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Abstract

Topology applied to real world data using per-
sistent homology has started to find applica-
tions within machine learning, including deep
learning. We present a differentiable topol-
ogy layer that computes persistent homology
based on level set filtrations and edge-based
filtrations. We present three novel applica-
tions: the topological layer can (i) regularize
data reconstruction or the weights of machine
learning models, (ii) construct a loss on the
output of a deep generative network to incor-
porate topological priors, and (iii) perform
topological adversarial attacks on deep net-
works trained with persistence features. The
code1 is publicly available and we hope its
availability will facilitate the use of persistent
homology in deep learning and other gradient
based applications.

1 Introduction

Persistent homology, or simply persistence, is a well-
established tool in applied and computational topology.
In a deep learning setting, persistence has mainly been
used as preprocessing to provide topological features
for learning (Seng Pun, Xia, and Xian Lee, 2018; Gi-
ansiracusa, Giansiracusa, and Moon, 2017; Hofer and
al, 2017). There has been work that uses differentiable
properties of persistence to incorporate topological in-
formation in deep learning (Clough et al., 2019; Liu,
Jeng, and Yang, 2016) and regularization (Chen, Ni,
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et al., 2019); however, such work has focused on spe-
cialized applications and specific functions of the per-
sistence diagrams. Another line of work uses applied
topology and persistence for deep learning interpretabil-
ity (Brüel-Gabrielsson and Carlsson, 2018; Gabella et
al., 2019), automating the construction of deep learning
architectures (Carlsson and Brüel-Gabrielsson, 2018),
complexity measures (Guss and Salakhutdinov, 2018;
Rieck et al., 2018), and adversarial attacks (Gebhart
and Schrater, 2017; Gebhart and Schrater, 2019). Per-
sistence fits naturally in geometric problems and has
been applied to a number of geometry processing appli-
cations including shape matching (Carlsson, Zomoro-
dian, et al., 2005), optimal pose-matching (Dey et al.,
2010), shape segmentation (Skraba, Ovsjanikov, et al.,
2010), and surface reconstruction (Brüel-Gabrielsson,
Ganapathi-Subramanian, et al., 2019). In (Brüel-
Gabrielsson, Ganapathi-Subramanian, et al., 2019) gra-
dient descent was successfully applied to persistence-
based optimization. In this work, we consider how
gradient descent through persistence may be used more
broadly and flexibly than in the specialized applica-
tions cited above. As we will see, persistent homology
is easily tailored to incorporate topological priors into
a variety of machine learning problems.

In many deep learning settings there is a natural topo-
logical perspective, including images and for 3D data
such as point clouds or voxel spaces. In fact, many of
the failure cases of generative models are topological
in nature (Wu et al., 2016; Goodfellow, Pouget-Abadie,
et al., 2014). We show how topological priors can
be used to improve such models. It has been specu-
lated (Brüel-Gabrielsson and Carlsson, 2018; Carlsson
and Brüel-Gabrielsson, 2018) that models that rely on
topological features might have desirable properties
besides test accuracy; one such property has been ro-
bustness against adversarial attacks (Chakraborty et
al., 2018). However, to our knowledge, no such attacks
have been conducted. With our layer, such attacks are
easy to implement, and we provide illustrative exam-
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ples. As a language for describing global properties
of data, topology is also useful in exploring properties
of generalization. There are some natural measures
of topological simplicity (akin to norm regularization)
and we show how these can successfully be used to reg-
ularize the parameters or weights of machine learning
models. Our contributions include: (i) an easy-to-use
persistence layer for level set filtrations and edge-based
filtrations, (ii) the first regularization using persistence
directly on the weights of machine learning models,
(iii) the first incorporation of topological priors in deep
generative networks in image and 3D data settings, and
(iv) the first topological adversarial attacks.

2 Topological Preliminaries

This section contains a review of the relevant topologi-
cal notions, including persistent homology (persistence),
providing an intuitive idea with some additional details
provided in the supplementary material. For readers
who are unfamiliar with persistence, we refer the reader
to a number of excellent introductions and surveys
which are available (Edelsbrunner and Harer, 2010)
and (Poulenard, Skraba, and Ovsjanikov, 2018; Brüel-
Gabrielsson, Ganapathi-Subramanian, et al., 2019) for
related work on optimizing over persistence diagrams.

Topological spaces can generally be encoded using cell
complexes, which consist of k-dimensional balls, or
cells, (k = 0, 1, 2, . . . ), and boundary maps from cells
in dimension k to cells in dimension k − 1. Practically,
it is convenient to work with simplicial complexes, in
which k-dimensional cells are k-dimensional simplices,
because boundary maps are determined automatically,
but we will continue this section by discussing more
general cell complexes. We will assume that the com-
plexes are finite which ensures various technical con-
ditions necessary for persistence (Edelsbrunner and
Harer, 2010).

Homology is an algebraic invariant of a topological
space, associating a vector space Hk to the kth dimen-
sion of a cell complex X . Homology is computed by
forming a chain complex of X , consisting of vector
spaces Ck(X ) which are freely generated by the k-cells
of X , and boundary maps ∂k : Ck(X ) → Ck−1(X )
which satisfy ∂k−1 ◦ ∂k = 0. In the case of dimension
0, ∂0 = 0. As a notational convenience, we will use
the same symbol for a k-cell σ ∈ X and the associated
basis vector σ ∈ Ck(X ). The vector spaces Ck(X ) may
be over any field, but for the purposes of determining
kernels and images of maps exactly finite fields are
preferred – in practice we use the finite field with two
elements, Z/2Z. Homology in dimension k is defined
as the quotient vector space

Hk(X ) = ker ∂k/ im ∂k+1

An element of Hk(X ) is called a homology (equiva-
lence) class, and a choice of representative for a class is
called a generator. The dimension of Hk(X ) counts the
number of k-dimensional features of X . For example,
dimH0(X ) counts the number of connected compo-
nents, dimH1(X ) counts the number of holes, and so
on. Homology is homotopy invariant, meaning that
continuous deformations of X produce the same result.

Persistent homology studies how homology changes
over an increasing sequence of complexes X0 ⊆ X1 ⊆
· · · ⊆ Xn = X , also called a filtration on X . We
consider sublevel set filtrations of a function f : X → R.
The filtration is defined by increasing the parameter
α, with Xα = f−1(−∞, α], and the only requirement
is that Xα be a valid cell complex, meaning if a cell
is in Xα, its boundary must also be in Xα. We first
consider a filtration where cells have a strict ordering,
meaning they are added one at a time. The addition
of a k-dimensional cell σ at parameter i can have two
outcomes. First, if ∂kσ is already in im ∂k (meaning
∂kσ = ∂kw for some w ∈ Ck(Xi \ σ)), then w − σ ∈
ker ∂k. Since the kernel expands by one dimension,
the quotient Hk = ker ∂k/ im ∂k+1 expands by one
dimension, and w − σ generates the new homology
class. The second possibility is that ∂kσ is not already
in im ∂k, which means im ∂k expands by one dimension.
Because ∂k−1 ◦ ∂k = 0, ∂kσ ∈ ker ∂k−1, and previously
generated a homology class. Thus, the quotientHk−1 =
ker ∂k−1/ im ∂k will have one fewer dimension, and ∂kσ
is a generator for the removed class. In summary,
every cell in the filtration either creates or destroys
homology when it appears. The full information about
how homology is born and dies over the filtration can
be represented as a multi-set of pairs (b, d) where b
is the birth parameter of a homology class, and d is
the death parameter of that class (d =∞ if it is still
present in X ). This multiset of pairs for homology in
dimension k is known as the k-dimensional persistence
diagram of the filtration, PDk(Xα) = {(bi, di)}i∈Ik ,
or the k-dimensional barcode of Xα. As a notational
convenience, we will order the indexing of points by
decreasing lifetimes i.e. di − bi ≥ dj − bj for i < j.

As persistence diagrams are a collection of points in R2,
there are many notions of distances between diagrams
and cost functions on diagrams which depend on the
points. We use loss functions that can be expressed in
terms of three parameters

E(p, q, i0; PDk) =

|Ik|∑
i=i0

|di − bi|p(di+bi2 )q (1)

The parameters p and q define a polynomial function,
following those introduced in (Adcock, Carlsson, and
Carlsson, 2016). We sum over lifetimes beginning with
the i0 most persistent point in the diagram. Varying
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i0 for PDk varies the number of k-dimensional fea-
tures that are not penalized. For example, if i0 = 2,
with PD0 we consider all but the most persistent class,
promoting a one connected component. Alternatively,
using i0 = 2 with PD1 will promote one hole. The
parameter p can be increased to more strongly penal-
ize the most persistent features, and the parameter q
serves to weight features that are prominent later in
the filtration. We also use the Wasserstein distance
between diagrams – this is defined as the optimal trans-
port distance between the points of the two diagrams.
One technicality is that the two diagrams may have dif-
ferent cardinalities, and points may be mapped to the
diagonal – see the supplementary material for details.

Differentiation: Given an input filtration f : X →
R, we can compute the gradient of a functional of a
persistence diagram E(PDk). The key is to note that
each birth-death pair can be mapped to the cells that
respectively created and destroyed the homology class,
defining an inverse map

πf (k) : {bi, di}i∈Ik → (σ, τ). (2)

In the case where the ordering on cells is strict, as we
previously discussed, the map is unique, and we obtain

∂E
∂σ

=
∑
i∈Ik

∂E
∂bi

Iπf (k)(bi)=σ +
∑
i∈Ik

∂E
∂di

Iπf (k)(di)=σ (3)

in which at most one term will have a non-zero indi-
cator. As we will see, many filtrations do not give rise
to a strict ordering, because multiple cells can appear
at the same parameter value in the filtration. While
the persistence diagram is still well-defined, the inverse
map 2 may no longer be unique. This can be resolved
by extending the total order to a strict order either de-
terministically or randomly – see (Skraba, Thoppe, and
Yogeshwaran, 2017) for a formal proof and description
of how this can be done. As a result, ∂E/∂σ should
generally be considered as a subgradient, and a choice
of strict ordering selects an element in the subgradient.

Filtrations: While general filtrations could be consid-
ered for optimization, we will focus on two different
kinds of filtrations that are defined by either points or
edges in a complex. For simplicity, we now use simpli-
cial complexes, where each cell is a simplex (v0, . . . , vk),
where each (vj) is a 0-cell (point). We will use the sub-
script notation σi to denote the i-skeleton of a simplex,
which consists of the i-dimensional faces. For instance
σ0 = {(vj) | vj ∈ (v0, . . . , vk) = σ}, and σ1 consists of
all
(
k
2

)
pairs of 0-cells.

First, we consider extensions of filtrations on 0-
cells, also known as lower-star filtrations. In par-
ticular for sublevel set filtrations, f((v0, . . . , vk)) =
maxi=0,...,k f((vi)). This construction is useful for

Figure 1: weak Alpha filtrations. Top center: points
sampled uniformly from the unit square, Top left: Op-
timizing to increase E(2, 0, 2; PD0), Top right: Optimiz-
ing to decrease E(2, 0, 2; PD0). Bottom Left: Optimiz-
ing to increase E(2, 0, 1; PD1), Bottom Right: optimiz-
ing to decrease E(2, 0, 1; PD1), Bottom center: optimiz-
ing to increase E(2, 1, 1; PD1), decrease E(2, 0, 2; PD0)

Figure 2: Rips filtrations. (a) points sampled from
a chair (b) optimized to decrease E(1, 0, 2; PD0), (c)
increase E(1, 0, 2; PD0).

building filtrations on images, where we take X to
be a triangulation of a rectangle with 0-cells defined
by the grid of pixels on the image, and f((vi)) is the
intensity of a color channel at the pixel (vi).

The second kind of filtration that we consider extends
a filtration on the edges of a complex, also called a flag
filtration. For sublevel set filtrations, this has the form
f((v0, . . . , vk)) = maxi<j∈0,...,k f((vi, vj)) One example
of this is based on pairwise distances of points. The
Vietoris-Rips, or Rips, filtration, Rα, is the distance-
based flag filtration on the clique complex, consisting
of all 2n possible simplices on the vertex set. Even
when limiting the space to simplices below a certain
dimension, the Rips filtration can become too large to
compute with efficiently. A more tractable complex
in low dimensional euclidean space uses the Delaunay
triangulation of a point cloud as the underlying space.
We refer to the distance-based flag filtration on this
space as the weak Alpha filtration.

Computation: We have implemented a PyTorch
(Paszke et al., 2017) extension that performs the de-
scribed differentiation through persistence diagrams,
supporting several standard algorithms written in C++.
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Figure 3: (a) A noisy image of the digit ‘2’. (b) after
promoting a single local maximum using E(1, 0, 2; PD0).

Penalty L1 L2 TV
Def. ‖β‖1 ‖β‖2 ‖∇β‖1

Penalty TV2 Top1 Top2
Def. ‖∇β‖2 E(1, 0, 2; PD0) E(1, 0, 4; PD0)

Figure 4: Abbreviation for penalties used for regular-
ization of least squares problems.

Figure 5: MSE of β̂ obtained using several regular-
ization schemes as size of training set increases. Left:
entries of β∗ are drawn i.i.d. from {−1, 0, 1}. Right:
entries of β∗ are drawn i.i.d. from {1, 2, 3}.

The actual method used to compute persistent homol-
ogy is largely irrelevant for our purposes, as long as we
are able to map points in the persistence diagram back
to filtration values of individual cells. While our imple-
mentation does not rely on external topology libraries,
many existing packages could potentially be used or
modified to provide the required information. The orig-
inal persistence algorithm (Zomorodian and Carlsson,
2005) as well as the cohomology algorithm (deSilva,
Morozov, and Vejdemo-Johansson, 2011) are based on
putting the boundary matrices ∂k in a form which re-
veals the birth-death pairs. The worst case complexity
is known to be equivalent to matrix multiplication in
the number of simplices (Milosavljević, Morozov, and
Skraba, 2011), although sparsity of ∂k typically renders
this bound pessimistic. There are many approaches to
speeding up calculations in practice (Otter et al., 2017),
and if only zero-dimensional homology is of interest,
then the union-find algorithm (Cormen et al., 2009)
typically performs faster. The dependence of number

of simplices on the number of points n depends on the
construction. For example, the Alpha complex may
have O(nd/2) simplices where d is the ambient dimen-
sion (Edelsbrunner, 2010), whereas the Rips complex
may have as many as O(nk+1) simplices where k is the
maximal dimension homology we consider. However,
in practice, the resulting complexes are approximately
linear in n for small d and k. We note that many
improvements to the persistence algorithm have been
made with the goal of tackling larger spaces. In con-
trast, we seek to compute persistence using different
filtrations on the same small- to medium-sized space
rapidly, which may find different optimizations ben-
eficial, although these considerations are beyond the
scope of this work.

3 Applications

3.1 Topological Noise Reduction and
Regularization

We first demonstrate how functions of persistence di-
agrams can be effectively used for both optimization
of the placement of points, and optimization of func-
tions on a space. We show how one can encourage the
formation of lines, clusters, or holes in a set of points
using geometric filtrations. We then show how level set
filtrations can be used effectively for regularization of
parameters in a model by penalizing the number num-
ber of local maxima in the parameter topology. While
we see there is some benefit to regularization using
an appropriate topological penalty, we do not claim
superiority to other regularization schemes. Instead we
wish to draw attention to the flexibility of topological
penalties in both the point cloud and image settings.

In Section 1, we reviewed several applications which
use specific topological loss functions. There are many
possible losses which may be considered, and here we
demonstrate some behaviors that can be promoted us-
ing persistence. In Figure 1, we see how a set of 100
random points in the unit square can be moved into
different configurations by taking gradients of different
functions of weak Alpha persistence diagrams. In Fig-
ure 2 we see how points that are sampled from a 3D
chair can be moved around using similar functions of
Rips persistence diagrams. An analysis of the optimal-
ity of one choice over another in any given situation is
beyond the scope of this work. We primarily wish to
draw attention to the wide variety of behaviors that
can be encouraged by varying the choice of function.

Direct optimization on the filtration is not limited to
geometric complexes. In Figure 3, we optimize func-
tions on a space. As we will see in Section 3.2, limiting
the number of local maxima in an image can improve
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Figure 6: Left to right: Sawtooth β∗. MSE of linear prediction using β̂ obtained from several regularization
schemes as size of training set increases. Boxcar β∗. MSE of linear prediction using β̂ obtained from same
regularization schemes as size of training set increases.

Figure 7: Left: Original image with pixel values in
[0, 1]. Data is generated with n/p = 0.5, with i.i.d.
Gaussian noise. Center: ordinary least squares solution.
Right: least squares solution with topological penalty
E(1, 0, 2; PD0) + E(1, 0, 2; PD1).

the visual quality of generated digits. In this example,
we perform optimization directly on the superlevel sets
of a noisy image to produce a single global maximum.

While these examples are illustrative, we wish to see
how we can use topology directly in a machine learning
model for the purposes of regularization, or encoding a
prior on some topological structure.

Regularization is used throughout machine learning to
prevent over-fitting, or to solve ill-posed problems. In
a typical problem, we observe data {Xi} and responses
{yi}, and would like to fit a predictive model with
parameters β̂ that will allow us to make a prediction
ŷi = f(β̂;Xi) for each observation. The quality of
the model is assessed by a loss function `, such as
the mean squared error. However, many models are
prone to over-fitting or are ill-posed if there are more
unknown parameters than observations, and adding
a regularization term P (β) can be beneficial. The
estimated value of β̂ for the model becomes

β̂ = argmin
β

n∑
i=1

`
(
yi, f(β;Xi)

)
+ λP (β) (4)

where λ is a free tuning parameter.

Well-known examples of regularization include L1 reg-
ularization P (β) = ‖β‖1 (Lasso) (Tibshirani, 1996),

which promotes sparsity, or L2 regularization P (β) =
‖β‖2 (Ridge regression) (Hoerl and Kennard, 1970)
which tends to keep parameters from growing exces-
sively large. Both of these types of regularization can
be viewed as making the topological statement that
parameter weights should “cluster” around zero, and
a similar topological penalty might simply encourage
the set of all weights to form clusters by penalizing
the sum of lengths of PD0 from a Rips or weak Alpha
filtration on the weights.

Another class of well-known regularization schemes
make an assumption about the topology of the set of
parameters themselves, and penalize properties of the
weights as a function on that space. Examples include
penalties on a norm of a finite-difference derivative,
such as total variation regularization P (β) = ‖∇β‖1
(Rudin, Osher, and Fatemi, 1992), or penalties on the
ordering of weights as seen in isotonic regression and its
variants (Tibshirani, Hoefling, and Tibshirani, 2011).
From the topological point of view, these regularization
schemes encourage β to have fewer local maxima and
minima, which might be accomplished by penalizing
the sum of lengths of PD0 from a level set filtration.

In Figures 5 and 6, we compare different regularization
schemes for several different linear regression problems.
Examples are generated according to yi = Xiβ∗ + εi,
with Xi ∼ N(0, I), and εi ∼ N(0, 0.05). β∗ is a feature
vector with p = 100 features, and an estimate β̂ is made
from n samples by solving Equation 4 with the mean-
squared error loss `

(
yi, f(β;Xi)

)
= (yi −Xiβ)2 using

different penalties, and λ is chosen from a logarith-
mically spaced grid on [10−4, 101] via cross-validation
for each penalty. We track the mean-squared predic-
tion error for the estimate β̂ as the number of samples
is increased. We also compare to the ordinary least-
squares solution, using the smallest 2-norm solution if
the problems is under-determined (n < p).

In Figure 5, β∗ are chosen uniformly at random from
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Figure 8: Top: Setup for computing topology loss and backpropogation. (a) Baseline-Generator. (b) Minimize
the topology loss with respect to the latent space of Baseline-Generator. (c) Topology-Generator. (d) Train
Baseline-Generator with topology-discriminator for 100 batch iterations. (e) Train Baseline-Generator in original
GAN-setup for another 60,000 batch iterations.

Figure 9: Linear interpolation in latent space. Top row:
Topology-Generator. Bottom row: Baseline-Generator.

three different values. On the left, those values are
{−1, 0, 1}, and on the right, {1, 2, 3}. We consider L1

and L2 penalties, as well as two topological penalties us-
ing a weak-alpha filtration. The first is E(1, 0, 2; PD0),
and the second is E(1, 0, 4; PD0). Both topological
penalties are non-negative, and the first penalty is non-
zero if β takes more than a single value, and the second
penalty is non-zero if β takes more than three distinct
values, explicitly encoding that we expect three clus-
ters. In the case where β∗ takes values in {−1, 0, 1},
the L1 and L2 penalties slightly outperform ordinary
least squares, because while β∗ is not truly sparse, some
shrinkage seems beneficial. In the case where β∗ takes
values in {1, 2, 3}, L1 and L2 clearly bias the estimate
in an ineffective way and fail to outperform ordinary
least squares. In contrast, the two topological penalties
clearly do better in both cases.

In Figure 6, the features in β∗ are chosen to have
three local maxima when the features are given the line
topology. On the left, β∗ consists of three piecewise-
linear sawteeth, and on the right, β∗ consists of three
piecewise-constant boxcars. The total variation penalty
P (β) =

∑p
i=1 |βi+1− βi| and a smooth variant P (β) =

(
∑p
i=1 |βi+1 − βi|2)1/2 are considered, as well as two

topological penalties. The parameters of the topological
penalties are identical to the previous example, but the
penalties are now imposed on superlevel set diagrams
of β in order to penalize the number of local maxima

in β instead of the number of distinct values. In the
boxcar problem, total variation regularization does very
well, as it encourages piece-wise linear functions, and
the two topological penalties perform similarly. In
the sawtooth problem, total variation does not do as
well because β∗ is no longer piece-wise constant, and
interestingly the first topological penalty is similarly
not as effective, while the second topological penalty
performs well in both examples.

Finally, Figure 7 shows a linear regression problem on
a 2D image. The topological penalty incorporated in-
formation from PD1 as well as PD0 to promote a single
maximum and a single hole. For visual comparison, we
also show the resulting ordinary least squares image.

These examples demonstrate how topological informa-
tion can be incorporated effectively to add regular-
ization or incorporate prior knowledge into problems.
Furthermore, they demonstrate how topological infor-
mation can be directly encoded, such as penalties on
the number of clusters or number of maxima of a func-
tion, in a natural way that is difficult to accomplish
with more traditional schemes.

3.2 Incorporating Topological Priors in
Generative Models

We now use the same topological priors to improve
the quality of a deep generative neural network. We
start with a Baseline-Generator, pre-trained in a GAN-
setup on MNIST, and by training it for a few itera-
tions with a topological loss, we arrive at an improved
Topology-Generator. We provide comparisons with
other methods applied to the Baseline-Generator.
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Generator Evaluation
Model MMD-L2 COV-L2 MMD-Wass COV-Wass Inception
Baseline-Generator (Images) 28.0±0.1 0.05±0.006 1.56±0.08 0.11±0.01 4.6±0.1
Topology-Generator (Images) 27.5±0.1 0.06±0.002 1.52±0.07 0.12±0.01 5.1±0.1
Baseline-Generator (3D Voxels) 33.7±0.8 0.10±0.01 4.3±1.4 0.65±0.03 N/A
Topology-Generator (3D Voxels) 34.1±0.8 0.11±0.02 2.4±0.8 0.65±0.03 N/A

Figure 10: Metrics for generator evaluation.

Figure 11: For each pair: (Left) before training with
topology loss, (Right) after training with topology loss
for 20 batch iterations.

A GAN as in (Goodfellow, Pouget-Abadie, et al., 2014)
is trained on MNIST for 32,000 batch iterations with a
batch size of 64 (this batch size is used throughout this
section). The resulting generator (Baseline-Generator)
produces reasonable output but with topological noise,
see Figure 8(a). The prior used to improve the Baseline-
Generator is identical with that of Figure 3: images
should have 1 component in a superlevel set filtration.
The loss function (topology loss) is E(1, 0, 2; PD0) .
The setup (Figure 8) is used to backpropagate to the
latent space of Baseline-Generator, with the generator
weights fixed, to minimize the topology loss using SGD;
seen Figure 8(b) for results. ALternatively, using the
same setup, the Baseline-Generator’s weights are up-
dated to minimize the topology loss; we train for 50
batch iterations to arrive at a new generator (Topology-
Generator). The output can be seen in Figure 8(c).

For further qualitative comparisons, we train the
Baseline-Generator for 100 batch iterations with a
discriminator between features of the 0-dim persis-
tence on MNIST images and the generator’s out-
put. The features were sums of lengths of the k
longest PD0 features for several choices of k, expressed
as E(1, 0, 2; PD0) − E(1, 0, 3; PD0), E(1, 0, 2; PD0) −
E(1, 0, 4; PD0), E(1, 0, 2; PD0) − E(1, 0, 5; PD0), and
E(1, 0, 2; PD0)−E(1, 0, 11; PD0), with the results shown
in Figure 8 (d). The output of a generator arrived at by
training the Baseline-Generator in the original GAN-
setup for another 60,000 batch iterations is shown in
Figure 8 (e). Evidently, the topology loss allows the
generator to learn in only 50 batch iterations to pro-
duce images with a single connected component and
the difference is visually significant. These results are
similar to using a PD0-aware discriminator, suggesting
that our priors were valid. Updating only the latent
space produces cleaner images but they still contain

some topological noise. For a closer study, consider the
linear interpolation in the latent space of the Baseline-
Generator and Topology-Generator in Figure 9. The
two different cases behave very differently with respect
to the topology. The Baseline-Generator interpolates
by letting a disconnected components appear and grow.
The Topology-Generator tries to interpolate by deform-
ing the number without creating disconnected compo-
nents. This might be most obvious in the interpolation
from “1” to “4” (Figure 9, right hand side) where the
appended structure of the “4” appears as a disconnected
component in the baseline but grows out continuously
from the “1” in the topology-aware case.

We also quantitatively compare the Baseline-Generator
and Topology-Generator to further investigate if any
improvements have been made. We use the Minimal
Matching Distance (MMD) and Coverage metric as
advocated by (Achlioptas et al., 2018) as well as the
Inception score (Salimans et al., 2016) (a convolutional
neural network with 99% test accuracy on MNIST was
used instead of the Inception model). MMD-Wass and
COV-Wass use the same procedure as MMD-L2 and
COV-L2 but instead of the L2 distance between images,
the 1-Wasserstein distance between the 0-dim persis-
tence diagrams of the images was used (see Section 2).
As seen in Table 10, the Topology-Generator shows
improvements for all of these metrics. The results are
the average of 5 computations of each metric, with test
set sizes of 1,000 for L2 and Inception, and test sets
sizes of 100 for Wasserstein distance.

We extend this superlevel set filtration to 3D data in
the form of voxel grids. As before, a baseline generator
is obtained by training a GAN to generate voxel shapes
(chairs only) as in (Wu et al., 2016) and its output
after 1,000 epochs (or 333,000 batch iterations) can be
seen in Figure 11 as the left hand members in each of
the two pairs. The result of training with the topology
loss (same as for images) for 20 batch iterations can be
seen in Figure 11 as the right hand members in each of
the two pairs. We compare some metrics in Table 10;
we show the average of 5 computations of each metric,
with test set sizes of 100. Note that every voxel chair
in the ground truth dataset has identical PD0, since
each chair consists of a connected component of voxels
of value 1, among voxels of value 0.
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Figure 12: Topological adversarial attack on TopModel, MLPModel and CNNModel. The (i, j)-th cell represents
an attack on an image with label i to be classified as label j. Red outlines are successful attacks.

Figure 13: Example of Topological adversarial attack.
(Left) original image, (Right) image optimized to be
classified as an 8, which introduced two 1 pixel holes.

3.3 Topological Adversarial Attacks

Our topological layer may also be placed at the begin-
ning of a deep network to generate features directly on
the data. We can use the fact that our input layer is dif-
ferentiable to perform adversarial attacks, by backprop-
agating from the predictions back to the input image.
To the best of our knowledge, these are the first ad-
versarial attacks conducted using persistence features.
Since standard super-level set persistence is insufficient
to classify MNIST digits, we include orientation infor-
mation by computing the persistence homology during
8 directional sweeps. This is achieved by using the
product of the image with fixed functions such as x, y,
x+y
2 , . . . etc., where x and y are the image coordinates,

as the filtration value, for each of 8 different directions,
E(p, q, 1; PDk) for p and q ranging between 0 and 4
resulting in 400 features for training the classification
model. The model trained to classify the digits based
on these topological features achieved 80-85 % accu-
racy. Next we performed gradient attack (Goodfellow,
Shlens, and Szegedy, 2015) to change the classification
of the digit to another target class. We observe that
it is harder to train adversarial images compared to
CNNs and MLPs. The results are shown in Figure 12.
A red outline indicates that the attack was successful.
When the attack was conducted on 1,000 images, to
retarget to a random class, it had 100% success rate on

MLP and CNN models and 25.2% success rate on the
TopModel. When the adversarial attacks succeed, the
results may offer insight on how the model classifies
each digit. For example in Figure 13, the left image is
the original image of the digit 4, the right was trained
to be classified as an 8; note that two small holes at
the top and bottom were sufficient to misclassify the
digit. Several examples of the topological attacks pro-
vide similar intuition. Attacks on MLP and CNN are
qualitatively different, but further work is needed to
gauge the extent and utility of such distinctions.

4 Discussion

We present three novel applications using a differen-
tiable topology layer which can be used to promote
topological structure in Euclidean data, images, the
weights of machine learning models, and to compare
adversarial attacks. This only scratches the surface
of the possible directions leveraging the differentiable
properties of persistence. Without doubt such work
will tackle problems beyond those we have presented
here, including encouraging topological structure in in-
termediate activations of deep neural networks or using
the layer in the middle of deep networks to extract
persistence features where they may be more useful.
However, many of the applications we have presented
here also deserve further focus. For example, topo-
logical regularization, including the penalties we have
presented, may have interesting theoretical properties,
or closed form solutions. Furthermore, training autoen-
coders with distances between persistence features may
produce stronger results than the functions considered
here. Finally, it might prove useful to use topological
features to train deep networks that are more robust
to adversarial attacks – however, as we show this will
require additional work. Topology, in contrast to lo-
cal geometry, is generally underexploited in machine
learning, but changing this could benefit the discipline.
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