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Abstract  
Airborne Light Detection and Ranging (LiDAR) data provide useful measurements of 
forest canopy structure but are often limited in spatial coverage. Satellite remote sensing 
data from Landsat can provide extensive spatial coverage of generalized forest information. 
A forest survey approach that integrates airborne LiDAR and satellite data would 
potentially capitalize upon these distinctive characteristics. In this study in coastal forests of 
British Columbia, the main objective was to determine the potential of Landsat imagery to 
accurately estimate forest canopy cover measured from small-footprint airborne LiDAR 
data in order to expand the LiDAR measurements to a larger area. Landsat-derived 
Tasseled Cap Angle (TCA) and spectral mixture analysis (SMA) endmember fractions (i.e. 
sunlit canopy, non-photosynthetic vegetation (NPV), shade and exposed soil) were 
compared to LiDAR-derived canopy cover estimates. Pixel-based analysis and object-based 
area-weighted error calculations were used to assess regression model performance. The 
best canopy cover estimate was obtained (in the object-based deciduous forest models) with 
a mean object size (MOS) of 2.5 hectares (adjusted R2= 0.86 and RMSE = 0.28). Overall, 
lower canopy cover estimation accuracy was obtained for coniferous forests compared to 
deciduous forests in both the pixel and object-based approaches.  
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1. Introduction 
Accurate information on forest canopy structure is required to understand and manage 

forest ecosystems (Wulder and Franklin 2007). Forest canopy cover (CC), the area of the 

ground covered by a vertical projection of the canopy (Jennings et al., 1999), is a useful 

metric for several natural resource management applications such as: evaluation of wildlife 

habitat (Koy et al., 2005), forest structure classification (Lovell et al., 2003; Fiala et al., 

2006; Lee and Lucas 2007), characterization of carbon sinks (Chopping et al., 2008), forest 

fire behaviour and fuel models (Rollins and Frame, 2006), and estimation of  canopy light 

transmission (Lieffers et al., 1999).  

Canopy cover is typically estimated with field instrumentation at specific sites, or by 

remote sensing methods at increasing spatial scales to support large area monitoring and 

modeling applications (e.g., Canadell et al., 2008, Coulston et al., 2012). Airborne LiDAR 

(Light Detection and Ranging) is an active remote sensing system well suited to measure 

canopy structural attributes. LiDAR data have proven useful for estimating CC (Hyde et al., 

2005; Smith et al., 2009, Hall et al., 2011); while LiDAR data can provide better estimates 
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of CC, wall-to-wall acquisitions of LiDAR data remain cost prohibitive for large forest 

areas (Coulston et al., 2012). Therefore, LiDAR-based characterizations of canopy structure 

are often restricted in spatial extent. Multispectral remote sensing datasets such as the one 

from Landsat have also been employed to estimate CC. Yet, the lesser sensitivity of these 

spectral datasets to the three dimensional structure of vegetation canopies (Falkowski et al., 

2005; Duncanson et al., 2010) often degrades the relationship between CC and metrics 

calculated from the spectral bands. However, the free availability of large area multispectral 

datasets makes them an important data source for estimating CC across large areal extents.  

In one recent study, Smith et al. (2009) conducted cross-comparison of multispectral, 

LiDAR and coincident field measurements of CC data and they found the relationship 

between LiDAR-derived and field-measured canopy cover was much stronger and more 

linear. As forest information is considered over larger areas, and at higher temporal 

resolution (e.g., Goetz et al., 2009), such airborne LiDAR data must be supplemented with 

other remote sensing datasets, such as those acquired by the sensors on the Landsat series 

of platforms (Wulder et al., 2003). The integration of LiDAR and passive optical sensors 

needs to be more thoroughly explored for wall-to-wall mapping of canopy cover (Hall et 

al., 2011). Recently, models have been developed to spatially extend airborne LiDAR 

measured forest structural attributes over larger areas using parametric approaches (Chen et 

al., 2012), which typically use pixel-based multiple regression to define relationships 

between the satellite imagery and airborne LiDAR-derived canopy cover (e.g., Smith et al., 

2009). The integration of such satellite multispectral remote sensing data with information 

from airborne LiDAR provides opportunities to capitalize upon the distinctive 

characteristics of both. This integration could also serve to make LiDAR more cost 

effective over larger areas (e.g., Hudak et al. 2002; Chen et al. 2012). While dealing with 

methods to accomplish airborne LiDAR and Landsat data integration, among the significant 

questions that must be addressed are: (i) the selection of Landsat spectral variables and (ii) 

the selection of a pixel-based or object-based sampling approach.  

Recent studies have developed empirical models to produce canopy cover products (e.g., 

Coulston et al., 2013) using explanatory variables derived from Landsat reflectance values 

and derivatives. Various Landsat indices have also been used to estimate forest structure 
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characteristics. The Tasseled Cap (Kauth-Thomas) Transformation indices, for example, 

have proven reliable and robust in a range of environments (Healey et al., 2005). To 

accommodate the lack of short-wave infrared bands when assembling a time series of 

Landsat images including both Multispectral Scanner (MSS), Thematic Mapper (TM), and 

Enhanced Thematic Mapper (ETM+), the Tasseled Cap Angle (TCA) is recommended 

(Powell et al. 2010). Generally, the TCA is an estimate of the proportion of vegetation to 

non vegetation (Powell et al., 2010; Gomez et al., 2011). Dense forest stands are expected 

to show higher TCA values than more open stands or bare soil (White et al., 2011). The use 

of fraction images derived from Spectral Mixture Analysis (SMA) has also shown to be 

effective in estimating forest canopy cover (Goodwin et al., 2005; Elmore et al., 2000; 

Lobell et al., 2002; Peddle et al., 1999). When selecting a pixel-based or object-based 

approach for image analysis, different methodological challenges are posed (Hay and 

Blaschke 2010). For example, in an object-based approach, a significant question is the best 

object scale (i.e., mean object size (MOS)) to achieve the desired model accuracy. There is 

a growing literature of research reporting the differences in estimation accuracy between 

pixel-based and object-based models over a range of scales (e.g., Clinton et al., 2010; Duro 

et al., 2012; Duro et al., 2013).  

The objective of the current study is to examine the choice of Landsat spectral variables 

and the pixel-based versus object-based approach in determining the relationship between 

airborne LiDAR-derived forest canopy cover and Landsat imagery acquired over deciduous 

and coniferous forests in Vancouver Island, British Columbia.  

 

2. Data and Methods 
2.1 Study area 
The study area (49°52′N, 125°20′W) is located between Courtenay and Campbell River on 
eastern Vancouver Island, British Columbia, Canada (Figure 1). A 5.1 by 5.1 km (2601 ha) 
study area corresponding to the airborne LiDAR data acquisition mission ranges in 
elevation from 120m to 460m, and is within 15 km of the coast. The area is characterized 
by mature conifer forest, regenerating conifer and deciduous stands, and harvested areas. 
Conifer forest types comprise approximately 65% of the study area, and are dominated by 
80% Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], with smaller proportions of 
Western Red Cedar [Thuja plicata (Donn.)], and Western Hemlock [Tsuga heterophylla 
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(Raf.) Sarg.]. Deciduous forest of Red Alder (Alnus rubra Bong.) comprises approximately 
16% of the study area. The majority of forest stands within the area, which are industrially 
managed by private forest companies under license from the provincial government, 
consists predominantly of forest regenerating from harvest and are between 20 and 60 years 
of age (Morgenstern et al., 2004), with a mean canopy height of 18.5 m. For the mature 
stands, a 1998 site survey found that the stand density was approximately 1100 stems/ha.  

 
2.2 Airborne LiDAR data  
Discrete return LiDAR data for the study area were acquired on 8 June 2004 by Terra 
Remote Sensing (Sidney, British Colombia, Canada) using a Lightwave Model 110 Terrain 
Scanning LiDAR from a Bell 206 Jet Ranger helicopter. The positioning systems, a Litton 
LTN-92 inertial navigation system (INS) and an Ashtech Z-surveyor Dual Frequency P-
code differential global positioning system (DGPS), recorded the aircraft’s altitude and 
position within 5–10 cm. The Lightwave Model 110 has a pulse repetition frequency of 10 
kHz, a wavelength of 1047 nm, a swath width of 56°, and a beam divergence of 3.5 mrad. 
Based on the pulse frequency, lowest sustainable flight speed, and altitude, hit densities of 
0.7 hits/m2 were achieved with a footprint (spot size) of 0.19m (Table 1).  
No artificial objects (e.g., buildings) exist in the study area. The raw LiDAR point cloud 
data were collected containing both ground and non-ground returns and were processed 
with Terrascan software (v4.006 – Terrasolid, Helsinki, Finland) which combines filtering 
and thresholding methods (Chen et al., 2010). In this study, LiDAR-derived canopy cover 
(CC), was estimated using the ratio of the pulse returned from the upper layer of tree crown 
(determined using a threshold height) to total returns (throughout the canopy to ground 
profile).  

 

         returns total

eshold)height thr some (above returns all ∑=CC
                      (1) 

 
This CC derivation method has been demonstrated in several previous studies, including: 
Hyde et al., (2005), Morsdorf et al., (2006), Solberg et al., (2006), Hopkinson and Chasmer, 
(2009), and Smith et al. (2009). Common to these examples in the literature, the selection 
of the threshold above which returns are considered to be from canopy has been determined 
based upon local forest conditions, the goals of the study, and the desired information. To 
better understand the implications of differing threshold values Smith et al. (2009) 
evaluated a selection of different height thresholds over a study area with mixed forest 
conditions. Their analysis determined a negligible variation in correlation (r difference of 
~0.0005) between the field-densitometer-derived and LiDAR derived canopy cover 
measures occurred when the threshold was between 1.00 and 2.00 m; therefore, for their 
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study they selected an intermediate threshold of 1.50 m. The same threshold value of 1.50 
m was used in our study to determine canopy returns. The final estimates of canopy cover 
and other structure variables were resampled to 30m to match the spatial resolution of the 
Landsat imagery 
 
2.3 Landsat data 
A Landsat image of the study area acquired August 16, 2004 was obtained from the United 
States Geological Survey (USGS) Landsat archive. The image was system-corrected for 
terrain and converted to ‘top-of-atmosphere-radiance’ (L1T data product). The cosine 
estimation of atmospheric transmittance (COST) absolute radiometric correction model of 
Chavez (1996) was applied to convert to surface reflectance. Water, clouds and cloud 
shadows in the image were masked using an object-based cloud and cloud shadow 
detection algorithm for Landsat imagery (Zhu et al., 2011). Finally, the airborne LiDAR 
data were registered to the Landsat image using 50 ground control points. A second-order 
polynomial warping method and nearest neighbor resampling were selected for the co-
registration, yielding a RMSE of 0.59 m. 
The Landsat image was transformed using the Tasseled Cap (Kauth-Thomas) 
Transformation with coefficients specific to the image date and sensor (Crist, 1985; Huang 
et al., 2002). The Tasseled Cap Angle (TCA), defined by Powell et al. (2010) was derived 
for the Landsat image in this study (see Ahmed et al., 2014). TCA has been interpreted as 
an indicator of the proportion of vegetation to non-vegetation within a Landsat pixel, and is 
defined as follows: 

)brightness / (greennessarctan  TCA =        (2) 

Spectral mixture analysis (SMA) is a useful technique used to address the spectral 
heterogeneity present in remote sensing pixels (e.g., Peddle et al., 1999; Zeng et al., 2008).  
SMA estimates the proportions of pure components within each pixel, which typically 
contains more than one feature or ground cover type (Somers et al., 2011).  In this study, 
spectral mixture analysis (SMA) was used to estimate the proportions of pure components 
(i.e., endmembers) within Landsat pixels. Using the 2004 Landsat TM imagery we 
generated sub-pixel fraction images.  Lu et al. (2004) demonstrated that the removal of 
highly correlated bands such as TM 1 and TM 2 in SMA improves the quality of fraction 
images. Thus, in this study to reduce correlation and data redundancy we used Landsat TM 
band subset images (i.e. bands 3, 4, 5, and 7) in the SMA. One of the important prerequisite 
for successful SMA is the selection of representative endmembers (Somers et al., 2011; 
Tompkins et al., 1997). Here endmembers representing Sunlit canopy, non photosynthetic 
vegetation (NPV), exposed soil, and shade were derived from the Landsat multispectral 
image using the n-dimensional visualization tool (available in ENVI 4.8) and the LiDAR 
data. Typically, the variation in understory reflectance across 30 m resolution Landsat 
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scene causes a difficulty in SMA endmember selection, in this study to reduce the influence 
of understory vegetation on SMA fractions, tree height information derived from LiDAR 
was used to help in the selection of endmembers. For example, tree height information 
derived from LiDAR aided in the selection of NPV and exposed soil endmembers by 
identifying sites with low or no vegetation cover. The pixels positioned at the edges of the 
data cloud of the Landsat spectral space in the n-dimensional visualization tool were 
selected as sample endmembers. Finally, the endmembers were selected based on the 
spectral shape of the wavelenghth-reflectance and image information (e.g. the spectra for 
soil are mostly associated with dirt roads and NPV is mostly associated with understory 
grass having senesced vegetation). We applied least-square linear mixture modeling 
(Adams et al., 1993) to estimate the proportion of each endmember within the Landsat 
pixels. The sums of the fractions add up to 1. The n-dimensional visualisation tool was also 
used to check the separability of the endmembers and refine the selected regions of interest. 
The SMA model results were evaluated as proposed by (Adams et al. 1995) with the root-
mean-square (RMS) image and fraction images interpreted in terms of image context and 
spatial distribution. Finally the fractional abundances of the key image endmembers (sunlit 
crown, NPV, bare soil, and shade) were estimated.  
 
2.4 Sample Selection 
The use of segmentation objects, from Landsat spectral data, as areal units to estimate 
airborne LiDAR-derived canopy cover was compared with the results of estimates obtained 
using areal units of fixed 30 m size (Landsat pixels). Systematic sampling was used to 
select data from the Landsat and LiDAR imagery for the regression analysis. Tree height 
information from the LiDAR Crown Height Model (CHM) described by (Chen et al., 2010) 
was used to aid in distinguishing various ground features, such as trees from non-treed low 
vegetation. Various other sources of data aided in producing the stratification, including an 
existing land cover classification (Wulder et al., 2008) and the provincial database 
“Terrestrial Ecosystem Mapping of Site Series” (2005) for the study area. These sources 
were also used to identify the dominant forest types in the area.  
In the pixel-based sample, a sampling procedure was designed based on semivariograms of 
the airborne LiDAR-derived canopy cover. Typically, the semivariance stabilized at 250–
300 m suggesting that spatial autocorrelation was significant within a lag of 300m. A 
minimum 10 Landsat pixel buffer was then enforced between sampled pixels. The starting 
pixel was randomly selected from a subsample of 100 pixels near the northwest border of 
the LiDAR dataset. From the random starting pixel, every tenth pixel was sampled when 
possible. Following this procedure two independent samples were obtained for statistical 
model-building and validation of the model. 
In the object-based sample, objects of varying size and shape resulted from applying a 
multiresolution segmentation using the ENVI 4.8 feature extraction module on the Landsat 
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TCA image. Ten different object scales or minimum object size (MOS) were examined. 
Due to the variation in data acquisition geometry between the LiDAR and the Landsat 
sensor the model performance using a MOS smaller than 0.074 ha was highly affected by 
the co-registration errors mainly in areas where large canopy cover variation exists, thus a 
MOS of 0.074 hectare was selected as the smallest scale in this study. The MOS of 7.00 ha 
was chosen as the largest scale, when using a MOS greater than 7.00 ha the output 
segments start to contain various land cover types instead of a single cover type within a 
given object. Finally, the patchiness of the study area due to the resulting segments was 
examined using percent homogenous cover calculated for variable minimum object sizes 
(MOS).  
The same spectral variables were extracted for the object-based analysis. However, all 
variables were extracted from objects rather than pixels. Model building and validation 
samples were selected similar to the pixel-based approach. Here buffered random sampling 
was used, in which image objects were randomly selected but prevented from being closer 
together than the ideal limit of 300m where the spatial autocorrelation was found to be 
significant. Subsequently 40 samples were selected for each model building and validation. 
The final model RMSE was calculated in a slightly different way when using the object-
samples. Unlike the pixel-based approach, in the object based approach image objects have 
varying sizes even at the same scale. This causes large objects to have more influence in the 
canopy cover error calculation than small objects. Thus, for the model validation it is 
important to consider each object based on the size of its area. In this study we applied an 
area weighted RMSE used by Chen et al. (2011). 

])([
1 2

_
1

_ iLiDAR

N

i
iLandsat

n

CCCCAi
A

RMSE −= ∑
=

                        (3) 

Where CC Landsat_i  = Canopy cover calculated from the regression using Landsat imagery 
for the ith object; CC Lidar_i = Canopy cover measured from LiDAR data for the ith object; 
A i  = area for the ith object; AN = area for the total study area;   N = total number of objects.   
A check of the multicollinearity between predictor variables in the regression analysis was 
carried out among the Landsat spectral indices. Ordinary least squares (OLS) regression 
models were developed to estimate LiDAR-derived canopy cover with the predicting 
variables derived from Landsat spectral indices (TCA) and fractional abundances of the key 
image endmembers (sunlit crown, NPV, bare soil, and shade). The statistical analysis was 
designed to assess the relationship between the LiDAR-derived canopy cover estimates and 
the Landsat TCA, and to evaluate the contribution of spectral mixture analysis endmember 
fractions, sunlit canopy, non-photosynthetic vegetation (NPV), shade and soil information 
derived from Landsat imagery to the accuracy of canopy cover estimation. This was 
achieved by building an exhaustive list of models, using all possible combinations of 
available predictors, in a forward stepwise method. All residuals were used to calculate 
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RMSE for each validated model.  Consequently, the R2 and RMSE were selected to 
evaluate model performance. 

 
3. Results and discussion 
The spectral reflectance of the four SMA extracted endmembers (sunlit crown, NPV, bare 
soil, and shade) as derived from Landsat shortwave-infrared, near-infrared and red bands 
are presented in Fig. 2. The endmembers were extracted following the methods indicated in 
Section 2.3 and were used to estimate the airborne LiDAR-derived canopy cover.  
The airborne LiDAR-derived canopy cover estimate, Landsat-derived TCA and endmember 
fractions (i.e. sunlit crown, NPV, exposed soil, and shade) for the study area are shown in 
Fig. 3. Spatial patterns are visible that coincide with an interpretation of the disturbance 
history of the study area; for example, in the upper left hand corner of the study area are 
patches that appear dark in the LiDAR-derived canopy cover image, and bright in the 
exposed soil endmember fraction  image. Such areas are recently harvested forests that are 
in the early stage of regeneration, with low canopy cover and high degree of not yet fully 
revegetated. Similarly, in the lower left hand portion of the study area, in the LiDAR-
derived forest canopy cover estimate patterns are visible that show previously harvested 
forest stands in various stages of regeneration. These areas are much brighter in the 
LiDAR-derived forest canopy image and darker in the TCA and various endmember 
fraction images. This qualitative interpretation of visible patterns in the LiDAR and 
Landsat imagery suggests that a quantitative regression analysis can be used to document 
the relationship in more detail.  
In the pixel-based sample, the individual correlation coefficients between TCA, SMA-
derived endmember fractions and the airborne LiDAR-derived canopy cover estimate are 
shown in Table 2. As expected, a strong correlation coefficient was obtained for the TCA (r 
= 0.86; R2 = 0.73). A lower correlation was observed between LiDAR-derived canopy 
cover and the sunlit canopy endmember fraction (r = 0.68; R2 = 0.46), and the lowest 
correlation coefficient was obtained using the exposed soil endmember.  
Most of the possible combinations of the Landsat TCA and the spectral endmembers 
produced significant multiple regression models with LiDAR-derived canopy cover (Table 
3). Adjusted R2 values ranged from 0.15 to 0.81. In this study only those models with 
adjusted R2 of ≥ 0.65 were considered, which resulted in seven regression models selected 
for coniferous and deciduous forests (Table 3 and 4).  For all combinations each 
independent variable was evaluated and retained if its correlation value with any other 
independent variable was lower than 0.7. 
The coniferous forest regression models predicting LiDAR-derived canopy cover suggest 
the accuracy limit for the application of Landsat in large-scale studies of canopy cover. The 
best predictor model was obtained using the combination of TCA, sunlit canopy and the soil 
endmember, resulting in multiple R = 0.88, R2 = 0.78 and an adjusted R2 = 0.78. 
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Comparably this method gives better canopy cover estimation than previous studies which 
used Landsat shortwave infrared derived indices. For example, Ahmad et al. (2014) 
reported an adjusted R2 = 0.76 when combining TCA and NDVI in similar regression 
models.  
A lower estimation accuracy was obtained for conifer stands (R2= 0.74) when TCA was 
used alone. The inclusion of endmember image fractions resulted in an overall better 
canopy cover estimation for conifers (R2 = 0.78 and RMSE = 0.39) (Table 3). The pixel-
based deciduous forest models indicate a better canopy cover estimation for deciduous 
forests (R2= 0.81 and RMSE = 0.34) than for coniferous forests (Table 4).  
The multi scale segmentation resulted objects of varying size and shape. The percent 
homogenous cover (Table 5) indicates the degrees of patchiness of the study area for six 
minimum object sizes (MOS). As MOS increased the subtle levels of patchiness declined. 
Small patches either aggregated into larger patches or completely disappeared leading to an 
increase in percent homogenous cover. Large MOS are expected to decrease the canopy 
cover variability between objects and increase the canopy cover variability within 
individual objects, whereas small MOS tend to decrease canopy cover variability within 
each object and the canopy cover variability between objects is expected to increase. 
The performance of object-based coniferous models at 3 scales with MOS 2.0, 2.5 and 3.0 
ha, which resulted in R2 

≥ 0.60 are shown in table 6. The object-based approach results for 
coniferous forest indicate the best object size for our study site corresponds to MOS of 2.5 
hectares with adjusted R2 = 0.82. This object-based approach resulted in better canopy 
cover estimation as compared to the pixel-based coniferous forest regression models. The 
error trend of regression models indicated that the regression models developed above 
MOS 3.0 and bellow MOS 2.0 have higher RMSE and lower R2. Similar to the pixel-based 
approach the inclusion of endmember fractions, here also, resulted in a better estimation.  
The object scale appears to play a more significant role for the deciduous forest sample 
than for the conifer stands. In this study, the best prediction of the LiDAR-derived canopy 
cover estimate was obtained using the spectral variables in the object-based deciduous 
models with MOS of 2.5 hectares resulting in adjusted R2= 0.86 and RMSE = 0.28 (Table 
7).  A recent study by Chen et al. (2011) found that the best object scale corresponds to 
MOS of 4.00 ha for prediction of LiDAR-derived canopy height in the same study site. 
Since canopy cover is more closely associated with the two-dimensional satellite data than 
canopy height, in our study, a smaller MOS and improved estimation accuracy were 
obtained for LiDAR-derived canopy cover compared to the canopy height study by Chen et 
al. (2011). The best MOS of 2.5 ha found in our study is closer to the 2.0 ha minimum 
mapping unit used for inventory purposes by provincial and territorial forest management 
agencies in Canada. Hence, we are gaining confidence in the capacity for approaches such 
as that presented here to be used to generate unique values in areas not subject to regular 
forest inventory and to aid with update within inventory cycles over managed forests.  



 11

4. Conclusion 
In this study, we investigated the potential of Landsat imagery to estimate forest canopy 
cover measured from small-footprint airborne LiDAR data in order to expand the LiDAR 
measurements to a larger area. Landsat-derived Tasseled Cap Angle (TCA) and spectral 
mixture analysis (SMA) endmember fractions (i.e. sunlit canopy, non-photosynthetic 
vegetation (NPV), shade and exposed soil) were compared to LiDAR-derived canopy cover 
estimates. Our results show that the inclusion of the endmember fractions considerably 
increased the model performance versus only using TCA. Conifer and deciduous forests 
were separately modelled using OLS regression, to better describe the impact of distinctive 
crowns and leaf shapes that produce fairly explicit spectral signatures in the study area. 
Pixel and object-based models were developed. An area-weighted error calculation 
approach was used to evaluate the RMSE of canopy cover derived from the object-based 
approach. In both pixel and object-based approaches the deciduous forest regression models 
predicting LiDAR-derived canopy cover resulted higher correspondence than coniferous 
models. Specifically, the average errors decreased by 82.4 percent (from 0.34 to 0.28) for 
deciduous forests. The results indicate that the best object models achieved better results 
than those developed using only the pixel-based approach. The best canopy cover estimate 
was obtained (in the object-based deciduous forest models) with a mean object size (MOS) 
of 2.5 hectares (adjusted R2= 0.86 and RMSE = 0.28). We confirm that selecting suitable 
object scale plays a significant role in the object-based approach (Addink et al. 2007, Chen 
et al. 2011); since random scale selection may result in lower coefficient of determination 
than the pixel-based approach. This study demonstrates that changes in object scale affect 
the overall patchiness of the study area and the resulting canopy cover estimation. 
Generally the study area was found to have a less patchy landscape, the percentage 
homogeneous cover varying from 82% - 88% for the six minimum object sizes (MOS) that 
are considered in this study. Accordingly, when object scale was altered, subtle changes in 
the level of patchiness were found. The percentage homogonous cover for the study area at 
the optimum mean object size (MOS) of 2.5 hectares was 86.6%. When estimating 
continuous forest biophysical properties such as canopy cover, typical object based 
modeling approaches tend to focus only on the performance of regression models, 
regardless of object size. In this paper, we evaluated both the performance of regression 
models and the impact of changing object scale on the estimation of canopy cover. The 
optimum mean object size found in this study can be generalized for other areas with a 
similar degree of patchiness as the one considered in this study. For more heterogeneous 
areas with distinct patchiness and landscape characteristics the methodology used in this 
study can be applied to determine the optimum object size that can be applicable to the 
specific landscape conditions present. Additional focused research is suggested to assess 
the effect of object scales on attribute performance, aimed at providing insights that will 
allow for tuning of parameters to fit what is known about a given study location. The 
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parameters we used in this study offer an example or a basis for applications in other 
environments, with an investigation of applicability to be tested, as we suggest, and tuning 
when and if required.  
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Table 1. LiDAR parameters. 

 
 
 
 
 
 
 
 
 
 
 
 

Parameter Performance 

Sensor Mark II 

Laser scan frequency 25 Hz 

Laser impulse frequency 40 000 Hz 

Laser power <4 W 

Scan angle ±10° 

Type of scanning mirror  Oscillating 

Laser beam divergence  <0.5 mrad 

Measurement decay 0.5-0.8 hits/m2 

Datum NAD83 

Projection UTM Zone 10 

Platform Bell 206 Jet Ranger helicopter 

Flight altitude above ground 900m 

Flight speed 25-30 m/s 

Version of TerraScan used to classify Version 004.006 
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Table 2. Correlation coefficients between LiDAR canopy cover and Landsat-derived 

TCA and endmember fractions. 

 

TCA 

Sunlit 

canopy NPV Shade 

Exposed 

soil 

Canopy 

cover 

TCA 1.0 0.66 0.31 0.02 0.46 0.86 

Sunlit canopy 0.66 1.0 -0.90 -0.94 0.04 0.68 

NPV 0.31 -0.90 1.0 0.81 -0.27 -0.22 

Shade 0.02 -0.94 0.81 1.0 -0.24 -0.34 

Exposed soil 0.46 0.04 -0.27 -0.24 1.0 -0.20 

Canopy cover 0.86 0.68 -0.22 -0.34 -0.20 1.0 

 
 
 
 
 
Table 3. Coniferous regression models obtained with R2 of ≥ 0.65 (n=40 per equation). 

 
 
 
 
 
 

 

Regression equation R2 SE RMSE 

TCA 0.25soil 0.34 sun  273.00.194-  CC +−+=  0.78 0.15 0.39 

soil  0.38 sun  .310-0.308  CC −=  0.71 0.21 0.46 

TCA 81.1soil 0.35  27.00.768  CC +−+= NPV  0.65 0.47 0.69 

TCA 0.004soil 0.43  shade 0.310.354  CC +−−=  0.65 0.50 0.71 
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Table 4. Deciduous regression models obtained with R2 of ≥ 0.65 (n=60 per equation) 

 
 
 
 
 
Table 5. Percent homogeneous cover for landscape elements of variable size. 

 
 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Regression equation R2 SE RMSE 

TCA 0.328soil 0.237 sun  185.00.261  CC +−+=  0.81 0.11 0.34 

soil  0.258 .212sun 0-0.439  CC −=  0.73 0.16 0.40 

TCA495.00.471soil  393.00.421  CC +−+= NPV  0.69 0.23 0.48 

Mean Object Size  % Homogeneous Cover 

1 ha 82.1 

1.5 ha 84.2 

2 ha 85.2 

2.5 ha 86.6 

3 ha 87.5 

3.5 ha 87.8 
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Table 6. Coniferous regression models obtained with R2 of ≥ 0.60 (n=40 per equation). 

 
 
 
 
 
 
 
Table 7. Deciduous regression models obtained with R2 of ≥ 0.60 (n=40 per equation). 

 

 

 

 

 

 

 

 

Regression equation MOS R2 SE RMSE 

TCA 0.195soil 0.28 sun  15.00.225-  CC +−+=  2.5 0.82 0.17 0.42 

soil  0.39 sun  .250-0.411  CC −=  3.0 0.75 0.31 0.56 

TCA45.0soil 0.34 21.00.273  CC +−−= shade  2.0 0.62 0.47 0.69 

Regression equation MOS R2 SE RMSE 

TCA 0.328soil 0.11 sun  285.00.171  CC +−+=  2.5 0.86 0.07 0.28 

TCA31.0soil 0.281 153.00.224  CC +−−= shade  3.0 0.77 0.16 0.41 

soil  0.295 sun  .2770-0.19  CC −=  2.0 0.61 0.54 0.74 
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Fig. 1. Study area located between Courtenay and Campbell River, Vancouver Island, British 
Columbia, Canada. 
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Fig. 2. Endmember spectral characteristics derived from Landsat shortwave-infrared, near-
infrared and red bands. 
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Fig. 3. (a) LiDAR derived canopy cover. (b) Tasseled Cap Angle (TCA). (c) Sunlit crown, (d) 
NPV, (e) shade and (f) exposed soil. 
 


