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Abstract— We present a formal framework that combines
high-level representation and causality-based reasoning with
low-level geometric reasoning and motion planning. The frame-
work features bilateral interaction between task and motion
planning, and embeds geometric reasoning in causal reasoning,
thanks to several advantages inherited from its underlying
components. In particular, our choice of using a causality-based
high-level formalism for describing action domains allows us
to represent ramifications and state/transition constraints, and
embed in such formal domain descriptions externally defined
functions implemented in some programming language (e.g.,
C++). Moreover, given such a domain description, the causal
reasoner based on this formalism (i.e., the Causal Calculator)
allows us to compute optimal solutions (e.g., shortest plans)
for elaborate planning/prediction problems with temporal con-
straints. Utilizing these features of high-level representation and
reasoning, we can combine causal reasoning, motion planning
and geometric planning to find feasible kinematic solutions to
task-level problems. In our framework, the causal reasoner
guides the motion planner by finding an optimal task-plan;
if there is no feasible kinematic solution for that task-plan then
the motion planner guides the causal reasoner by modifying the
planning problem with new temporal constraints. Furthermore,
while computing a task-plan, the causal reasoner takes into
account geometric models and kinematic relations by means
of external predicates implemented for geometric reasoning
(e.g., to check some collisions); in that sense the geometric
reasoner guides the causal reasoner to find feasible kinematic
solutions. We illustrate an application of this framework to
robotic manipulation, with two pantograph robots on a complex
assembly task that requires concurrent execution of actions. A
short video of this application accompanies the paper.

I. INTRODUCTION

Manipulation planning aims automatic generation of robot
motion sequences for manipulation of movable objects
among obstacles to achieve a desired goal configuration.
These problems involve objects that can only move when
picked up by robots and the order of pick-and-place op-
erations for manipulation may matter to obtain a feasible
kinematic solution [15]. Therefore, geometric reasoning and
motion planning alone are not sufficient to solve them; and
planning of actions such as the pick-and-place operations
need to be integrated with the motion planning problem.

The state-of-the-art motion planning systems have been
extended to handle some manipulation planning problems
[14], [1] based on the idea of viewing the configuration space
as consisting of regions connected by lower-dimensional
submanifolds, such as transit and transfer manifolds. How-
ever, such manipulation planners are domain-specific and

cannot handle action planning in a generic manner: each one
addresses a specific sort of manipulation planning problems
without making use of task planning. As a result, there has
been a growing interest in hybrid manipulation planning ap-
proaches that utilize both task planning and motion planning.
The traditional approaches to hybrid manipulation planning
have been top-down, separating high-level task planning
from lower-level motion planning. In these approaches, task
planning is simplified by ignoring low-level (geometric)
details; however, due to such an abstraction, the resulting
plans may be inefficient/infeasible.

Recently, more elaborate approaches have been proposed
to integrate task and motion planning more tightly at the
search level. For instance, [8], [10], [12], [18], [19] take
advantage of a forward-search task planner to incrementally
build a task plan, while checking its kinematic/geometric fea-
sibility at each step by a motion planner; all these approaches
use different methods to utilize the information from the task-
level to guide and narrow the search in the configuration
space. By this way, the task planner helps focus the search
process during motion planning. However, each one of these
approaches presents a specialized combination of task and
motion planning at the search level, and do not consider a
general interface between task and motion planning.

With this motivation, [3], [5] introduce an alternative
approach to integrating task and motion planning by con-
sidering a general interface between them, using “external
predicates/functions” whose values for ground instances are
computed by an external mechanism, e.g., by a C++ program.
The concept of external predicates/functions is not new; they
have existed as undocumented features of the planner TLPlan
[2] and the Causal Calculator (CCALC) [17]. The idea in
[3], [5] is to use external predicates/functions in the action
domain description, for checking the feasibility of a primitive
action by a motion planner. [3] applies this approach in the
action description language C+ [7] using CCALC, while [5]
extends the planning domain description language PDDL
[6] to support external predicates/functions (called semantic
attachments) and modifies the planner FF [11] accordingly.

Our contribution is an alternative approach for integrating
task and motion planners that combines various advantages
of some of the related approaches discussed above with some
other advantages inherited from the high-level causality-
based representation and reasoning formal framework we
use in our studies. As in [3], [5], we also consider a



general interface between high-level causal reasoning and
low-level geometric reasoning and motion planning, using
external predicates/functions, but in a more flexible way.
The first novelty of our approach is the flexible use of
external predicates/functions for feasibility checks: Instead of
delegating all sorts of feasibility checks to external predicates
as in [3], [5], we can decide which sorts of feasibility check
should be done by external predicates as part of high-level
reasoning, and which sorts of feasibility checks should be
done by motion planning later on. For instance, external
predicates can check only collisions of robots with each other
and with other objects (so they do not check, for instance,
collisions of objects with each other), and they can be used
in action domain description to specify conditional effects
of these robots’ actions. By this way, geometric reasoning is
“embedded” in high-level representation: while computing a
task-plan, the causal reasoner takes into account geometric
models and kinematic relations by means of external pred-
icates implemented for geometric reasoning. In that sense,
the geometric reasoner guides the causal reasoner to find
feasible kinematic solutions. Such a flexibility may be useful
if gathering all sorts of feasibility checks in one external
predicate/function is computationally disadvantageous, or
if checking feasibility in a modular way (using different
mechanisms/algorithms/solvers) is preferred.

Since we do not delegate all the feasibility checks to
external predicates/functions, in addition to the bilateral
interactions between task and motion planing as discussed
above (i.e., task plans guide search in motion planning,
motion planners check feasibility of task plans and thus affect
search of task planners), we need to find tighter interactions
between task and motion planning to handle all feasibility
checks for a guaranteed-feasible kinematic solution. This
requirement brings out the second novelty of our approach
— another interaction between causal reasoning and motion
planning: when a motion planning failure occurs due to some
infeasibility not captured by geometric reasoning handled by
external predicates/functions, the description of the planning
problem is modified taking into account some domain-
specific information from motion-level (e.g., the causes of
infeasibilities), and the causal reasoner is asked to solve
a more “relevant” planning problem. Therefore, instead of
guiding the task planner at the search level by manipulating
its search algorithm directly, the motion planner guides the
task planner at the representation level by presenting to it
the “right” planning problem.

Compared with the recent efforts for integration of task
and motion planning at the search level, bringing (a certain
amount of) geometric/kinematic details to the representation
level allows one to utilize different formulations (declarative
or procedural) and reasoning systems. Other novelties of our
approach are of this sort: they are inherited from the high-
level causality-based representation and reasoning formalism
(action language C+) and its automated reasoner (CCALC)
we use in our studies. Due to the expressiveness of the
formalism, we can handle concurrent actions by multiple
agents, nondeterministic effects, multi-valued actions/fluents,
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Fig. 1. The overall system architecture. The components depicted in red
signify the important aspects of our approach.

additive fluents for reasoning about shared resources, state/-
transition constraints, and change that do not involve actions
(e.g., ramifications of actions), defaults, etc. Due to the input
language of the causal reasoner, we can use external predi-
cates/functions implemented in some programming language
of the users’ choice, and we can solve modified planning
problems that involve temporal constraints. Due to the search
mechanism of the causal reasoner, we can compute optimal
plans (e.g., in terms of its length or total cost of actions).
Due to modular structure of the causal reasoner, we can
experiment with various search engines, such as (parallel)
SAT solvers, without modifying their algorithms, and thus
inherit advantages of these underlying solvers. Due to the
capabilities of the causal reasoner, our approach substantially
extends the classes of manipulation problems that can be
solved. In particular, we can solve not only planning but
also prediction/postdiction and diagnosis problems.

In the following, instead of describing all these inherited
novelties, we emphasize the tight interactions between causal
reasoning, geometric reasoning, and motion planning.

II. THE OVERALL SYSTEM ARCHITECTURE

Our aim eventually is to compute a complete continuous
trajectory for each robot to reach a common goal in an
optimal way, considering the possibility of concurrent execu-
tions of actions by multiple robots. Such a problem cannot
be solved, in general, by either motion planning (because
the order of actions matter, in particular with picks/drops)
or task planning (because the problem is too large and
detailed). We solve this problem by dividing the problem into
smaller parts and by making use of computational methods
for both sorts of problems in such a way that they guide
each other. The overall architecture of our formal framework



that combines high-level representation and causality-based
reasoning with low-level geometric reasoning and motion
planning is illustrated in Fig. 1.

We start with an action domain description and a planning
problem description in the input language of CCALC, geo-
metric models in VRML, and kinematic relations as a C++
program.

• A description of geometric models include specifica-
tions of the geometry of robots, payloads, and other
objects (e.g., obstacles) in the environment.

• Kinematic relations between robot end-effector config-
urations and robot joint configurations are implemented
as functions in C++.

• An action domain description is a set of “causal laws”
(causality-based formulas) that express preconditions
and direct effects of actions of robots, causal relations
that do not involve these actions directly (e.g., ram-
ifications), and state and transition constraints. These
causal laws may include “external predicates” to ex-
press conditions that involve geometric reasoning. For
instance, a precondition of an action such as “moving
a payload” may be that the robot does not collide with
other robots. Such a collision check involves geometric
reasoning, and can be implemented as a function in
some programming language, say C++, making use of
the given geometric models and kinematic relations.
This function can be included in the causal law ex-
pressing the precondition of “moving a payload” as an
external predicate, so that geometric models are also
taken into account while a task plan is computed.

• A planning problem description is a set of formulas that
express an initial state (or a set of initial states, in case of
uncertainty), goal conditions, and temporal constraints.

Given an action domain description and a planning prob-
lem, first we compute an optimal plan (a sequence of actions)
〈A0, . . . , An〉 and its complete history (including interme-
diate states) 〈S0, A0, S1, . . . , Sn, An, Sn+1〉 using CCALC.
The computed plan may involve concurrent execution of
actions by multiple robots; so each Ai is a set of primitive
actions. The optimality of a plan can be defined in terms of
its length (the value of n) or the total cost of actions; in the
following, we consider the former.

Next, given a discrete plan and its history, and consid-
ering the given geometric models and kinematic relations,
a collision-free trajectory T for each robot (if one exists) is
computed by our motion planner, based on Rapidly exploring
Random Trees (RRT) [16]. Initially T is empty. For each
transition 〈Si, Ai, Si+1〉 in the given history, the motion
planner tries to compute a continuous trajectory Ti. If such
a transition Ti is found then it is appended to the end of T .

If the motion planner fails to find a continuous trajectory
for a transition, we identify the cause of that failure. For
instance, consider the transition 〈Si, Ai, Si+1〉 that describes
“two robots moving a payload from one location to another,
each robot holding from one end-point of the payload”.
Suppose that it is not possible to place the payload at
the destination location because some part of it collides

with some obstacle at state Si+1. Then the motion planner
cannot find a trajectory for this transition. In that case, the
cause of the failure can be characterized by the state Si+1.
Such a failure can be avoided by modifying the planning
problem by adding a constraint that expresses “Si+1 should
not be possible”. Alternatively, such a transition may not
be possible because the payload collides with some obstacle
while moving from one location to another. In that case, the
cause of the failure can be characterized by the state Si and
the action Ai. Such a failure can be avoided by modifying
the planning problem by adding a temporal constraint that
expresses “Ai should not be executed at Si at any time”.
After that, the modified planning problem is solved by
CCALC, generating a different optimal task plan.

It is important to emphasize here two types of relations be-
tween different kinds of problem solving. First, the bilateral
interaction between causality-based reasoning and motion
planning: the causal reasoner guides the motion planner by
finding an optimal task-plan; if there is no feasible kinematic
solution for that task-plan then the motion planner guides the
causal reasoner by modifying the planning problem with new
temporal constraints. Second, the embedding of geometric
reasoning in causal reasoning: while computing a task-plan,
the causal reasoner takes into account geometric models
and kinematic relations by means of external predicates
implemented for geometric reasoning (e.g., to check some
collisions); in that sense the geometric reasoner guides the
causal reasoner to find feasible kinematic solutions. In the
following, we illustrate these two aspects of our approach in
more detail with an example.

III. EXAMPLE: TWO ROBOTS AND MULTIPLE PAYLOADS

Consider two robots and multiple payloads on a platform.
The payloads can be manipulated by the end effectors of
the robots. In particular, the end-effector of each robot can
pick (hold and elevate) or drop (release) the payload at one
of its end points. None of the robots can carry the payload
alone; they have to pick the payload at both ends. Since
the payload is elevated from the platform when the robots
are holding it, the payload can not collide with the other
payloads. However, collisions between payloads may occur
if a payload is dropped on top of another one and such
collisions are not permitted. Similarly, other types collisions
(robot-robot, payload-obstacle and robot-obstacle) are not
permitted either.

Initially, a configuration of the payloads on the platform
is given (e.g., as in Fig. 2(a)). The goal is to reconfigure
the payloads in an optimal manner (by minimum number
of steps). This problem requires payloads to be picked and
placed a number of times before they can be positioned
into their final configuration. Due to the constraint that a
payload can be carried by two robots only and due to the
optimality of the plan, this problem requires concurrency.
Another challenge, meanwhile, is to avoid collisions of the
payloads with each other.



IV. EMBEDDING GEOMETRIC REASONING IN ACTION
DOMAIN DESCRIPTIONS

Let us first describe the action domain of the example
above, in the input language of CCALC (i.e., the action
description language C+).

We view the platform as a grid. We represent the robots
by the constants r1 and r2. We denote the payloads by
nonnegative integers, and denote the endpoints of a payload
i by the nonnegative integers 2i and 2i− 1.

We characterize each robot by its end-effector, and de-
scribe its position by a grid point: the location (X,Y) of a
robot R is specified by two functional fluents, xpos(R)=X and
ypos(R)=Y. Similarly, the location (X,Y) of an end point P1
of the payload is specified by two fluents, xpay(P1)=X and
ypay(P1)=Y. Movements of a robot R in some direction D

are described by actions of the form move(R,D). Each such
action has an attribute that specifies the number of steps to
be taken by the robot. In addition, we denote the actions of
picking and dropping a payload by pick(R) and drop(R); the
former action has an attribute that specifies at which endpoint
the robot picks the payload.

In the following, suppose that R denotes a robot, P1 and
P2 denote the end points of a payload, N and N1 range over
nonnegative integers 1, ..., maxN, and D and D1 range over all
directions, up, down, right, left. Also suppose that X1, X2,
Y1, Y2 range over nonnegative integers 1, ..., maxXY.

A. Representing Actions and Change

We describe the preconditions and the effects of the actions
as in [3]. For instance, we describe the direct effect of a
robot’s picking a payload, by the causal laws

pick(R) causes holding(R,P) if pickpoint(R)=P.

These causal laws express that, after a robot R picks a payload
at its endpoint P, the robot is holding it at its endpoint P.

One of the preconditions of the action of a robot R’s
picking a payload at its endpoint P is that “R should not
be holding P”; otherwise, the action is not executable. This
is expressed by the causal laws

nonexecutable pick(R) if holding(R,P).

We can also express conditions on the concurrent exe-
cutability of actions. For instance, two robots R and R1 cannot
pick a payload at the same endpoint:

nonexecutable pick(R) & pick(R1)
if pickpoint(R)=pickpoint(R1) & R@<R1.

A robot R cannot pick a payload while moving:

nonexecutable move(R,D) & pick(R).

In addition to causal relations that involve actions, as in the
preconditions and direct effects of actions above, we can also
express causal relations that do not involve actions directly.
For instance, if a robot R is holding a payload P1, then the
location of the payload is the same as the location (X1,Y1)

of the robot.

caused xpay(P1)=X1 if holding(R,P1) & xpos(R)=X1.
caused ypay(P1)=Y1 if holding(R,P1) & ypos(R)=Y1.

Such causal laws allow us to reason about ramifications of
actions without describing them: whenever a robot moves
then the payload it holds moves as its indirect effect.

Finally, we can add state/transition constraints to ensure
some conditions. For instance, we can prohibit states where
the robots hold different payloads:

caused false if holding(R1,P1) &
holding(R2,P2) & R1@<R2 & P1\=P2
where -samePayload(P1,P2).

where samePayload(P1,P2) describes that the endpoints P1

and P2 belong to the same payload. Such causal laws allow us
to reason about qualifications of actions without describing
them: the robots cannot pick different payloads.

B. Embedding Geometric Reasoning in Causal Laws

We can embed geometric reasoning in such an action
domain description in two ways: using state constraints
and using external predicates. Let us first consider colli-
sions of payloads with each other. We can identify the
conditions under which payloads collide with each other,
provided that the orientations and the lengths of the pay-
loads, as well as the positions of their leftmost bottom
endpoints are given. For instance, consider two payloads
K1 and K2 of length lengthP on the board, whose ori-
entations are vertical. Suppose that the left bottom end-
points of these payloads are (minXP(K1),minYP(K1)) and
(minXP(K2),minYP(K2)). Then these payloads collide with
each other if abs(minYP(K1)-minYP(K2))=<lengthP. Once
such collision conditions are identified, we can prevent them:

caused false if orientationP(K1)=v &
orientationP(K2)=v & K1@<K2 & -beingCarried(K1) &
-beingCarried(K2) & minXP(K1)=minXP(K2) &
abs(minYP(K1)-minYP(K2))<lengthP.

Similarly, we can identify conditions for collisions be-
tween payloads with different orientations, and add causal
laws to prevent such cases.

Next let us consider collisions between the robots, or
between a robot and obstacles. To detect this sort of colli-
sions, we need to know the geometric models and kinematic
relations; however, such detailed information is not repre-
sented at the high-level (otherwise, if we could represent
it, the domain description and thus the planning problem
would be too large for the causal reasoner). Fortunately,
CCALC supports “external predicates”, which are functions
implemented in some programming language (e.g., C++).

An external predicate takes as input not only some param-
eters from the action domain description (e.g., the locations
of robots) but also detailed information that is not a part of
not the action domain description (e.g., geometric models); it
returns a truth value. For instance, we check whether a robot
located at (X1,Y1) collides with another robot at (X2,Y2), by
an external predicate collision(X1,Y1,X2,Y2) implemented
as a C++ program. Then we can add causal laws to ensure
that the robots do not collide with each other:

caused false if xpos(r1)=X1 & ypos(r1)=Y1 &
xpos(r2)=X2 & ypos(r2)=Y2
where collision(X1,Y1,X2,Y2).



In addition, an external predicate can accomplish some other
tasks as “side-effects”. For instance, while checking whether
a robot located at (X1,Y1) collides with another robot at
(X2,Y2), the external predicate collision(X1,Y1,X2,Y2)

can form a database keeping which locations lead to a
collision and which locations do not. Then this database can
be reused in the future.

V. BILATERAL INTERACTION BETWEEN CAUSAL
REASONING AND MOTION PLANNING

With the action domain description and the external
predicate above, CCALC combines causal reasoning with
geometric reasoning to compute task plans without robot-
robot or robot-obstacle collisions. For instance, consider the
environment in Fig. 2. Suppose that initially the robots r1 and
r2 are at (1,1) and (9,9) respectively; the first payload is
located at (3,2) and (8,2); the second payload is located at
(8,5) and (3,5); the third payload is located at (9,3) and
(9,8). The goal is to move the payloads to the following
locations: first payload to (3,2) and (3,7); the second
payload to (6,7) and (6,2); the third payload to (9,8)

and (9,3). This planning problem can be described in the
language of CCALC by means of a “query” as follows:

:- query % Query 1
maxstep:: 0 ..infinity;
0: % Initial state
% robot 1
xpos(r1)=1, ypos(r1)=1,
% robot 2
xpos(r2)=9, ypos(r2)=9,
% endpoints (1 and 2) of payload 1
xpay(1)=3, ypay(1)=2, xpay(2)=8, ypay(2)=2,
% endpoints (3 and 4) of payload 2
xpay(3)=8, ypay(3)=5, xpay(4)=3, ypay(4)=5,
% endpoints (5 and 6) of payload 3
xpay(5)=9, ypay(5)=3, xpay(6)=9, ypay(6)=8;
maxstep: % Goal conditions
% endpoints of payload 1
xpay(1)=3, ypay(1)=2, xpay(2)=3, ypay(2)=7,
% endpoints of payload 2
xpay(3)=6, ypay(3)=7, xpay(4)=6, ypay(4)=2,
% endpoints of payload 3
xpay(5)=9, ypay(5)=8, xpay(6)=9, ypay(6)=3,
% robots must not be holding any payloads
[/\R /\P | -holding(R,P)].

This query, Query 1, asks for a plan with the minimum
number of time steps. CCALC then computes the following
plan (Plan 1) of length 27 for this problem:

0: move(r1, up, steps=3) move(r1, left, steps=1)
move(r2, down, steps=4)

...
13: pick(r1, pickpoint=1) pick(r2, pickpoint=2)
14: move(r1, down, steps=2) move(r1, right, steps=2)

move(r2, up, steps=3) move(r2, left, steps=2)
...
26: drop(r1) drop(r2)

Note that each step of the plan involves concurrent execution
of a set of primitive actions. For instance, at time step 13,
both robots pick the opposite endpoints 1 and 2 of the
payload 1 at the same time. At time step 14, the robot r1

moves down by two units and right by two units at the same
time (note that this concurrent action essentially describes a

diagonal move of the robot); meanwhile, the robot r2 moves
up by three units and left by two units.

A. Task Planning guides Motion Planning

Our aim eventually is to compute a complete continuous
trajectory for each robot to reach a common goal in an
optimal way, considering the possibility of concurrent exe-
cutions of actions by multiple robots. Such a problem cannot
be solved, in general, directly by motion planning because
the order of actions matter, in particular with picks/drops. It
can be solved, on the other hand, by the help of the causal
reasoner: first a task plan and its history is computed, and
the motion planner is called to find a continuous collision-
free trajectory for each transition. This is described more
precisely in Algorithm 1, implemented in Python.

Given a discrete plan and its history 〈Si, Ai, Si+1〉, and
considering the given geometric models and kinematic re-
lations, a collision-free trajectory Π for all robots (if one
exists) is computed by a motion planner. Initially T is
empty. For each transition 〈Si, Ai, Si+1〉 (i = 0, 1, ..., n)
in the given history, the motion planner tries to compute
a continuous trajectory Ti. If such a transition Ti is found
then it is appended to the end of T . Otherwise, the problem
is infeasible; in such a case, the motion planner can ask for
a different task plan as explained in the next subsection.

A number of motion planning algorithms are suitable
for this framework. For instance, Probabilistic Road Maps
(PRM) [13] could be considered a good candidate for smaller
number of possible states for utilizing their multiple query

Algorithm 1 TASK&MOTION PLAN
Input: Action domain description D, and planning problem P with

the initial state(s) S and the goal G
while true do

plan, P ← Compute a shortest task plan P of length n (within
a history H = 〈S0, A0, S1, ..., Sn, An, Sn+1〉, where S0 = S
and Sn+1 = G) using CCALC with D and P (if there is such
a plan);
if ¬plan then

return false;
end if
T := 〈〉; // Initially the trajectory is empty
trajectoryFound := true;
i := 0;
while trajectoryFound do
〈Si, Ai, Si+1〉 ← Extract from H the next transition;

// Compute a trajectory π for 〈Si, Ai, Si+1〉, if one exists
trajectoryFound, π ← MOTION PLAN(Si,Si+1);
if ¬trajectoryFound then
P ← Identify the cause of the failure and modify the
planning problem P accordingly;

else
T ← Append π to T ;
if Ai is the last action then

return true, P,H, T ;
end if

end if
i++;

end while
end while



nature, i.e., ability to use a PRM multiple times. For our
example problem, however, the number of possible states
increases exponentially with the increase in grid resolution,
and this makes enumeration and initial sampling a problem.
In addition, sampling the entire work space is not efficient.
With these considerations, we use a single-query method that
quickly responds: a greedy variation of RRTs.

B. Motion Planning guides Task Planning

If the motion planner fails to find a continuous collision-
free trajectory for a transition 〈Si, Ai, Si+1〉, first we try to
identify the cause of that failure. In our example, such a
failure occurs in three cases: the given time/sample threshold
is too low, the payload collides with an obstacle during the
transition from Si to Si+1 (exclusive) while being carried,
or the payload collides with an obstacle at state Si+1. In the
first case, motion planning can be modified by increasing
the threshold. In the first two cases, task planning can
be modified as follows. The cause of the failure can be
characterized by the state Si and the action Ai; and such
a failure can be avoided by modifying the planning problem
by adding a temporal constraint that expresses “Ai should not
be executed at Si”. In the last case, the cause of the failure
can be characterized by the state Si+1. Such a failure can
be avoided by modifying the planning problem by adding a
constraint that expresses “Si+1 should not be possible”. After
that, the modified planning problem is solved by CCALC,
generating a different optimal task plan that does not cause
such failures.

For instance, consider the transition 〈S3, A3, S4〉 from the
history of Plan 1:

3: holding(r1,4), holding(r2,3),
xpay(3)=8, ypay(3)=5, xpay(4)=3, ypay(3)=5,...,
move(r1, down, steps=3) move(r1, right, steps=1);

4: xpay(3)=8, ypay(3)=5, xpay(4)=4, ypay(4)=2,...;

where the end-points of the second payload (that the robots
are holding) are at (4,2) and (8,5). The motion planner
cannot find a continuous trajectory for this transition since
the payload collides with an obstacle at Step 4 (third kind
of failure). Then, Query 1 is modified by adding a constraint
as follows:

:- query % Query 2
maxstep :: 0..infinity;
0: ...; % Initial states
maxstep: ...; % Goal conditions
% Constraints
T<maxstep ->>
-((T: xpay(3)=8) && (T: xpay(4)=4) &&
(T: ypay(3)=5) && (T: ypay(4)=2) && ...).

to ensure that CCALC does not consider S4 as a possible
state. Then CCALC computes a different plan (Plan 2)
without such a failure.

0: move(r1, up, steps=4) move(r2, left, steps=1)
...
13: pick(r1, pickpoint=1) pick(r2, pickpoint=2)
14: move(r1, down, steps=1) move(r2, up, steps=3)

move(r2, left, steps=2)
...
26: drop(r1) drop(r2)

Thus, for each action of this plan, the motion planner can
find a continuous collision-free trajectory (Fig. 2).

VI. EXECUTION AND RESULTS

We have tested the applicability and effectiveness of our
framework using two Pantograph robots (two degrees-of-
freedom planar parallel manipulators) to perform a complex
assembly task that requires concurrent execution of actions.
In particular, we used symmetric wooden sticks with metal
tips as payloads. To enable pick and drop actions, we
equipped the end-effectors of the Pantograph robots with
linear servo motors with magnetic tips acting out of plane.
The magnetic tip of the linear servo motors can pick (hold
and elevate) a payload at one of its end points. Similarly, the
payload can be dropped by retracting the magnetic tip inside
its case. The robots were closed loop controlled at 100 Hz to
ensure robust trajectory tracking of their end-effectors. The
controllers of the robots have been implemented on a PC-
based control architecture, that compromises of a PCI I/O
card and a workstation, simultaneously running RTX real-
time operating system and Windows XP SP2.

Execution of Plan 2 on the physical robot setup can be
viewed using the accompanying video file. Fig. 2 depicts the
experimentally recorded trajectories of the robots during this
plan execution. In this figure, the first six steps of the plan are
shown in Fig. 2(b). Observe that the successful completion
of this plan necessitates payloads to be picked and dropped
a number of times before they can be arranged to their final
configuration. For instance, the robots first pick Payload 2
and drop it to an intermediate location (Fig. 2(b)), then move
Payload 3 to an intermediate location (Fig. 2(c)), then place
Payloads 1 and 3 into their goal positions (Fig. 2(d) and (e)),
and finally move Payload 2 to its final position (Fig. 2(f)).

VII. CONCLUSION

We have presented an alternative approach to combine
high-level representation and causality-based reasoning with
low-level geometric reasoning and motion planning. The
main contributions of this approach are: 1) flexible use of ex-
ternal predicates/functions for some feasibility checks allows
a generic interface between high-level causal reasoning and
low-level geometric reasoning and motion planning; 2) em-
bedding of geometric reasoning in high-level representation
allows the causal reasoner to take into account geometric
models and kinematic relations; 3) causal reasoning guides
motion planning by presenting the order of actions; 4) motion
planning guides causal reasoning at the representation level
by modifying description of the planning problem to take into
account some domain-specific information such as the causes
of infeasibilities, and asking the causal reasoner to solve a
more “relevant” planning problem; 5) the causality-based
representation and reasoner used in these studies allows
us to compute optimal plans with concurrency, solve not
only planning but also prediction/postdiction and diagnosis
problems, use various search engines without modifying their
algorithms. Thus, overall, our approach extends the classes
of manipulation problems that can be solved and provides a
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Fig. 2. (a) presents the initial state, while (b)–(f) illustrate the execution of Plan 2. Colors red and blue are associated with Robots 1 and 2. Circles indicate
the positions of the robot end-effectors and circles’ labels denote the time steps. Solid red and blue lines denote the trajectories of robot end-effectors.
Brown, magenta and green lines denote Payloads 1–3. For instance, at Step 3, end-effectors of Robots 1 and 2 are located at (3,5) and (8,5) respectively,
and robots hold Payload 1. At Step 4, end-effectors of Robots 1 and 2 are located at (6,4) and (10,7), still holding Payload 1. Trajectory of Payload
1 moving from Step 3 to 4 is depicted in brown.

flexible and generic platform for integrating high-level action
reasoning with low-level trajectory planning.

We have illustrated the usefulness of this approach with
a physical implementation of a problem that involves two
robots working for a common goal. In our experiments,
we have observed that using parallel SAT solvers some-
times improve the computational efficiency by a factor of
100; these results motivate us to experiment with various
search engines in the future. In particular, we consider using
planners such as TLPlan that can take into account domain-
specific information. Also during the experiments, we have
observed that the calculated trajectories cannot always be
robustly implemented due to uncertainties and noise that are
unavoidable in a physical setup. Base on our preliminary
work on execution monitoring [9], this motivates us to enrich
our approach by integrating it into a monitoring framework to
handle various kinds of execution failures (e.g., interventions
and collisions with unknown objects). Updating/learning ac-
tion domain descriptions from observations/failures, as in [4],
is also a part of our future work.
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