ is a measure of the overfit
of SCPO on training and its deviation from validity (ie when V' = 0). We observe that
deviation of ¢ from 1 is small, but typically higher with higher confidence level (0.99). Also,
data sets with larger sample size such as GPU, give lower values of ¢ for all confidence level,
indicating lower overfitting with larger training sample size.

Figure 3 shows how the distribution of the width of prediction intervals changes with
different values of p = 1 for linear error and p = 2 for square error on interval size, as given
in (6) for experiments with the Ames House Price data. Since the square error penalizes
large intervals more, this reduces the size and number of outliers and tends to push the
distribution of interval widths to the left, although the mean absolute error (Ineff) will be
higher. We observe this in the figure: the right graph shows fewer outliers (values greater
than 4) and less predictions within the range 2 to 4. However, the sample mean interval
width is slightly higher at 1.377 for p = 2 against 1.360 for p = 1. This result has an
immediate business interpretation: if we want to build an automated valuation model that
provides a good average performance and can tolerate a large number of extremely large
(and hence useless) price predictions then use p = 1, whereas if we like to ensure that the
large majority of price predictions are within a tolerable range, whilst sacrificing average
performance, then p = 2 can be used. The former may be useful for mortgage portfolio

10



Data set | Method 1—¢| Acc | Ineff | Ch q
Baseline 0.8 0.792 | 0.841
SCPO 0.8 0.796 | 0.752 | 0.106 | 1.06
Baseline 0.9 0.902 | 1.11
SCPO 0.9 0.889 | 1.047 | 0.057 | 1.05
Baseline 0.95 | 0.945 | 1.362
Ames
SCPO 0.95 | 0.941 | 1.35 | 0.009 | 1.09
SCPO (0.8) | 0.95 | 0.951 | 2
SCPO (0.9) | 0.95 | 0.963 | 1.53
N/a * 0.99
Baseline 0.8 0.801 | 0.998
SCPO 0.8 0.804 | 1.003 | -0.005 | 1.08
Baseline 0.9 0.897 | 1.284
SCPO 0.9 0.897 | 1.286 | -0.002 | 1.07
Baseline 0.95 | 0.946 | 1.546
Bias SCPO 0.95 | 0.953 | 1.563 | -0.011 | 1.11
SCPO (0.8) | 0.95 | 0.946 | 1.569
SCPO (0.9) | 0.95 | 0.941 | 1.532
SCPO (0.99) | 0.95 | 0.946 | 1.556
Baseline 0.99 | 0.987 | 2.231
SCPO 0.99 | 0.988 | 2.158 | 0.033 | 1.24
Baseline 0.8 0.81 0.669
SCPO 0.8 0.806 | 0.669 | 0.000 | 1.04
Baseline 0.9 0.905 | 0.83
SCPO 0.9 0.908 | 0.834 | -0.005 | 1.03
CCPP Baseline 0.95 | 0.955 | 0.967
SCPO 0.95 | 0.96 | 0.97 | -0.003 | 1.02
SCPO (0.8) | 0.95 | 0.954 | 1.058
SCPO (0.9) | 0.95 | 0.959 | 0.988
N/a * 0.99

Table 4: Results for different data sets. SCPO refers to ICP based on SCPO. SCPO(c¢) refers
to optimizing the parameters for confidence level c¢. N/a * means insufficient data
for confidence level 0.99. Ch is the change ratio between inefficiency for SCPO
against baseline ICP; ie Ch = 1 - Ineff(SCPO)/Ineff(Baseline).
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Data set | Method 1—¢ | Acc | Ineff | Ch q
Baseline 0.8 0.808 | 1.202
SCPO 0.8 0.806 | 0.985 | 0.181 | 1.03
Baseline 0.9 0.906 | 1.559
SCPO 0.9 0.895 | 1.311 | 0.159 | 1.03
Baseline 0.95 | 0.957 | 1.921

KC SCPO 0.95 | 0.956 | 1.748 | 0.090 | 1.11
SCPO (0.8) | 0.95 | 0.948 | 2.035
SCPO (0.9) | 0.95 | 0.948 | 1.815
SCPO (0.99) | 0.95 | 0.956 | 1.804
Baseline 0.99 | 0.991 | 3.113
SCPO 0.99 | 0.991 | 2.797 | 0.102 | 1.39
Baseline 0.8 0.796 | 1.698
SCPO 0.8 0.798 | 1.625 | 0.043 | 1.00
Baseline 0.9 0.896 | 2.175
SCPO 0.9 0.898 | 2.085 | 0.041 | 1.00
Baseline 0.95 | 0.948 | 2.574

GPU SCPO 0.95 | 0.95 | 2.319 | 0.099 | 1.02
SCPO (0.8) | 0.95 | 0.95 | 2.806
SCPO (0.9) | 0.95 | 0.95 | 2.841
SCPO (0.99) | 0.95 | 0.951 | 2.431
Baseline 0.99 | 0.989 | 3.398
SCPO 0.99 | 0.99 | 2.946 | 0.133 | 1.12
Baseline 0.8 0.785 | 1.208
SCPO 0.8 0.786 | 1.146 | 0.051 | 1.00
Baseline 0.9 0.895 | 1.602
SCPO 0.9 0.889 | 1.428 | 0.109 | 1.00
Baseline 0.95 | 0.949 | 1.984

Super SCPO 0.95 | 0.95 | 1.62 | 0.183 | 1.02
SCPO (0.8) | 0.95 | 0.946 | 2.297
SCPO (0.9) | 0.95 | 0.948 | 1.69
SCPO (0.99) | 0.95 | 0.946 | 1.659
Baseline 0.99 | 0.991 | 2.901
SCPO 0.99 | 0.989 | 1.951 | 0.327 | 1.10

Table 5: Results for different data sets. SCPO refers to ICP based on SCPO. SCPO(c)
refers to optimizing the parameters for confidence level c.

Ch is the change

ratio between inefficiency for SCPO against baseline ICP; ie Ch = 1 - In-
eff(SCPO) /Ineff(Baseline).

12



Frequency
50 100 180
Frequency
150 250

0 50

T T T T T T 1 T T T ]
0 2 4 ] 8 10 12 2 4 ] 8

Prediction interval width Prediction interval width

Figure 3: Histograms of predictive inefficiency (interval widths) for p = 1 (left) and p = 2
(right) in Equation (6).

risk models when the aggregate measure is important, whilst the latter may be practical for
delivery to customers where each individual valuation is important. It also suggests that
other loss functions for inefficiency are worth exploring.

4. Conclusion

We have shown how an optimization problem, SCPO, can be defined to minimize predictive
inefficiency at approximately a fixed accuracy and hence emulate the operation of the ICP
for regression to estimate an optimal NCM. When used in ICP, this NCM leads to more
efficient predictions compared to the baseline ICP with the usual normalized NCM (3) with
two separate models for numerator and denominator of the normalized NCM for several
example data sets. For the two data sets when SCPO does not improve the predictive
efficiency, it is never substantially worse with a difference of no more than 1.1% increase in
mean width of prediction intervals.

The gradient descent algorithm that has been employed is rather crude (eg with a fixed
small learning rate) which could prompt further research to improve the optimization of the
NCM to improve computational efficiency. Also, in this initial study, a simple linear model
is used to express m and d, but the method could be extended to other model structures
that use gradient descent, such as artificial neural networks. This will also be a further
direction for research of this method.
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