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Abstract—In this paper, a behavior-rule based intrusion detec-
tion system (BRIDS) is proposed for securing head-ends (HEs),
distribution access points/data aggregation points (DAPs) and
subscriber energy meters (SEMs) of a modern electrical grid
in which continuity of operation is of the utmost importance.
The impact of attacker behaviors on the effectiveness of a
behavior-rule intrusion detection design is investigated. Using
HEs, DAPs and SEMs as examples, it is demonstrated that a
behavior-rule based intrusion detection technique can effectively
trade false positives for a high detection probability to cope
with sophisticated and hidden attackers to support ultra safe
and secure applications. It is shown that BRIDS outperforms
contemporary anomaly-based IDSs via comparative analysis.
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I. INTRODUCTION

The most prominent characteristic of a smart grid such

as a modern electrical grid or electricity infrastructure is the

feedback loop that acts on the physical environment. In other

words, the physical environment provides data to the sensors

attached to the Wide Area Networks (WANs), Neighborhood

Area Networks (NANs) and Home Area Networks (HANs)

whose data feed the control units in the production, trans-

mission, distribution and consumption segments that drive the

actuators which change the physical environment. Modern

electricity infrastructure is often characterized by sophisticated

reliability, efficiency, sustainability and utility control units

interacting with the physical environment including subscriber

appliances. This paper concerns intrusion detection mecha-

nisms for detecting compromised devices embedded in WANs,

NANs and HANs for supporting safe and secure applications

that subscribers can depend on with confidence.

Intrusion detection system (IDS) techniques for this domain

are still in their infancy with very little work reported in

the literature. Only [2], [3], [6], [10], [13], [14], [16], [19],

[20], [21], [22], [23] reported related intrusion detection.

However, nine of these had no numerical data regarding

the false negative probability pfn (i.e., missing a bad node)

and the false positive probability pfp (i.e., misidentifying a

good node as a bad node). The other three had minimal

numerical data: one or two data points characterizing pfn/pfp
instead of a dataset that could be transformed into a Receiver

Operating Characteristic (ROC) plot, i.e., a pfn vs. pfp curve

that describes the relationship between pfn and pfp obtained

as a result of applying IDS techniques.

Specifically, Zhang et al. [22], [23] studied two detection

algorithms called CLONALG and AIRS2Parallel. CLONALG

is unsupervised. AIRS2Parallel is semi-supervised. They re-

ported that CLONALG had a detection accuracy between

80.1% and 99.7% and AIRS2Parallel had an accuracy be-

tween 82.1% and 98.7%, where the detection accuracy is the

likelihood that a node is classified correctly, calculated by

1 − pfp − pfn. He and Blum [10] investigated a series of

anomaly-based IDSs including Locally Optimum Unknown

Direction (LOUD), Locally Optimum Estimated Direction

(LOED), LOUD-Generalized Likelihood Ratio (LOUD-GLR)

and LOED-Generalized Likelihood Ratio (LOED-GLR). He

and Blum’s LOUD-GLR approach performed the best: The

maximum detection rate (i.e., 1 − pfn) is reportedly 95%.

However, no ROC data were given in [10], [22], [23].

Intrusion detection techniques in general can be classi-

fied into three types: signature-based, anomaly-based and

specification-based techniques. In this paper, specification-

based detection is considered rather than signature-based de-

tection to deal with unknown attacker patterns. Specification-

based techniques are considered rather than anomaly-based

ones (such as those by Zhang et al. [22], [23] and He and Blum

[10]) to avoid using resource constrained sensors or actuators

in a WAN for profiling anomaly patterns (for example, through

learning) and to avoid high false positives (treating good nodes

as bad nodes).

To accommodate resource constrained devices, this paper

develops the design notion of behavior rules for specifying

acceptable behaviors of physical devices in a WAN, NAN or

HAN. Rule-based intrusion detection thus far has been applied

only in the context of communication networks which have no

concern of physical environments and the closed-loop control

structure as in a head-end (HE), distribution access point/data

aggregation point (DAP) or subscriber energy meter (SEM).

In the literature, specification-based IDS techniques have

been proposed for intrusion detection of communication pro-

tocol misbehaving patterns [7], [8], [9], [12]. Da Silva et al. [8]

propose an IDS that applies seven types of traffic-based rules

to detect intruders: interval, retransmission, integrity, delay,

repetition, radio transmission range and jamming. Ioannis et

al. [12] propose a multitrust IDS with traffic-based collection

that audits the forwarding behavior of suspects to detect

blackhole and greyhole attacks launched by captured devices
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based on the the rate (versus the count) of specification

violations. [7], [9] also only considered specification-based

state machines for intrusion detection of misbehaving patterns

in communication networks. The specification-based technique

in this paper distinguishes itself from [7], [8], [9], [12]

cited above by addressing the unique requirements of the

domain. First, modern electricity infrastructure has control

loops that tie the physical environment to the CPS. Second,

components are stationary which eliminates IDSs based on

instantaneous motion or movement profiles. Third, they are

federated systems; bulk power generators, energy markets,

transmission providers, distribution providers and subscribers

own, host and operate different segments of the CPS. Fourth,

their scale is substantial; for example, the count of SEMs could

be in the millions. Fifth, these CPSs are heterogeneous. In

this work, specification-based behavior rules are derived from

control loops which tie the intrusion detection to the critical

business rules of the CPS while not relying on motion or track

data used in other approaches. Also, the goals of each interest

in the CPS are considered in forming behavior rules: bulk

power generators want full utilization, energy markets want

to match supply and demand, microgrids want to optimize

sustainability or reliability and customers want to minimize

cost. To address scalability, the state machines are pruned and

tunable audit frequencies are provided. Three node types are

considered to account for heterogeneity in the CPS.

The contribution of our work relative to prior work cited

is that behavior rules for WAN, NAN and HAN devices

controlling actuators and sensors embedded in the physical

environment are specifically considered. Further, a method

to transform behavior rules to a state machine is proposed,

so that a device that is being monitored for its behavior

can be checked against the transformed state machine for

deviation from its behavior specification. Untreated in the

literature [17], in this paper the impact of attacker behaviors

on the effectiveness of intrusion detection in the production,

transmission, distribution and consumption segments is also

investigated. Using HEs, DAPs and SEMs as examples, it is

demonstrated that an intrusion detection technique can effec-

tively trade false positives for a high detection probability to

cope with more sophisticated and hidden attackers to support

ultra safe and secure applications. Moreover, it is shown that

a behavior-rule based intrusion detection system (BRIDS)

design outperforms contemporary anomaly-based IDSs [10],

[22], [23] via comparative analysis.

II. MODEL AND DESIGN

A. System Model

a) Reference System: A modern electrical grid cyber

physical system (CPS) embedding physical components is

considered as the reference model as illustrated in Figure 1.

For ease of disposition, this paper is particularly concerned

with three types of physical devices: HEs, DAPs and SEMs.

Many examples exist with these three devices. Figure 1

shows their hierarchical relationship: The scope of an HE,

which is operated by a bulk power generator or energy

market, encompasses many DAPs, which are operated by the

Fig. 1. Modern Electrical Grid CPS.
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transmission or distribution providers. The scope of a DAP

encompasses many SEMs, which are hosted by subscribers

(residential, commercial or industrial). This figure also shows

the control modules running at each node: Host and system

IDS modules run on every HE, DAP and SEM. Host IDS

modules are loaded with the state machines pertaining to the

relevant trustees. For example, HE host IDSs include HE and

DAP state machines while SEM host IDSs include SEM and

DAP state machines. Figure 1 illustrates the control modules,

actuators and sensors that relate to the IDS design and how

it integrates with the existing communications infrastructure.

Power Line Communication links HEs to DAPs, IEEE 802.11s

Wireless Mesh Networking links DAPs to SEMs and IEEE

802.15.4 Wireless Personal Area Networking links SEMs to

smart appliances and customer distributed energy resources

(DERs). DERs are alternatives to the bulk power generators.

Including capital investment, fuel and consumables for both,

the cost per Watt for DERs is typically higher. However,

DERs (e.g., wind generators, geothermal units or solar cells)

surpass bulk power generators (e.g., coal or nuclear-powered)

in sustainability. While they are not advantageous in terms

of sustainability, hydrocarbon-based (in addition to the re-

newable) DERs provide redundancy in case of breakage in

the transmission network. Members of a microgrid can pool

resources to buy and operate a community DER or individual

subscribers can go it alone. A database collects, stores and

distributes data from sensors. A human machine interface

(HMI) allows an operator to control the system and view its

status using sensor data in the colocated database. Figure 1

shows two actuators for the HE: a bulk generator and isolation

switches. The bulk generator may come in the form of a large-

capacity power station consuming hydrocarbon or fissile fuel.

Isolation switches open and close circuits in the transmission

network due to faults or maintenance. Figure 1 shows two

actuators for the DAP: an islanding switch and a community

DER. The islanding switch separates and joins a microgrid

with the transmission network due to faults or maintenance.

A community DER may come in the form of a medium-scale

wind generator, geothermal unit or solar cell array. Figure 1

shows two actuators for the SEM: a smart appliance and a

subscriber DER. A smart appliance tailors its duty cycle (e.g.,

compressor active/idle ratio for an HVAC unit) or scheduling

(e.g., start time for a dishwasher) based on microgrid demand

and billing rate. A community DER may come in the form of a

small-scale wind generator, geothermal unit or solar cell array.

Figure 1 shows two sensors for each of the HE, DAP and SEM

which detect demand (Watts) and faults (derived from phase

of the AC waveform) at the system, microgrid and subscriber

levels, respectively.

b) Behavior Monitoring: Our IDS approach is based on

behavior monitoring. A neighbor HE, DAP or SEM is used to

monitor (specifically, measure the compliance degree of) one

or more trustees of different types. DAPs are less resource

rich than an HE due to high volume and tight size, weight and

power constraints. However, they are plentiful which results in

significant aggregate time and space that can be accumulated

to monitor other DAPs or SEMs. An SEM monitors other

neighboring SEMs only due to a high degree of resource

constraints.

c) Threat Model: The threat model explains possible

attacks performed by a compromised device (HE, DAP or

SEM), which will cause its behavior to deviate from good

behaviors specified by a set of behavior rules used by the

IDS. Two attacker archetypes are differentiated: reckless and

random. A reckless attacker performs attacks whenever it has

a chance. The main objective is to impair the functionality

at the earliest possible time. A random attacker, on the other

hand, performs attacks only randomly to avoid detection. It

is thus insidious and deceptive with the objective to cripple

the functionality. The attacker behavior is modeled by a

random attack probability pa. When pa = 1 the attacker

is a reckless adversary. Imperfect monitoring is modeled by

an error parameter, perr, representing the probability of a

monitor node misidentifying the status of the trustee node

due to ambient noise, temporary system faults, and/or wireless

communication faults in the environment. In general a node

may deduce perr at runtime by sensing the amount of ambient

noise, system errors, and/or wireless communication errors

around it.

B. Problem Definition

We define the problem to be solved in the context of

Figure 1. Broadly, the problem we are trying to solve is the

vulnerability to infrastructure damage, service interruption and

revenue loss caused by malicious actors. We aim to provide

a solution to this problem by detecting malicious devices that

exploit the vulnerability through known or unknown attacks.

The solution we are offering is a behavior-rule based design

with which misbehavior of a device manifested as a result of

attacks exploiting the vulnerability exposed may be detected,

regardless of whether the attack is known or unknown. In the

context of the electrical power grid in Figure 1, we aim to

solve this problem by detecting malicious devices, including

HE, DAP and SEM devices. For example, an opportunistic

vandal could completely unfurl the blades of a wind DER

during high wind conditions to damage the apparatus. A state

sponsored attacker could open the isolation switches at a bulk

energy provider to disrupt the service to the utilitys customers.

A disgruntled insider at a bulk energy provider could lower the

billing rate to cause the enterprise to lose money on all power

it sold at the artificially depressed rate. A frugal subscriber

could modify the usage reporting module of their subscriber

energy meter to reduce their financial obligation to the energy

provider. Regardless of the form of attacks, we aim to provide

a solution for malicious device detection that is accurate in

detection rate (close to 100%) while limiting the false positive

probability to a minimum (e.g., less than 10%).

C. Behavior Rules

Our IDS design for the reference model relies on the use of

lightweight specification-based behavior rules for each device.

They are oriented toward detecting an inside attacker attached

to a specific physical device, providing a continuous output

between 0 and 1 (while accounting for transient faults and

human errors) and allowing a monitor to perform intrusion
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TABLE I
HE BEHAVIOR RULES

Description Trustee Monitor

Turn off appliance block (for example, all HE HE
water heaters in a microgrid) if system
demand is above threshold

Decrease duty cycle (t/T, where HE HE
t = pulse width and T = period) for appliance
block if system demand is above threshold

Turn on appliance block if system demand is HE HE
below threshold

Increase duty cycle (t/T, where HE HE
t = pulse width and T = period) for appliance
block if system demand is below threshold

Increase billing rate if system demand is above HE HE
threshold

Decrease billing rate if system demand is HE HE
below µd − ǫd
Close isolation switch if no fault or maintenance HE HE

Connect DER to distribution segment if system HE HE
demand is above µd + ǫd
If fault sensors indicate an interruption, notify HE HE
affected nodes

TABLE II
DAP BEHAVIOR RULES

Description Trustee Monitor

Request subscriber load decrease if subscriber DAP DAP, HE
demand is above µd + ǫd
Request subscriber load increase if subscriber DAP DAP, HE
demand is below µd − ǫd
Open island switch if bulk generation is DAP DAP, HE
interrupted

Relay packets DAP DAP, HE

Don’t source (replay or inject) packets DAP DAP, HE

Use community DER generators if available DAP DAP, HE

If fault sensors indicate an interruption, DAP DAP, HE
notify affected nodes

If demand above threshold, increase pitch of DAP DAP, HE
(unfurl) wind DER generator to maximize
power

If demand below threshold, decrease pitch of DAP DAP, HE
(furl) wind DER generator to maximize lifetime

detection on a neighbor trustee through monitoring. Here a

monitor is itself a physical device with capability to do intru-

sion detection on trustee nodes assigned to it. For example, an

SEM may monitor another SEM within radio range. An HE

may monitor other HE or DAP trustee devices within radio

range. Therefore, an HE might have several sets of behavior

rules (and thus several state machines), one for each trustee.

Tables I, II and III list the behavior rules for the HE,

DAPs and SEMs. These tables specify the trustee and monitor

devices for applying the IDS technique.

The networking concepts used in the behavior rules include:

Packets received are the inbound protocol data units handled

by the communications subsystem or application on a node;

they are measured with frequency (Hz) with a domain of 0 to

10 packets per second. A node receives packets for which it

is not the intended receiver, but possibly is a waypoint on the

path to the destination. The communications subsystem drops

these packets or relays them. Packets forwarded counts these

packets the communications subsystem passes along using

frequency (Hz) over the same domain as packets received.

Packet sourcing is when an application generates a protocol

TABLE III
SEM BEHAVIOR RULES

Description Trustee Monitor

Generate usage data periodically SEM SEM, DAP

Deactivate time independent appliances if SEM SEM, DAP
billing rate is above µr + ǫr
Activate time independent appliances or store SEM SEM, DAP
energy if billing rate is below µr − ǫr
Deactivate time independent appliances if SEM SEM, DAP
microgrid demand is above µd + ǫd
Activate time independent appliances or store SEM SEM, DAP
energy if microgrid demand is below µd − ǫd
Use subscriber DERs if available SEM SEM, DAP

If fault sensors indicate an interruption, SEM SEM, DAP
notify affected nodes

If subscriber demand above threshold, SEM SEM, DAP
increase pitch of (unfurl) wind DER
generator to maximize power

If subscriber demand below threshold, SEM SEM, DAP
decrease pitch of (furl) wind DER generator
to maximize lifetime

data unit and passes it down to the communications subsystem

for transmission. A good node populates these packets with

legitimate sensor or status data, but a bad node populates

these packets with corrupt sensor or status data or replays of

previously received packets. ǫf is a threshold for the difference

between packets received and packets forwarded. The net-

working condition is an abbreviation of packets received and

forwarded used to manage the size of the behavior rule state

machine. µd is the nominal power demand. ǫd is a distance

from µd beyond which a control algorithm should take action

to match power supply with demand. µr is the nominal billing

rate. ǫr is a distance from µr beyond which a control algorithm

should take action to capitalize on a low billing rate or avoid

consuming at a high one.

Our behavior-rule specification-based technique approaches

the intrusion detection problem from the behavior/evidence

domain compared with signature-based techniques that ap-

proach the problem from the attacker domain. Hence, the

patterns by which an attacker performs attacks and “how” an

attacker performs attacks do not need to be known. Rather, a

monitor device simply checks the behavior of a trustee device

manifested from evidence of compliance/deviation against

“good” and “bad” behaviors specified by a set of behavior rules

for that device. Our approach thus can address all potential

attacks, known or unknown. We claim behavior rule-based

detection is able to cope with unknown attacks because all

attacks lead to behavior anomaly. This capability is similar

to anomaly detection which, unlike signature-based detection,

can cope with zero-day attacks. Nevertheless, if the rule set is

incomplete, that is, if the specification of anticipated behavior

is incomplete, it is possible misbehavior manifested as a

result of known or unknown attacks will be missed, and,

consequently, the attacker will be undetected.

D. Transforming Rules to State Machines

Each behavior rule does not specify just one attack state,

but a number of states, some of which are good states in which

good behavior (obedience of this behavior rule) is observed,

while others are bad states in which bad behavior (violation
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of this behavior rule) is observed. A behavior rule thus has a

number of state variables, each with a range of values, together

indicating whether the node is in good or bad behavior status

(with respect to this rule). A device (HE, DAP or SEM), on

the other hand, has a number of behavior rules; thus, it is

possible that the state variables for one rule have intersections

with those in another rule if they have the same logical clause.

For example, the “system demand” state variable appears in

HE rules 1-5 and 7. In this case, only one state variable will be

used in these six rules to represent the “system demand” status.

At the end, the underlying state machine for the behavior rule

set of a device (e.g., Table I for HE) will consist of a set

of unique state variables common to all behavior rules (e.g.,

system demand in HE rules 1-5 and 7) together indicating

whether a device is in a good or bad behavior state (reflecting

all behavior rules).

The following procedure transforms a behavior specification

into a state machine: First, the “bad behavior indicator” as a

result of a behavior rule being violated is identified. Then,

this bad behavior indicator is transformed into a conjunctive

normal form predicate and the involved state components in

the underlying state machine are identified. Next, for each

device (that is, an HE, DAP or SEM), the bad behavior indi-

cators are combined into a Boolean expression in disjunctive

normal form. Then, the union of all predicate variables is

transformed into the state components of a state machine and

their corresponding ranges are established. Finally, the number

of states is managed by state collapsing and identifying

combinations of values that are not legitimate. How a state

machine is derived from the behavior specification in terms of

behavior rules for the reference model is exemplified below.

a) Identify Bad Behavior Indicators: Attacks performed

by a compromised sensor/actuator will drive the HE, DAP or

SEM into certain bad behavior indicators identifiable through

analyzing the specification-based behavior rules.

For the HE device, there are nine bad behavior indicators

as a result of violating the nine behavior rules for HEs listed

in Table I. The first HE bad behavior indicator is that the HE

activates a block of appliances but the system demand is above

some threshold. The second HE bad behavior indicator is that

the HE increases the duty cycle for a block of appliances but

the system demand is above some threshold. The third HE

bad behavior indicator is that the HE deactivates a block of

appliances but the system demand is below some threshold.

The fourth HE bad behavior indicator is that the HE decreases

the duty cycle for a block of appliances but the system demand

is below some threshold. The fifth HE bad behavior indicator is

that the HE decreases the billing rate but the system demand is

above some threshold. The sixth HE bad behavior indicator is

that the HE increases the billing rate but the system demand is

below some threshold. The seventh HE bad behavior indicator

is that the HE opens the switch for a microgrid but there is no

associated fault or maintenance. The eighth HE bad behavior

indicator is that DERs are disconnected but the system demand

is above some threshold. The ninth HE bad behavior indicator

is that an interruption is present but the HE has not generated

an alert. For all of these HE bad behavior indicators, the HE

is the trustee and all DAPs are monitors.

For the DAP device, there are eight bad behavior indicators

as a result of violating the nine behavior rules for DAPs listed

in Table II. The first DAP bad behavior indicator is that the

HE requests a load increase, but microgrid demand is above

some threshold. The second DAP bad behavior indicator is

that the HE requests a load decrease, but microgrid demand is

below some threshold. For these first two DAP bad behavior

indicators, the HE is the trustee, and a DAP is the monitor.

The third DAP bad behavior indicator is that the microgrid

is islanded, but there is no interruption. For the third DAP

bad behavior indicator, a DAP is the trustee, and the HE

is the monitor. The fourth DAP bad behavior indicator is

that the number of packets forwarded by the DAP does not

equal the number of packets received by the DAP. This rule

corresponds with the two behavior rules concerning packet

handling. For the fourth DAP bad behavior indicator, a DAP

is the trustee, and the HE and SEMs are monitors. The fifth

DAP bad behavior indicator is that the community DER is

not connected, but it is available. The sixth DAP bad behavior

indicator is that an interruption is present, but the DAP has not

generated an alert. The seventh DAP bad behavior indicator

is that the DAP decreases the pitch of wind DER generator

blades, but the microgrid demand is above some threshold. The

eighth DAP bad behavior indicator is that the DAP increases

the pitch of wind DER generator blades, but the microgrid

demand is below some threshold. For the fifth through eighth

DAP bad behavior indicators, a DAP is the trustee, and the

HE is the monitor.

For the SEM device, there are nine bad behavior indicators

as a result of violating the nine behavior rules for SEMs listed

in Table III. The first SEM bad behavior indicator is that

the SEM is not generating usage data. The second SEM bad

behavior indicator is that time-independent smart appliances

are active, but the billing rate is above some threshold. The

third SEM bad behavior indicator is that the subscriber is

not banking electricity, but the billing rate is below some

threshold. The fourth SEM bad behavior indicator is that time-

independent smart appliances are active, but the demand is

above some threshold. The fifth SEM bad behavior indicator

is that the subscriber is not banking electricity, but the demand

rate is below some threshold. The sixth SEM bad behavior

indicator is that the subscriber DER is not connected, but it

is available. The seventh SEM bad behavior indicator is that

an interruption is present, but the SEM has not generated an

alert. The eighth SEM bad behavior indicator is that the SEM

decreases the pitch of wind DER generator blades, but the

subscriber demand is above some threshold. The ninth SEM

bad behavior indicator is that the SEM increases the pitch

of wind DER generator blades, but the subscriber demand is

below some threshold. For all of these SEM bad behavior

indicators, an SEM is the trustee, and the DAP is the monitor.

b) Express Bad Behavior Indicators in Conjunctive Nor-

mal Form: Tables IV, V and VI list the bad behavior indicators

in Conjunctive Normal Form for HE, DAP and SEM nodes,

respectively.

c) Consolidate Predicates in Disjunctive Normal Form:

Each type of device (HE, DAP or SEM) has a distinct behavior

rule set based on its specific control modules, actuators and
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TABLE IV
HE BAD BEHAVIOR INDICATORS IN CONJUNCTIVE NORMAL FORM

(Appliance Block = ACTIVE) ∧ (System Demand > µd + ǫd)

(New Appliance Duty Cycle > Old Appliance Duty Cycle)
∧ (System Demand > µd + ǫd)

(Appliance Block = INACTIVE) ∧ (System Demand < µd − ǫd)

(New Appliance Duty Cycle < Old Appliance Duty Cycle)
∧ (System Demand < µd − ǫd)

(New Billing Rate < Old Billing Rate) ∧ (System Demand > µd + ǫd)

(New Billing Rate > Old Billing Rate) ∧ (System Demand < µd − ǫd)

(Isolation Switch Position = OPEN) ∧ (Fault = FALSE)
∧ (Maintenance = FALSE)

(DER = DISCONNECTED) ∧ (System Demand > µd + ǫd)

(Interruption = TRUE) ∧ (Alert = NULL)

TABLE V
DAP BAD BEHAVIOR INDICATORS IN CONJUNCTIVE NORMAL FORM

(New Load Request > Old Load Request)
∧ (Microgrid Demand > µd + ǫd)

(New Load Request < Old Load Request)
∧ (Microgrid Demand < µd − ǫd)

(Island Switch Position = OPEN) ∧ (Interruption = TRUE)

|Forwarded Packets - Received Packets| > ǫf
(DER Connection = FALSE) ∧ (DER Availability = TRUE)

(Interruption = TRUE) ∧ (Alert = NULL)

(New Pitch < Old Pitch) ∧ (Microgrid Demand > µd + ǫd)

(New Pitch > Old Pitch) ∧ (Microgrid Demand < µd − ǫd)

sensors. Construct the DNF predicate for each device type

by joining the corresponding Table IV, V or VI expressions

with a disjunction. For clarity, the DNF predicate was left

unreduced; clauses in the DNF predicate are traced to behavior

rules easily. This makes it evident that attacks interact through

common state variables with the same logical clause. While

it will yield a more elegant expression and maybe a more

efficient implementation, reducing the DNF predicate would

obscure the traceability of the logical clauses and interdepen-

dence of the behavior rules.

d) Identify State Components and Component Ranges:

Continuous components are quantized at integer scale in

permissible ranges. For example, system demand is in the

range of [0, 1000 GW] and duty cycle is in the range of [0,

100%]. Table VII shows a complete list of the permissible

ranges of state components. The resulting HE automaton has

2× 1001× 101× 100× 2× 2× 2× 2× 2× 2 = 1.294× 109

states. The resulting DAP automaton has 1001× 1001× 2×
2×11×11×2×2×2×2 = 7.759×109 states. The resulting

SEM automaton has 232 × 2× 100× 2× 1001× 2× 2× 2×
2×91×1001 = 2.506×1021 states. All of these automata are

too large; this state explosion is dealt with in the next step.

TABLE VI
SEM BAD BEHAVIOR INDICATORS IN CONJUNCTIVE NORMAL FORM

Time > Usage.Timestamp + ǫ

(Appliance = ACTIVE) ∧ (Billing Rate > µr + ǫr)

(Energy Storage = FALSE) ∧ (Billing Rate < µr − ǫr)

(Appliance = ACTIVE) ∧ (Microgrid Demand > µd + ǫd)

(Energy Storage = FALSE) ∧ (Microgrid Demand < µd − ǫd)

(DER Connection = FALSE) ∧ (DER Availability = TRUE)

(Interruption = TRUE) ∧ (Alert = NULL)

(New Pitch < Old Pitch) ∧ (Subscriber Demand > µd + ǫd)

(New Pitch > Old Pitch) ∧ (Subscriber Demand < µd − ǫd)

TABLE VII
MODERN ELECTRICITY INFRASTRUCTURE STATE COMPONENTS

Name Control or Range
Reading

Appliance Block Activation Control true, false
System Demand Reading [0, 1000 GW]
Appliance Duty Cycle Control [0, 100%]
Billing Rate Control (0, 1 USD/kWh]
Switch Position Control open, closed
Fault Reading false, true
Maintenance Control false, true
DER Connection Control false, true
Interruption Reading false, true
Alert Control false, true
Load Request Control [0, 1000 kW]
Microgrid Demand Reading [0, 1000 MW]
Island Control false, true
Forwarded Packets Reading [0, 10/s]
Received Packets Reading [0, 10/s]
DER Availability Reading false, true
Wind DER Generator Pitch Control [0, 90◦]

Usage Age Reading [0, 232]
Appliance Activation Control false, true
Energy Storage Control false, true
Subscriber Demand Reading [0, 1000 kW]

e) Manage State Space: To manage the number of states,

the size of the state machine is reduced by abbreviating the

values for some components. Only three values are relevant

for system, microgrid and subscriber demand: below threshold,

normal and above threshold. Therefore, the domains for these

components are collapsed to three values for the HE, DAP and

SEM, respectively. This treatment yields a modest HE state

machine with 2×3×3×3×2×2×2×2×2×2 = 3456 states, out
of which 1008 are identified as safe states and 2448 are unsafe

states. Only two values are relevant for networking: whether

or not packets forwarded and packets received differ by more

than some threshold. Therefore, the domain for this component

is collapsed to two values. This treatment yields a modest DAP

state machine with 3× 3× 2× 2× 2× 2× 2× 2× 3 = 1728
states, out of which 255 are identified as safe states and 1473

are unsafe states. Only three values are relevant for rate: below

threshold, normal and above threshold. Also, only two values

are relevant for usage reporting: current or missing. Therefore,

the domains for these components are collapsed to three and

two values, respectively. This treatment yields a modest SEM

state machine with 2×2×3×2×3×2×2×2×2×3 = 3456
states, out of which 396 are identified as safe states and 3060

are unsafe states.

E. Collect Compliance Degree Data

BRIDS relies on the use of monitor nodes, e.g., an SEM

or a DAP is a monitor node of another SEM. The monitor

node knows the state machine of the trustee node assigned

to it. The monitor node periodically measures the amount of

time the trustee node stays in safe and unsafe states as the

trustee node migrates from one state to another triggered by

events causing state transitions. A binary grading policy, i.e.,

assigning a compliance degree of 1 to a safe state and 0 to an

unsafe state, is considered. Let c be the compliance degree of

a device. The compliance degree c of a device essentially is

equal to the proportion of the time the device is in safe states.
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Let S be the set of safe states the trustee node traverses over

a period of time T . Let ti be the sojourn time that the trustee

node stays in a safe state i, as measured by the monitor node.

Then the monitor node collects an instance of c by:

c =

∑
i∈S

ti

T
(1)

If a node stays only in safe states during T , then by Equation

1, its compliance degree c is one. On the other hand, if a node

stays only in unsafe states only during T , then its compliance

degree c is zero. The monitor node monitors and collects

the trustee node’s compliance degree history c1, c2, . . . , cn for

n monitoring periods, where n is sufficiently large, based

on which it concludes whether or not the trustee node is

compromised.

The state machines generated are leveraged to collect com-

pliance degree data of a good and a bad node. With Equation

1, the compliance degree c is essentially equal to the sum

of the probabilities of safe states i.e., c =
∑

j∈S
πj , where

πj is the limiting probability that the node is in state j of

the state machine and S is the set of safe states in the state

machine. Compliance degree history c1, c2, . . . , cn of a node

is then collected by means of Monte Carlo simulation. That

is, given a good (or a bad) node’s state machine, start from

state 0 and then follow the stochastic process of this node as it

goes from one state to another. This is continued until at least

one state is reentered sufficiently often (say 100 times). Then

πj is calculated using the ratio of the number of transitions

leading to state j to the total number of state transitions. Then

one instance of compliance degree is collected. A sufficiently

large n test runs was repeated to collect c1, c2, . . . , cn needed

for computing the distribution of the compliance degree of a

good or a bad node performing reckless or random attacks.

F. Compliance Degree Distribution

The measurement of compliance degree of a device fre-

quently is not perfect and can be affected by noise and unre-

liable wireless communication in the WAN, NAN and HAN

segments. The compliance degree is modeled by a random

variable X with G(·) = Beta(α, β) distribution [18], with the

value 0 indicating that the output is totally unacceptable (zero

compliance) and 1 indicating the output is totally acceptable

(perfect compliance), such that G(a), 0 ≤ a ≤ 1, is given by

G(a) =

∫ a

0

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx (2)

and the expected value of X is given by

EB [X] =

∫ 1

0

x
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx =

α

α+ β
(3)

The α and β parameters are to be estimated based on the

method of maximum likelihood by using the compliance

degree history collected (c1, c2, . . . , cn) during the system’s

testing phase. The maximum likelihood estimates of α and β
are obtained by numerically solving the following equations:

n∂Γ(α̂+β̂)
∂α̂

Γ(α̂+ β̂)
−

n∂Γ(α̂)
∂α̂

Γ(α̂)
+

n∑
i=1

log ci = 0

n∂Γ(α̂+β̂)

∂β̂

Γ(α̂+ β̂)
−

n∂Γ(β̂)

∂β̂

Γ(α̂)
+

n∑
i=1

log(1− ci) = 0 (4)

where

∂Γ(α̂+ β̂)

∂α̂
=

∫ ∞

0

(log x)xα̂+β̂−1e−xdx.

A less general, though simpler model, is to consider a single

parameter Beta(β) distribution with α equal to 1. In this case,

the density is β(1 − x)β−1 for 0 ≤ x ≤ 1 and 0 otherwise.

The maximum likelihood estimate of β is

β̂ =
n

n∑
i=1

log(
1

1− ci
)

(5)

The reason the Beta distribution is chosen is that the

domain of the Beta distribution can be viewed as a probability,

so it can be used to describe the prior distribution over

the probability (of a distribution) which models the node

compliance degree. By applying Bayesian inference, the Beta
distribution then can be used as the posterior distribution of

the probability after observing sufficient instances.

G. False Negative and Positive Probabilities

Our intrusion detection technique is characterized by false

negative and false positive probabilities, denoted by pfn and

pfp, respectively. A false negative occurs when a bad node is

missed as a good device, while a false positive occurs when a

good node is misdiagnosed as a bad device. While neither

is desirable, a false negative is especially impactful to the

system’s continuity of operation. In this paper, a threshold

criterion is considered. That is, if a bad node’s compliance

degree denoted by Xb with a probability distribution obtained

by Equation 2 is higher than a system minimum compliance

threshold CT , then there is a false negative. Suppose that

the compliance degree Xb of a bad node is modeled by a

G(·) = Beta(α, β) distribution. Then the host IDS false

negative probability pfn is given by:

pfn = Pr{Xb > CT } = 1−G(CT ). (6)

On the other hand, if a good node’s compliance degree denoted

by Xg is less than CT , then there is a false positive. Again

suppose that the compliance degree Xg of a good node is

modeled by a G(·) = Beta(α, β) distribution. Then the host

false positive probability pfp is given by:

pfp = Pr{Xg ≤ CT } = G(CT ). (7)

III. NUMERICAL DATA

Numerical data is reported in this section. A sequence

of compliance degree values (c1, c2, . . . , cn) is first collected

for a good or bad device based on Monte Carlo simulation.

Equation 5 is then applied to compute the β parameter value

of G(·) = Beta(α, β) for the probability distribution of

the compliance degree for a good device or a bad device

performing random attacks. pfn and pfp are then calculated

by Equations 6 and 7, respectively. The minimum compliance



8

TABLE VIII
β IN BETA(1,β) AND RESULTING pfn AND pfp VALUES UNDER VARIOUS

ATTACK MODELS FOR HE (CT = 0.90).

Attack Type β pfn pfp
Random (pa = 1.00) 99.5 <0.001% 2.30%
Random (pa = 0.80) 4.33 0.0047% 2.30%
Random (pa = 0.40) 1.10 7.99% 2.30%
Random (pa = 0.20) 0.633 23.3% 2.30%
Random (pa = 0.10) 0.449 35.5% 2.30%
Random (pa = 0.05) 0.353 44.3% 2.30%

TABLE IX
β IN BETA(1,β) AND RESULTING pfn AND pfp VALUES UNDER VARIOUS

ATTACK MODELS FOR DAP (CT = 0.90).

Attack Type β pfn pfp
Random (pa = 1.00) 49.6 <0.001% 4.59%
Random (pa = 0.80) 4.19 0.0064% 4.59%
Random (pa = 0.40) 1.10 7.89% 4.59%
Random (pa = 0.20) 0.644 22.7% 4.59%
Random (pa = 0.10) 0.464 34.3% 4.59%
Random (pa = 0.05) 0.372 42.5% 4.59%

threshold CT is then adjusted to control pfn and pfp obtainable.

With perr a monitor node can misidentify the status the

trustee node is in. perr is set to 0.010, 0.015 and 0.020 for

HE, DAP and SEM nodes, respectively. This is because 1

- 2% of mis-monitoring due to ambient noise and wireless

communication faults in these environments is reasonable.

This is based on Lin and Latchman reporting a 0.11 - 2.04%

Power Line Communication packet error rate [15] and Hong et

al. reporting a 0.02 - 4% failure rate [11]. The mis-monitoring

error probability of an SEM toward another SEM is higher

than that of a DAP toward another DAP, or an HE toward

another HE because of limited range and capability of an SEM

device.

Tables VIII, IX and X show the β values and the resulting

pfn and pfp values when CT is 0.9 (CT is a design parameter

to be fine-tuned to trade high false positives for low false

negatives). Because the expected compliance degree following

a Beta(α, β) distribution is α/(α+ β) as given by Equation

3, it is seen that β is close to 0 for a good node or a hidden

bad node with a low attack probability (e.g., pa = 0.05) since
such a node will have the average compliance degree close to

1. On the other hand, β is much larger than 0 for a bad node

with a high attack probability (e.g., pa = 1) since such a node

will have the average compliance degree much lower than 1.

It is observed that when the random attack probability pa
is high, the attacker can be easily detected as evidenced by

a low false negative probability. Especially when pa = 1, a
reckless attacker can hardly be missed. On the other hand, as

TABLE X
β IN BETA(1,β) AND RESULTING pfn AND pfp VALUES UNDER VARIOUS

ATTACK MODELS FOR SEM (CT = 0.90).

Attack Type β pfn pfp
Random (pa = 1.00) 32.8 <0.001% 6.87%
Random (pa = 0.80) 4.06 0.0086% 6.87%
Random (pa = 0.40) 1.11 7.78% 6.87%
Random (pa = 0.20) 0.656 22.1% 6.87%
Random (pa = 0.10) 0.479 33.2% 6.87%
Random (pa = 0.05) 0.390 40.7% 6.87%

pa decreases, the attacker becomes more hidden and insidious,

and the false negative probability increases. The false positive

probability remains the same regardless of the random attack

probability because it is not related to the attacker behavior.
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Fig. 2. HE Receiver Operating Characteristic Graph.

By adjusting CT , the specification-based IDS technique can

effectively trade higher false positives for lower false negatives

to cope with more sophisticated and hidden random attackers.

This is especially desirable for ultra safe and secure applica-

tions for which a false negative may have a dire consequence.

Figure 2 shows a Receiver Operating Characteristic (ROC)

graph of intrusion detection rate (i.e., 1 − pfn) versus false

positive probability (pfp) obtained as a result of adjusting CT .

In Figure 2 there are several curves for each node type, one for

each random attacker case with a different attack probability

pa. As CT is increased, the detection rate increases (vertically

up on a ROC graph) while the false probability increases

(toward the right of a ROC graph). It is seen that with the

specification-based IDS technique, the detection rate of the

node can approach 100% for detecting attackers, that is, an

attacker is always detected with probability 1 without false

negatives, while bounding the false positive probability to

below 0.2% for reckless attackers and below 6% for random

attackers.

IV. COMPARATIVE ANALYSIS

The performance of BRIDS is compared with contemporary

anomaly-based IDSs for HEs, DAPs and SEMs, including

CLONALG and AIRS2Parallel [22], [23], LOUD, LOED,

LOUD-GLR and LOED-GLR [10].

Zhang et al. [23] reported that CLONALG had a false

positive rate of 0.7% and a false negative rate of 21.02%

and AIRS2Parallel had a false positive rate of 1.3% and

a false negative rate of 26.32%. Zhang et al. [22] further

compared the effectiveness of audit data from three sources:

home IDS (HIDS), neighborhood IDS (NIDS) and wide-area

IDS (WIDS). These three approaches correspond with the

SEM, DAP and HE nodes identified in Figure 1. Here the

authors reported that CLONALG had an accuracy of 99.70%

for HEs, 80.10 - 97.00% for DAPs and 93.90 - 99.30% for

SEMs. They reported that AIRS2Parallel had an accuracy of

91.50% for HEs, 82.10 - 96.10% for DAPs and 95.10 - 98.70%
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TABLE XI
COMPARISON RESULTS FOR HE.

Approach Detection Accuracy Device

CLONALG [23] 100-0.7-21.02 = 78.28% HE

AIRS2Parallel [23] 100-1.3-26.32 = 78.38% HE

LOUD [10] 100-0.1-9 = 90.90% HE

LOED [10] 100-0.1-16 = 83.90% HE

LOUD-GLR [10] 100-0.1-5 = 94.90% HE

LOED-GLR [10] 100-0.1-9 = 90.90% HE

CLONALG WIDS [22] 99.70% HE

AIRS2Parallel WIDS [22] 91.50% HE

BRIDS (CT = 0.50) 100-0.70-0.00 = 99.30% HE

BRIDS (CT = 0.73) 100-1.30-0.00 = 98.70% HE

BRIDS (CT = 0.09) 100-0.10-0.01 = 99.89% HE

TABLE XII
COMPARISON RESULTS FOR DAP.

Approach Detection Accuracy Device

CLONALG NIDS [22] [80.10, 97.00%] DAP

AIRS2Parallel NIDS [22] [82.10, 96.10%] DAP

BRIDS (CT = 0.37) 100-0.70-0.00 = 99.30% DAP

BRIDS (CT = 0.58) 100-1.30-0.00 = 98.70% DAP

BRIDS (CT = 0.06) 100-0.10-1.68 = 98.22% DAP

for SEMs. The authors provided no pfn or pfp information, but

presumably the worst detection accuracy is obtained when pfp
is very low. He and Blum [10] investigated LOUD, LOED,

LOUD-GLR and LOED-GLR approaches to anomaly-based

IDS. They fixed the false positive probability (i.e., pfp) at 0.1%
and showed that the detection rate (i.e., 1− pfn) for each ap-

proach varies over a wide range based on the parameterization.

The LOUD-GLR approach reportedly performs the best with

the detection accuracy of 100− 0.1− 5 = 94.9%.

Tables XI, XII and XIII summarize the comparative perfor-

mances among contemporary IDSs for HE, DAP and SEM

devices, respectively. The performance metric is detection

accuracy defined as 1−pfp−pfn. For cases where pfn and pfp
are reported [10], [23], the detection accuracy value is shown

following the 1−pfp−pfn format. For cases where pfn and pfp
are not reported [22], the detection accuracy value or a range of

detection accuracy values is shown only. For comparison, the

adversary is configured with pa = 1 (reckless attacks). BRIDS

performance is shown for CT = 0.50 for HE, CT = 0.37 for

DAP and CT = 0.29 for SEM to approximate the CLONALG

pfp of 0.7% [23]. BRIDS performance is shown for CT = 0.73
for HE, CT = 0.58 for DAP and CT = 0.47 for SEM

to approximate the AIRS2Parallel pfp of 1.3% [23]. BRIDS

performance is shown for CT = 0.09 for HE, CT = 0.06 for

DAP and CT = 0.05 for SEM to approximate the LOUD,

LOED, LOUD-GLR and LOED-GLR pfp of 0.1% [10].

Tables XI, XII and XIII support the claim that by effectively

TABLE XIII
COMPARISON RESULTS FOR SEM.

Approach Detection Accuracy Device

CLONALG HIDS [22] [93.90, 99.30%] SEM

AIRS2Parallel HIDS [22] [95.10, 98.70%] SEM

BRIDS (CT = 0.29) 100-0.70-0.00 = 99.30% SEM

BRIDS (CT = 0.47) 100-1.30-0.00 = 98.70% SEM

BRIDS (CT = 0.05) 100-0.10-7.82 = 92.08% SEM

adjusting CT to trade false positives for low false negatives,

BRIDS outperforms existing anomaly-based IDS approaches,

especially for HE and DAP devices.

V. CONCLUSIONS

For a modern electrical grid, being able to detect attackers

while limiting the false positive probability to protect the

continuity of operation is of utmost importance. In this paper, a

behavior-rule specification-based IDS technique for intrusion

detection of physical devices was proposed. The utility by

head-ends, distribution access points/data aggregation points

and subscriber energy meters was exemplified. This study

also demonstrated that the detection probability approaches

one (that is, the attacker can always be caught without false

negatives) while bounding the false positive probability to

below 0.2% for reckless attackers and below 6% for random

attackers (that is, the probability of misidentifying a good

node as a bad node can always be bounded to a very low

level). Through a comparative analysis, it was demonstrated a

behavior-rule specification-based IDS technique outperforms

existing anomaly-based IDS approaches for detecting intrud-

ers.

Two future research directions extending from this study

are (a) investigating and analyzing intrusion response and

repair strategies [17]; and (b) implementing behavior rules on

applications. Possible intrusion responses include evicting in-

dividual compromised nodes, isolating compromised segments

(microgrid or larger scope) and adjusting IDS parameters (e.g.,

TIDS,m and CT ) to increase detection strength. Possible repair

strategies are to identify compromised segments and for each

one: stop operating, revert all nodes to certified software loads

and configurations, rekey/reset passwords and progressively

resume operation from the production side of the network

towards the subscribers. Possible implementation strategies are

to encode the state machine, host IDS software and system

IDS software in a high-level language, cross-compile for

the targets of interest, deploy and tune the parameterization

(e.g., TIDS, m and CT ) based on desired versus actual false

negative and positive rates. Another future research direction

is to investigate other intrusion detection criteria [1], [4],

[5] based on accumulation of deviation from good states in

addition to the current binary criterion used in the paper

based on a minimum compliance threshold to further improve

the detection rate without compromising the false positive

probability.
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