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Abstract

Airborne Light Detection and Ranging (LIDAR) dat@opide useful measurements of
forest canopy structure but are often limited iated coverage. Satellite remote sensing
data from Landsat can provide extensive spatiadi@me of generalized forest information.
A forest survey approach that integrates airbornBAR and satellite data would
potentially capitalize upon these distinctive cleggastics. In this study in coastal forests of
British Columbia, the main objective was to deterenihe potential of Landsat imagery to
accurately estimate forest canopy cover measui@d small-footprint airborne LIiDAR
data in order to expand the LIDAR measurements tlarger area. Landsat-derived
Tasseled Cap Angle (TCA) and spectral mixture aigl(SMA) endmember fractions (i.e.
sunlit canopy, non-photosynthetic vegetation (NP¥hade and exposed soil) were
compared to LiDAR-derived canopy cover estimateselfbased analysis and object-based
area-weighted error calculations were used to assggession model performance. The
best canopy cover estimate was obtained (in thectbased deciduous forest models) with
a mean object size (MOS) of 2.5 hectares (adjuRfed).86 and RMSE = 0.28). Overall,
lower canopy cover estimation accuracy was obtafnedoniferous forests compared to
deciduous forests in both the pixel and object-thaggproaches.
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1. Introduction
Accurate information on forest canopy structureraguired to understand and manage

forest ecosystems (Wulder and Franklin 2007). Farasopy cover (CC), the area of the
ground covered by a vertical projection of the gagn@Jennings et al., 1999), is a useful
metric for several natural resource managemenicgtigins such as: evaluation of wildlife
habitat (Koy et al., 2005), forest structure clasaiion (Lovell et al., 2003; Fiala et al.,
2006; Lee and Lucas 2007), characterization ofaradinks (Chopping et al., 2008), forest
fire behaviour and fuel models (Rollins and Fra2@)6), and estimation of canopy light
transmission (Lieffers et al., 1999).

Canopy cover is typically estimated with field mshentation at specific sites, or by
remote sensing methods at increasing spatial staleapport large area monitoring and
modeling applications (e.g., Canadell et al., 2@D&lIston et al., 2012). Airborne LIiDAR
(Light Detection and Ranging) is an active remansing system well suited to measure
canopy structural attributes. LIDAR data have prouseful for estimating CC (Hyde et al.,
2005; Smith et al., 2009, Hall et al., 2011); whil®AR data can provide better estimates



of CC, wall-to-wall acquisitions of LIDAR data remacost prohibitive for large forest
areas (Coulston et al., 2012). Therefore, LIDAR€dgiasharacterizations of canopy structure
are often restricted in spatial extent. Multispalctemote sensing datasets such as the one
from Landsat have also been employed to estimateY@€ the lesser sensitivity of these
spectral datasets to the three dimensional streictivegetation canopies (Falkowski et al.,
2005; Duncanson et al., 2010) often degrades the rekttipnbetween CC and metrics
calculated from the spectral bands. However, the &vailability of large area multispectral
datasets makes them an important data sourcetiioraging CC across large areal extents.
In one recent study, Smith et al. (2009) conduatsaks-comparison of multispectral,
LIiDAR and coincident field measurements of CC data they found the relationship
between LIDAR-derived and field-measured canopyecavas much stronger and more
linear. As forest information is considered overgé& areas, and at higher temporal
resolution (e.g., Goetz et al., 2009), such airedibAR data must be supplemented with
other remote sensing datasets, such as those edtdpyirthe sensors on the Landsat series
of platforms (Wulder et al., 2003). The integratiohLiDAR and passive optical sensors
needs to be more thoroughly explored for wall-tdhwaapping of canopy cover (Hall et
al., 2011). Recently, models have been developedp#tially extend airborne LiDAR
measured forest structural attributes over largeasausing parametric approaches (Chen et
al., 2012), which typically use pixel-based mukiplegression to define relationships
between the satellite imagery and airborne LiDARx@e canopy cover (e.g., Smith et al.,
2009). The integration of such satellite multispgctemote sensing data with information
from airborne LIDAR provides opportunities to catite upon the distinctive
characteristics of both. This integration couldoalerve to make LIDAR more cost
effective over larger areas (e.g., Hudak et al.22@hen et al. 2012). While dealing with
methods to accomplish airborne LIDAR and Landsé& @deegration, among the significant
questions that must be addressed are: (i) theteslenf Landsat spectral variables and (ii)
the selection of a pixel-based or object-based agapproach.

Recent studies have developed empirical modelgdduge canopy cover products (e.g.,
Coulston et al., 2013) using explanatory varialblesved from Landsat reflectance values

and derivatives. Various Landsat indices have hBEen used to estimate forest structure



characteristics. The Tasseled Cap (Kauth-Thomaahsformation indices, for example,
have proven reliable and robust in a range of enwrents (Healey et al., 2005). To
accommodate the lack of short-wave infrared bandsrwassembling a time series of
Landsat images including both Multispectral Scar(iM$8S), Thematic Mapper (TM), and
Enhanced Thematic Mapper (ETM+), the Tasseled CagleA(TCA) is recommended
(Powell et al. 2010). Generally, the TCA is anrastie of the proportion of vegetation to
non vegetation (Powell et al., 2010; Gomez et28l11). Dense forest stands are expected
to show higher TCA values than more open standsug soil (White et al., 2011). The use
of fraction images derived from Spectral Mixture alysis (SMA) has also shown to be
effective in estimating forest canopy cover (Goauwt al., 2005; Elmore et al., 2000;
Lobell et al., 2002; Peddle et al., 1999). Whered#ailg a pixel-based or object-based
approach for image analysis, different methodolalgichallenges are posed (Hay and
Blaschke 2010). For example, in an object-basedoagp, a significant question is the best
object scale (i.e., mean object size (MOS)) to@ahithe desired model accuracy. There is
a growing literature of research reporting theat#hces in estimation accuracy between
pixel-based and object-based models over a rangeatés (e.g., Clinton et al., 2010; Duro
et al., 2012; Duro et al., 2013).

The objective of the current study is to examine ¢thoice of Landsat spectral variables
and the pixel-based versus object-based approadbt@rmining the relationship between
airborne LiDAR-derived forest canopy cover and Lsatdmagery acquired over deciduous

and coniferous forests in Vancouver Island, Britumbia.

2. Dataand Methods

2.1 Study area

The study area (49°82, 125°20W) is located between Courtenay and Campbell River
eastern Vancouver Island, British Columbia, Can@ilgure 1). A 5.1 by 5.1 km (2601 ha)
study area corresponding to the airborne LIDAR datguisition mission ranges in
elevation from 120m to 460m, and is within 15 kmtlod coast. The area is characterized
by mature conifer forest, regenerating conifer dediduous stands, and harvested areas.
Conifer forest types comprise approximately 65%hef study area, and are dominated by
80% Douglas-fir [Pseudotsuga menziesii (Mirb.) E@n with smaller proportions of
Western Red Cedar [Thuja plicata (Donn.)], and esHemlock [Tsuga heterophylla



(Raf.) Sarg.]. Deciduous forest of Red Alder (Almubra Bong.) comprises approximately
16% of the study area. The majority of forest ssawtthin the area, which are industrially
managed by private forest companies under licensm fthe provincial government,
consists predominantly of forest regenerating ffarvest and are between 20 and 60 years
of age (Morgenstern et al., 2004), with a mean pgrweight of 18.5 m. For the mature
stands, a 1998 site survey found that the stansityamas approximately 1100 stems/ha.

2.2 Airborne LiDAR data

Discrete return LIDAR data for the study area wacguired on 8 June 2004 by Terra
Remote Sensing (Sidney, British Colombia, Canadajgua Lightwave Model 110 Terrain
Scanning LIDAR from a Bell 206 Jet Ranger helicopféhe positioning systems, a Litton
LTN-92 inertial navigation system (INS) and an Astit Z-surveyor Dual Frequency P-
code differential global positioning system (DGP&¢orded the aircraft's altitude and
position within 5-10 cm. The Lightwave Model 11Gtapulse repetition frequency of 10
kHz, a wavelength of 1047 nm, a swath width of Z6fj a beam divergence of 3.5 mrad.
Based on the pulse frequency, lowest sustainaiglet fspeed, and altitude, hit densities of
0.7 hits/nf were achieved with a footprint (spot size) of Gnl@rable 1).

No artificial objects (e.g., buildings) exist inetlstudy area. The raw LIiDAR point cloud
data were collected containing both ground and gromnd returns and were processed
with Terrascan software (v4.006 — Terrasolid, HedsiFinland) which combines filtering
and thresholding methods (Chen et al., 2010). i; gtudy, LIDAR-derived canopy cover
(CC), was estimated using the ratio of the pulsermed from the upper layer of tree crown
(determined using a threshold height) to total mesu(throughout the canopy to ground
profile).

all returngabovesomeheight theshold)
totalreturn: 1)

CC=z

This CC derivation method has been demonstratesgweral previous studies, including:
Hyde et al., (2005), Morsdorf et al., (2006), Sotpet al., (2006), Hopkinson and Chasmer,
(2009), and Smith et al. (2009). Common to thesargtes in the literature, the selection
of the threshold above which returns are considerdx from canopy has been determined
based upon local forest conditions, the goals efdfudy, and the desired information. To
better understand the implications of differing egtrold values Smith et al. (2009)
evaluated a selection of different height thresbadder a study area with mixed forest
conditions. Their analysis determined a neglighd&ation in correlation (r difference of
~0.0005) between the field-densitometer-derived &mdAR derived canopy cover
measures occurred when the threshold was betw&@nahd 2.00 m; therefore, for their



study they selected an intermediate threshold % in. The same threshold value of 1.50
m was used in our study to determine canopy retdrne final estimates of canopy cover
and other structure variables were resampled to 80match the spatial resolution of the
Landsat imagery

2.3 Landsat data

A Landsat image of the study area acquired Augbs2@04 was obtained from the United
States Geological Survey (USGS) Landsat archive iftmge was system-corrected for
terrain and converted to ‘top-of-atmosphere-rackant.1T data product). The cosine
estimation of atmospheric transmittance (COST) ivsaadiometric correction model of
Chavez (1996) was applied to convert to surfackegtince. Water, clouds and cloud
shadows in the image were masked using an objsedba&loud and cloud shadow
detection algorithnfor Landsat imageryZhu et al., 2011). Finally, the airborne LIDAR
data were registered to the Landsat image usingr&®nd control points. A second-order
polynomial warping method and nearest neighbormgdiag were selected for the co-
registration, yielding a RMSE of 0.59 m.

The Landsat image was transformed using the Tabsé&ap (Kauth-Thomas)
Transformation with coefficients specific to theage date and sensor (Crist, 1985; Huang
et al., 2002). The Tasseled Cap Angle (TCA), defimgdPowell et al. (2010) was derived
for the Landsat image in this study (see Ahmed.e2814). TCA has been interpreted as
an indicator of the proportion of vegetation to n@getation within a Landsat pixel, and is
defined as follows:

TCA =arctan(greennessbrightnesy (2)

Spectral mixture analysis (SMA) is a useful techeiqused to address the spectral
heterogeneity present in remote sensing pixels, (@egldle et al., 1999; Zeng et al., 2008).
SMA estimates the proportions of pure componenthimwieach pixel, which typically
contains more than one feature or ground cover ($oeners et al., 2011). In this study,
spectral mixture analysis (SMA) was used to esentlaé proportions of pure components
(i.,e., endmembers) within Landsat pixels. Using @@04 Landsat TM imagery we
generated sub-pixel fraction images. Lu et al0O@0demonstrated that the removal of
highly correlated bands such as TM 1 and TM 2 inASkproves the quality of fraction
images. Thus, in this study to reduce correlatiosh @ata redundancy we used Landsat TM
band subset images (i.e. bands 3, 4, 5, and AeiBMA. One of the important prerequisite
for successful SMA is the selection of represemtagBndmembers (Somers et al., 2011,
Tompkins et al., 1997). Here endmembers represei@imlit canopy, non photosynthetic
vegetation (NPV), exposed soil, and shade werevel@rirom the Landsat multispectral
image using the n-dimensional visualization tooa{lable in ENVI 4.8) and the LIiDAR
data. Typically, the variation in understory retlewce across 30 m resolution Landsat



scene causes a difficulty in SMA endmember selactiothis study to reduce the influence
of understory vegetation on SMA fractions, treegheiinformation derived from LIDAR
was used to help in the selection of endmembers.ekample, tree height information
derived from LIiDAR aided in the selection of NPVdaexposed soil endmembers by
identifying sites with low or no vegetation cové&he pixels positioned at the edges of the
data cloud of the Landsat spectral space in thémessional visualization tool were
selected as sample endmembers. Finally, the enderemiere selected based on the
spectral shape of the wavelenghth-reflectance aragje information (e.g. the spectra for
soil are mostly associated with dirt roads and N®VWnostly associated with understory
grass having senesced vegetation). We applied-dgastre linear mixture modeling
(Adams et al., 1993) to estimate the proportioreath endmember within the Landsat
pixels. The sums of the fractions add up to 1. ifaemensional visualisation tool was also
used to check the separability of the endmembeatgeiine the selected regions of interest.
The SMA model results were evaluated as proposgdtgms et al. 1995) with the root-
mean-square (RMS) image and fraction images irgeggrin terms of image context and
spatial distribution. Finally the fractional abumdas of the key image endmembers (sunlit
crown, NPV, bare soil, and shade) were estimated.

2.4 Sample Selection

The use of segmentation objects, from Landsat sgegata, as areal units to estimate
airborne LiDAR-derived canopy cover was compareith whe results of estimates obtained
using areal units of fixed 30 m size (Landsat mkxeBystematic sampling was used to
select data from the Landsat and LiDAR imagerytha regression analysis. Tree height
information from the LIDAR Crown Height Model (CHM)escribed by (Chen et al., 2010)
was used to aid in distinguishing various grouratuees, such as trees from non-treed low
vegetation. Various other sources of data aidgataducing the stratification, including an
existing land cover classification (Wulder et a2008) and the provincial database
“Terrestrial Ecosystem Mapping of Site Series” @0@or the study area. These sources
were also used to identify the dominant forest $yipethe area.

In the pixel-based sample, a sampling proceduredgagned based on semivariograms of
the airborne LIiDAR-derived canopy cover. Typicallge semivariance stabilized at 250—
300 m suggesting that spatial autocorrelation wgsifecant within a lag of 300m. A
minimum 10 Landsat pixel buffer was then enforcetiMeen sampled pixels. The starting
pixel was randomly selected from a subsample of diR6ls near the northwest border of
the LIDAR dataset. From the random starting pixsery tenth pixel was sampled when
possible. Following this procedure two independsaples were obtained for statistical
model-building and validation of the model.

In the object-based samplebjects of varying size and shape resulted fromyapp a
multiresolution segmentation using the ENVI 4.8tdiea extraction module on the Landsat



TCA image. Ten different object scales or minimubjeat size (MOS) were examined.
Due to the variation in data acquisition geometepween the LIDAR and the Landsat
sensor the model performance using a MOS smaléer €h074 ha was highly affected by
the co-registration errors mainly in areas whergdacanopy cover variation exists, thus a
MOS of 0.074 hectare was selected as the smatlak s this study. The MOS of 7.00 ha
was chosen as the largest scale, when using a M@&eg than 7.00 ha the output
segments start to contain various land cover typgtead of a single cover type within a
given object. Finally, the patchiness of the staglga due to the resulting segments was
examined using percent homogenous cover calcufatedariable minimum object sizes
(MOS).

The same spectral variables were extracted foroty)ect-based analysis. However, all
variables were extracted from objects rather thxel@ Model building and validation
samples were selected similar to the pixel-bas@doagh. Here buffered random sampling
was used, in which image objects were randomlyctedebut prevented from being closer
together than the ideal limit of 300m where thetigpautocorrelation was found to be
significant. Subsequently 40 samples were seldoredach model building and validation.
The final model RMSE was calculated in a slightiffedlent way when using the object-
samples. Unlike the pixel-based approach, in theablbased approach image objects have
varying sizes even at the same scale. This caasgs dbjects to have more influence in the
canopy cover error calculation than small objedtsus, for the model validation it is
important to consider each object based on thedizs area. In this study we applied an
area weighted RMSE used by Chen et al. (2011).

N CCLiDAR_i) ] (3)

N
RMSE = \/%Z[Ai (CC...
i=1
Where CCiangsat i = Canopy cover calculated from the regressiongusiandsat imagery
for the {" object; CCligar i = Canopy cover measured from LIiDAR data for tieabject;
A; = area for the"l object; A, = area for the total study area; N = total nundfebijects.
A check of the multicollinearity between predict@riables in the regression analysis was
carried out among the Landsat spectral indicesin@rg least squares (OLS) regression
models were developed to estimate LiDAR-derivedopgncover with the predicting
variables derived from Landsat spectral indicesAY@nd fractional abundances of the key
image endmembers (sunlit crown, NPV, bare solil, simatle). The statistical analysis was
designed to assess the relationship between th&R:i@erived canopy cover estimates and
the Landsat TCA, and to evaluate the contributibepctral mixture analysis endmember
fractions, sunlit canopy, non-photosynthetic vetjeta(NPV), shade and soil information
derived from Landsat imagery to the accuracy ofopgncover estimation. This was
achieved by building an exhaustive list of modelsing all possible combinations of
available predictors, in a forward stepwise methaldl.residuals were used to calculate



RMSE for each validated model. Consequently, theaRd RMSE were selected to
evaluate model performance.

3. Resultsand discussion

The spectral reflectance of the four SMA extractgadmembers (sunlit crown, NPV, bare
soil, and shade) as derived from Landsat shortwavared, near-infrared and red bands
are presented in Fig. 2. The endmembers were ¢adiréallowing the methods indicated in
Section 2.3 and were used to estimate the airddbwR-derived canopy cover.

The airborne LiDAR-derived canopy cover estimatndsat-derived TCA and endmember
fractions (i.e. sunlit crown, NPV, exposed soildahade) for the study area are shown in
Fig. 3. Spatial patterns are visible that coinaidéh an interpretation of the disturbance
history of the study area; for example, in the udp& hand corner of the study area are
patches that appear dark in the LIiDAR-derived cgnopver image, and bright in the
exposed soil endmember fraction image. Such aeaeecently harvested forests that are
in the early stage of regeneration, with low canopyer and high degree of not yet fully
revegetated. Similarly, in the lower left hand pmtof the study area, in the LIDAR-
derived forest canopy cover estimate patterns mible that show previously harvested
forest stands in various stages of regeneratiores@hareas are much brighter in the
LiDAR-derived forest canopy image and darker in fh@éA and various endmember
fraction images. This qualitative interpretation wsible patterns in the LIDAR and
Landsat imagery suggests that a quantitative reigresnalysis can be used to document
the relationship in more detail.

In the pixel-based sample, the individual correlaticoefficients between TCA, SMA-
derived endmember fractions and the airborne LiDd&Rved canopy cover estimate are
shown in Table 2. As expected, a strong correlatoefficient was obtained for the TCA (r
= 0.86; R = 0.73). A lower correlation was observed betwed¢bAR-derived canopy
cover and the sunlit canopy endmember fraction ¢.68; R = 0.46), and the lowest
correlation coefficient was obtained using the esqabsoil endmember.

Most of the possible combinations of the LandsatAT&hd the spectral endmembers
produced significant multiple regression modelshwitDAR-derived canopy cover (Table
3). Adjusted R values ranged from 0.15 to 0.81. In this studyydhiose models with
adjusted Rof > 0.65 were considered, which resulted in severessipn models selected
for coniferous and deciduous forests (Table 3 apd 4or all combinations each
independent variable was evaluated and retainets i€orrelation value with any other
independent variable was lower than 0.7.

The coniferous forest regression models predictilyAR-derived canopy cover suggest
the accuracy limit for the application of Landgatarge-scale studies of canopy cover. The
best predictor model wabtained using the combination of TCA, sunlit capapd the soll
endmember, resulting in multiple R = 0.88%° R 0.78 and an adjusted’R 0.78.



Comparably this method gives better canopy coviemation than previous studies which
used Landsat shortwave infrared derived indices. &@ample, Ahmad et al. (2014)
reported an adjusted’R 0.76 when combining TCA and NDVI in similar regseon
models.

A lower estimation accuracy was obtained for canifiands (R= 0.74) when TCA was
used alone. The inclusion of endmember image bastiresulted in an overall better
canopy cover estimation for conifers’(R 0.78 and RMSE = 0.39) (Table 3). The pixel-
based deciduous forest models indicate a bettenpyacover estimation for deciduous
forests (R= 0.81 and RMSE = 0.34) than for coniferous forésable 4).

The multi scale segmentation resulteldjects of varying size and shape. The percent
homogenous cover (Table 5) indicates the degregmtohiness of the study area for six
minimum object sizes (MOS). As MOS increased thatlsuevels of patchiness declined.
Small patches either aggregated into larger patchesempletely disappeared leading to an
increase in percent homogenous cover. Large MOS®ypected to decrease the canopy
cover variability between objects and increase tamopy cover variability within
individual objects, whereas small MOS tend to daseecanopy cover variability within
each object and the canopy cover variability betwagects is expected to increase.

The performance of object-based coniferous modelssagales with MOS 2.0, 2.5 and 3.0
ha, which resulted in & 0.60 are shown in table 6. The object-based approesults for
coniferous forest indicate the best object sizeofar study site corresponds to MOS of 2.5
hectares with adjusted?®R 0.82. This object-based approach resulted inebetnopy
cover estimation as compared to the pixel-basedezons forest regression models. The
error trend of regression models indicated that rigression models developed above
MOS 3.0 and bellow MOS 2.0 have higher RMSE andeloi. Similar to the pixel-based
approach the inclusion of endmember fractions, hts@ resulted in a better estimation.
The object scale appears to play a more significalet for the deciduous forest sample
than for the conifer stands. In this study, thet Ipesdiction of the LIDAR-derived canopy
cover estimate was obtained using the spectrabbl@s in the object-based deciduous
models with MOS of 2.5 hectares resulting in agid$®= 0.86 and RMSE = 0.28 (Table
7). A recent study by Chen et al. (2011) found tha best object scale corresponds to
MOS of 4.00 ha for prediction of LiDAR-derived caoheight in the same study site.
Since canopy cover is more closely associated thghtwo-dimensional satellite data than
canopy height, in our study, a smaller MOS and owpd estimation accuracy were
obtained for LIDAR-derived canopy cover comparedhi® canopy height study by Chen et
al. (2011). The best MOS of 2.5 ha found in oudgtis closer to the 2.0 ha minimum
mapping unit used for inventory purposes by prowainand territorial forest management
agencies in Canada. Hence, we are gaining confedenthe capacity for approaches such
as that presented here to be used to generateeunadues in areas not subject to regular
forest inventory and to aid with update within int@y cycles over managed forests.

1C



4. Conclusion

In this study, we investigated the potential of dsat imagery to estimate forest canopy
cover measured from small-footprint airborne LiDARta in order to expand the LiDAR
measurements to a larger area. Landsat-deriveceléds€ap Angle (TCA) and spectral
mixture analysis (SMA) endmember fractions (i.enlgucanopy, non-photosynthetic
vegetation (NPV)shade and exposed soil) were compared to LiDAR+ddrcanopy cover
estimates. Our results show that the inclusionhef éndmember fractions considerably
increased the model performance versus only usi@®g. Tonifer and deciduous forests
were separately modelled using OLS regressionetieibdescribe the impact of distinctive
crowns and leaf shapes that produce fairly expfipictral signatures in the study area.
Pixel and object-based models were developed. Aga-aeighted error calculation
approach was used to evaluate the RMSE of canopsr aerived from the object-based
approach. In both pixel and object-based approatigedeciduous forest regression models
predicting LiDAR-derived canopy cover resulted tagtcorrespondence than coniferous
models. Specifically, the average errors decreaye8.4 percent (from 0.34 to 0.28) for
deciduous forests. The results indicate that tre¢ blject models achieved better results
than those developed using only the pixel-basedoaph. The best canopy cover estimate
was obtained (in the object-based deciduous foneskels) with a mean object size (MOS)
of 2.5 hectares (adjusted=R0.86 and RMSE = 0.28). We confirm that selecsngable
object scale plays a significant role in the objea$ed approach (Addink et al. 2007, Chen
et al. 2011); since random scale selection maytreslower coefficient of determination
than the pixel-based approach. This study demdestthat changes in object scale affect
the overall patchiness of the study area and tlseltieg canopy cover estimation.
Generally the study area was found to have a ledshp landscape, the percentage
homogeneous cover varying from 82% - 88% for thher@nimum object sizes (MOS) that
are considered in this study. Accordingly, whenecbgcale was altered, subtle changes in
the level of patchiness were found. The percentegeogonous cover for the study area at
the optimum mean object size (MOS) of 2.5 hectames 86.6%. When estimating
continuous forest biophysical properties such asopg cover, typical object based
modeling approaches tend to focus only on the pmdace of regression models,
regardless of object size. In this paper, we evatudoth the performance of regression
models and the impact of changing object scalehenestimation of canopy cover. The
optimum mean object size found in this study cargbeeralized for other areas with a
similar degree of patchiness as the one considarduis study. For more heterogeneous
areas with distinct patchiness and landscape deastcs the methodology used in this
study can be applied to determine the optimum olgee that can be applicable to the
specific landscape conditions present. Additiomalused research is suggested to assess
the effect of object scales on attribute perfornearaemed at providing insights that will
allow for tuning of parameters to fit what is knovabout a given study location. The
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parameters we used in this study offer an exampla basis for applications in other
environments, with an investigation of applicalilib be tested, as we suggest, and tuning
when and if required.
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Table 1. LIiDAR parameters.

Parameter Performance
Sensor Mark Il

Laser scan frequency 25 Hz

Laser impulse frequency 40 000 Hz
Laser power <4W

Scan angle +10°

Type of scanning mirror Oscillating
Laser beam divergence <0.5 mrad
Measurement decay 0.5-0.8 hit$/m
Datum NAD83
Projection UTM Zone 10
Platform Bell 206 Jet Ranger helicopter

Flight altitude above ground
Flight speed

Version of TerraScan used to classify

900m

25-30 m/s

Version 004.0
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Table 2. Correlation coefficients between LiDAR canopy cover and L andsat-derived

TCA and endmember fractions.

Sunlit Exposed Canopy

TCA canopy NPV Shade soil cover

TCA 1.0 0.66 0.31 0.02 0.46 0.86
Sunlit canopy 0.66 1.0 -0.90 -0.94 0.04 0.68

NPV 0.31 -0.90 1.0 0.81 -0.27 -0.22

Shade 0.02 -0.94 0.81 1.0 -0.24 -0.34

Exposed soil 0.46 0.04 -0.27 -0.24 1.0 -0.20
Canopy cover 0.86 0.68 -0.22 -0.34 -0.20 1.0

Table 3. Coniferousregression models obtained with R? of > 0.65 (n=40 per equation).

Regression equation R® SE RMSE
CC=-0.194+0.27%sun-0.34s0il+0.2ETCA 0.78 0.15 0.39
CC=0.30¢&0.31sun-0.3€ soil 0.71 0.21 0.46
CC=0.76&0.27NPV -0.35s0il+1.81TCA 0.65 0.47 0.69
CC=0.354-0.3shad—0.43s0il+0.004TCA 0.65 0.50 0.71
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Table 4. Deciduous regr ession models obtained with R? of > 0.65 (n=60 per equation)

Regression equation R® SE RMSE
CC=0.261+0.18Esun-0.237s0il+0.32(TCA 0.81 0.11 0.34
CC=0.43¢0.212sur-0.25¢ soil 0.73 0.16 0.40
CC=0.421#0.39NPV-0.471s0i+0.495TCA 0.69 0.23 0.48

Table 5. Percent homogeneous cover for landscape elements of variable size.

Mean Object Size % Homogeneous Cover
1 ha 82.1
1.5 ha 84.2
2 ha 85.2
2.5ha 86.6
3 ha 87.5
3.5ha 87.8
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Table 6. Coniferous regression models obtained with R? of > 0.60 (n=40 per equation).

Regression equation MOS R? SE RMSE
CC=-0.2250.15sun-0.2&s0il+0.195TCA 2.5 0.82 0.17 0.42
CC=0.41%0.25sun-0.3¢ soil 3.0 0.75 0.31 0.56
CC=0.27=0.21shade-0.34s0il+0.45TCA 2.0 0.62 0.47 0.69

Table 7. Deciduous regr ession models obtained with R? of > 0.60 (n=40 per equation).

Regression equation MOS R? SE RMSE

CC=0.17%0.285sun-0.13s0il+0.32¢TCA 2.5 0.86 0.07 0.28

CC=0.224-0.15%hade-0.2850il+0.3ITCA 3.0 0.77 0.16 0.41

CC=0.1¢0.277sun—0.29¢ soil 2.0 0.61 0.54 0.74
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Fig. 2. Endmember spectral characteristics derived from Landsat shortwave-infrared, near-
infrared and red bands.
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Fig. 3. (a) LiDAR derived canopy cover. (b) Tasseled Cap Angle (TCA). (c) Sunlit crown, (d)
NPV, (e) shade and (f) exposed soil.
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