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We cryptanalyze Fridrich’s chaotic image encryption algorithm. We show that the algebraic
weaknesses of the algorithm make it vulnerable against chosen-ciphertext attacks. We propose
an attack that reveals the secret permutation that is used to shuffle the pixels of a round input.
We demonstrate the effectiveness of our attack with examples and simulation results. We also
show that our proposed attack can be generalized to other well-known chaotic image encryption
algorithms.
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1. Introduction

In the last three decades, there has been a grow-
ing research effort to apply chaos to cryptography
[Amigo et al., 2007]. The noise-like statistical prop-
erties of chaotic signals and the sensitivity of chaotic
systems naturally relate them to confusion and dif-
fusion properties of encryption algorithms [Menezes
et al., 1996; Dachselt & Schwarz, 2001].

Despite the apparent affinity between the con-
cepts of chaos and cryptography, using chaos within
an encryption algorithm is far from trivial. In fact,
many chaotic ciphers fall short of satisfying even
the most basic security requirements [Alvarez & Li,
2006; Kelber & Schwarz, 2007; Masuda et al., 2006].

Early attempts at using chaos in cryptogra-
phy included synchronization-based methods where
synchronized chaotic signals are used to modulate
and demodulate message signals [Yang et al., 1997].
While such an approach provides a spread spec-
trum communication setup, the analog nature of the
systems makes approximation-based attacks pos-
sible [Parker & Short, 2001; Yang et al., 1998].

Identification methods can also be used to reveal
secret system parameters [Liu et al., 2004].

Another approach is the discretization of
chaotic signals at some stage in the system and
using the resulting sequence to modify plain-
text, possibly in multiple rounds [Masuda &
Aihara, 2002a; Ozoguz et al., 2006]. Some of these
schemes use chaotic systems to generate a pseudo-
random sequence which is then simply XORed with
the plaintext. Other proposals use iterated low-
dimensional chaotic systems to implement complex
nonlinear functions that are similar to S-boxes used
in classical block ciphers [Szczepanski et al., 2005].
Still others use chaos to implement permutations of
plaintext blocks [Fridrich, 1998; Masuda & Aihara,
2002b; Xiang et al., 2006].

A particular area of interest within chaos cryp-
tography is image encryption. Naturally, a fast
and strong image encryption has the potential for
application in diverse areas of multimedia appli-
cations. By treating the image as a sequence of
bits, classical block ciphers like DES and AES can
be used with an appropriate mode of operation.
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Still, the desire to obtain faster ciphers moti-
vate researchers to seek new ways to incorporate
chaos in image encryption [Pisarchik et al., 2006;
Arroyo et al., 2008; Mao et al., 2004; Chen et al.,
2004].

The rich variety of chaotic ciphers provides a
motivation for cryptanalysts to find statistical or
structural weaknesses in these proposals [Li et al.,
2008]. As a result of this dual effort to design
and break chaotic ciphers, one might expect to see
the emergence of robust applications of chaos in
strong cryptography. While many chaotic ciphers
have been shown to have weaknesses, new modifi-
cations are being proposed to implement defenses
to resist the discovered attacks.

In this paper, we cryptanalize Fridrich’s cipher
which is one of the earliest chaotic image encryp-
tion algorithms [Fridrich, 1998]. We show that the
algorithm can be broken using a chosen-ciphertext
attack. We show that the attack reveals secret per-
mutation of the algorithm. Although more than a
decade has passed since its publication in 1998, to
our knowledge, the present work is the first success-
ful cryptanalysis of Fridrich’s cipher.

The organization of the paper is as follows. Sec-
tion 2 gives a mathematical description of Fridrich’s
image encryption algorithm. Section 3 gives a
detailed description of our attack. Section 4 presents
an illustrative example and simulation results for
realistic image sizes. The paper finishes with con-
cluding remarks. In the conclusion, we also discuss
application of our results to other similar encryp-
tion algorithms and possible defense mechanisms.

2. Description of the Encryption
Algorithm

The plaintext P is an M × N grayscale image,
where each pixel is represented using a byte. The
image is first vectorized using the usual row-scan.
Let p ∈ Sn represent this vectorized image, where
S = {0, 1, . . . , 255} and n = NM. Thus, the plain-
text is the vector p = [p1 p2 · · · pn].

Each round consists of two steps. In the first
step, p is shuffled using a secret permutation. Let
b denote this secret permutation defined on the set
{1, 2, . . . , n}. Let us denote the shuffled vector by f .
The relation between the shuffled vector f and the
vectorized plaintext p can be expressed as

fi = pb(i), 1 ≤ i ≤ n. (1)

Namely, the shuffled pixel at position i is
obtained from the original pixel at position b(i).

In the second step of the round, f is passed
through a nonlinear function as

ci = fi + g(ci−1) + hi mod 256, 1 ≤ i ≤ n, (2)

where g : S → S is a fixed nonlinear function and
h ∈ Sn is a fixed vector. In Eq. (2), c0 is taken to
be a fixed system parameter.

These two steps are repeated for R rounds. In
[Fridrich, 1998], R = 10 is suggested for good diffu-
sion and confusion properties.

Combining Eqs. (1) and (2), we obtain one
round encryption as

ci = pb(i) + g(ci−1)+ hi mod 256, 1 ≤ i ≤ n. (3)

The decryption for a single round is defined as
follows. Let u be the inverse of b, so that

j = b(i) ⇔ i = u(j). (4)

Substituting Eq. (4) in Eq. (3), we obtain

pj = cu(j) − g(cu(j)−1)− hu(j) mod 256. (5)

For i = 1, we have

c1 = pb(1) + g(c0) + h1 mod 256.

The secret component of the algorithm is the
permutation b. A set of secret keys are used to
generate this permutation. For example, in one of
the schemes proposed in [Fridrich, 1998], the orig-
inal image P is partitioned and the Baker map is
applied to each partition to obtain the permutation.
In this case, the set of keys are the boundaries where
the image is partitioned. It is possible to use other
schemes to generate a permutation. Our attack is
general and applies to all of these cases.

3. Chosen Ciphertext Attack

A naive attack might try to reveal the keys that
were used to generate the permutation b. However,
anyone who knows permutation b can decrypt the
images. In our cryptanalysis, we develop methods
to reveal the permutation b. Such an approach is
more general as it easily covers cases where different
chaotic maps are used to generate the permutation.

3.1. Causality in decryption

The function g in Eq. (3) forms a chain that relates
consecutive ciphertext pixels. Hence, in encryption
for a single round, a change in a plaintext pixel
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affects many ciphertext pixels. Indeed, if we change
pb(i), by Eq. (3), ci changes. Since we have

ci+1 = pb(i+1) + g(ci) + hi+1 mod 256,

a change in ci, in turn, changes ci+1. Thus, for a sin-
gle round, a change in pb(i) affects ci, ci+1, . . . , cn.
As a result, a ciphertext pixel depends on many
plaintext pixels. This is a desirable property of an
encryption and is also known as the diffusion prop-
erty [Menezes et al., 1996].

However, the situation is quite different in
decryption. Using Eq. (5), we see that, for a sin-
gle round, pj is affected by only two ciphertext pix-
els, cu(j) and cu(j)−1. Similarly, for two rounds, pj

is affected by at most four ciphertext pixels.
In order to see this more clearly, let us denote

the output of the second round as d1d2 · · · dn. Using
Eq. (5) with ck as the plaintext pixel that is input
to second round, we obtain

ck = du(k) − g(du(k)−1)− hu(k) mod 256,
1 ≤ k ≤ n. (6)

Substituting k = u(j) in Eq. (6), we find

cu(j) = du2(j) − g(du2(j)−1)− hu2(j). (7)

Here, we denote by us, the s-times composition of
u with itself.

Similarly, for k = u(j)− 1, we have

cu(j)−1 = du(u(j)−1) − g(du(u(j)−1)−1)− hu(u(j)−1).
(8)

Thus, we see from Eqs. (5), (7) and (8) that, for
two rounds of decryption, pj is affected only by the
ciphertext pixels

du2(j), du2(j)−1, du(u(j)−1), du(u(j)−1)−1.

Obviously, depending on the particular permutation
u, some of these four pixels might coincide.

Note that the plaintext pixel pb(1) is affected
by only c1 because c0 is a fixed system parame-
ter. Hence, for two rounds, pb(1) is affected by the
ciphertext pixels

du(1), du(1)−1.

Example 1. We illustrate the causal relations in
the decryption for two rounds. Here, n = 6 and
permutation u is given as

u =
(

1 2 3 4 5 6
2 4 1 5 6 3

)
. (9)

The causality paths are given in Fig. 1. In the figure,
the directed arrows indicate which pixels affect the
computation of the destination pixel. For example,

Fig. 1. The causality paths for the permutation given in
Eq. (9). A solid arrow indicates that the causality is through
u, while a dashed arrow indicates that the causality is through
u − 1.

two arrows going from c5 and c4 to p4 means that
p4 is affected by c5 and c4.

The causality chain from the ciphertext d to
the plaintext p is given as follows

p1 ← c1, c2 ← d1, d2, d3, d4,

p2 ← c3, c4 ← d1, d4, d5,

p3 ← c1 ← d1, d2,

p4 ← c4, c5 ← d4, d5, d6,

p5 ← c5, c6 ← d5, d6, d2, d3,

p6 ← c2, c3 ← d3, d4, d1.

Note that p3 is affected by only c1 because u(3) = 1.
c1 is, in turn, affected by two ciphertext pixels d1

and d2. Also note that p4 is affected by three cipher-
text pixels rather than four because u(u(4) − 1) =
u2(4) − 1 = 5. This also means that there are two
distinct causality paths going from d5 to p4.

3.2. Detecting causality using
chosen ciphertext images

In general, for the decryption in an R round algo-
rithm, a particular plaintext pixel pj is affected by
at most 2R ciphertext pixels. For a 256×256 image
encrypted in ten rounds, we have n = 65536 and
2R = 1024. Hence, only about 1024/65 536 ≈ 2%
of ciphertext pixels affect any given fixed plaintext
pixel.

Let us denote by z, the ciphertext image after R
rounds of encryption. The attacker wishes to know if
there is a causality path from the ciphertext pixel zi

to the plaintext pixel pj . Assume that the attacker
knows a plaintext-ciphertext image pair (p, z). He
changes the value of zi and requests the plaintext
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for the changed ciphertext. If pj is changed in the
new plaintext, then there is a causality path from
zi to pj so that zi affects pj .

Note that, for some changes to zi, pj might
remain the same even when there are causality
paths from zi to pj. This is due to the nonlinearity
of encryption/decryption that operates in a finite
domain. In order to detect all the causality paths,
the attacker needs to try more than one change to
zi. It is highly unlikely that pj remains fixed for all
of these changes. Thus, in order to construct the
matrix T for n pixel images, the attacker needs to
choose O(n) ciphertext images.

Detecting changes for all i, 1 ≤ i ≤ n, the
attacker constructs a binary matrix T showing the
causality relations between ciphertext and plaintext
pixels in decryption. If Tij = 1, then it means that
zi affects pj. Since pj is affected by at most 2R pix-
els of z, each column of T contains at most 2R 1’s.
All the other entries are zero.

Example 2. The matrix T for permutation u used
in Example 1 is given as

T =




1 1 1 0 0 1
1 0 1 0 1 0
1 0 0 0 1 1
1 1 0 1 0 1
0 1 0 1 1 0
0 0 0 1 1 0




.

3.3. Finding b(1)

Writing Eq. (5) for pb(1), we have

pb(1) = c1 − g(c0)− h1 mod 256.

Hence, for one round, pb(1) is affected by only c1,
the first pixel of the output of the first round. The
remaining rounds generate at most 2R−1 distinct
causality paths. Therefore, column b(1) of T con-
tains at most 2R−1 1’s. Thus, the column of the
matrix T with the least number of 1’s will provide
the attacker a starting point for the attack. Once an
attacker constructs the matrix T, he can reveal b(1)
by choosing column k with the least column sum.
Then he knows that b(1) = k or u(k) = 1.

For example, by inspecting the matrix T in
Example 2, the attacker can see that the third col-
umn has the least sum. Thus, he concludes that
u(3) = 1.

3.4. Tree of causality

In order to generalize the attack to the rest of u, we
define an operation to denote the causality relations
between the sets.

Given a permutation u on the set {1, 2, . . . n},
define the operation L on a set A as follows.

L(A) = {y | ∃x ∈ A such that y = u(x)

or y = u(x)− 1}.

The set L(A) has natural meaning in terms of
decryption. Using Eq. (5), we see that set L(A) is
the set of ciphertext pixels that affect set A of plain-
text pixels in one round of decryption. In particular,
for an integer k ∈ {1, 2, . . . , n}, L({k}) is given as

L({k}) =
{{u(k)} if u(k) = 1,
{u(k), u(k) − 1} otherwise

(10)

When L operates on a set with a single element k,
we drop the set notation in L({k}) and use instead
L(k).

We can naturally compose L with itself to
define its higher powers. Thus, for L2(k), we have

L2(k) = L({u(k), u(k) − 1})
= {u2(k), u2(k)− 1, u(u(k) − 1),

u(u(k)− 1)− 1}.

Here, we implicitly assumed that 1 /∈ {u(k), u2(k),
u(u(k) − 1)}. If we have u(k) = 1 and u2(k) �= 1,
then, by the definition of L, we have

L2(k) = L(u(k))

= {u2(k), u2(k) − 1}.

Again, the powers of L has a natural interpre-
tation in terms of multiround encryption. For an
integer k, Li(k) is the set of indices of the cipher-
text pixels that affect the plaintext pk in i round
decryption. This set is also the set of row indices
where the kth column of T has nonzero entries.

Example 3. For the permutation given in Exam-
ple 1, we have

L(1) = {1, 2},
L2(1) = {1, 2, 3, 4},

L2({1, 6}) = {1, 2, 3, 4}.
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3.5. Overlapping sets of leaves

Using the chosen-ciphertext attack given at the
beginning of this section, the attacker constructs
the matrix T. This is the same as the attacker know-
ing the sets LR(k),∀ k ∈ {1, 2, . . . , n}. The attacker
uses this knowledge to reveal the secret permutation
u. First, we need the following fact.

Lemma 4. Let x, y and z be integers in {1, 2, . . . n}
such that they satisfy

u(x) + 1 = u(y),

u(y) + 1 = u(z).

Then, for every positive integer R larger than 1,

LR(y)\LR(x) ⊂ LR(z).

Proof. By the definition of L, we have for every integer a in {1, 2, . . . n},

LR(a) =

{
LR−1(u(a)) if u(a) = 1,
LR−1(u(a)) ∪ LR−1(u(a)− 1) otherwise.

(11)

For the case a = y, we have u(y) �= 1, and therefore

LR(y) = LR−1(u(y)) ∪ LR−1(u(y)− 1),
= LR−1(u(y)) ∪ LR−1(u(x)). (12)

Similarly, for a = z,

LR(z) = LR−1(u(z)) ∪ LR−1(u(y)). (13)

Finally, for a = x,

LR(x) =

{
LR−1(u(x)) if u(x) = 1,
LR−1(u(x)) ∪ LR−1(u(x)− 1) otherwise.

(14)

Using Eqs. (12) and (14) together with the identity A \B = A ∩B, we obtain

LR(y)\LR(x) =

{
LR−1(u(y)) ∩ LR−1(u(x)) if u(x) = 1,

LR−1(u(y)) ∩ LR−1(u(x)) ∩ LR−1(u(x)− 1) otherwise.
(15)

Note that, we take the set that complements with respect to the universal set {1, 2, . . . , n}. Comparing
Eq. (15) with Eq. (13), the result immediately follows. Figure 2 illustrates the overlap and the intersection
of the sets LR(a) and LR−1(a). �

Lemma 5. Let x and y be integers such that u(x) = 1 and u(y) = 2. Then, LR(x) ⊂ LR(y).

Fig. 2. The sets LR(a) and LR−1(a). Note that the sets are the leaves of overlapping causality trees.
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Proof. Using Eq. (11) with a = x, we obtain
LR(x) = LR−1(u(x)) = LR−1(1). Using Eq. (11)
once more with a = y, and applying the assump-
tions of the lemma, we obtain LR(y) = LR−1(2) ∪
LR−1(1). The result immediately follows. �

3.6. The attack

The attack starts with determining the integer x1

that satisfies u(x1) = 1. For this, the attacker
chooses the set LR(x1) that has the least num-
ber of elements. This also corresponds to choosing
the column of the matrix T with the least column
sum. There may be more than one candidate for
x1. In such cases, the attacker repeats the rest of
the procedure for each candidate until he encoun-
ters a contradiction that he can use to eliminate the
candidate.

Once the attacker knows x1, he goes on to
determine x2 such that u(x2) = 2. Define the

set X2 as

X2 = {x | LR(x1) ⊂ LR(x)}.
By Lemma 5, x2 ∈ X2. In the likely case that X2

contains a single element, the attacker uniquely pins
down x2. If there are more than one candidate for
x2, the attacker again repeats the rest of the proce-
dure until he can eliminate candidates.

Now, the attacker knows x1 and x2 such that
u(x1) = 1 and u(x2) = 2. He then searches for x3

such that u(x3) = 3. In order to pin down x3, the
attacker finds the set defined by

X3 = {x | LR(x2)\LR(x1) ⊂ LR(x)}.
By Lemma 4, x3 ∈ X3. If X3 contains a single ele-
ment, then the attacker has just found x3 that sat-
isfies u(x3) = 3.

The attacker continues in this fashion and uses
his knowledge of xi and xi+1 to reveal xi+2 such that
u(xi) = i, u(xi+1) = i + 1 and u(xi+1) = i + 2. The
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attack concludes when all the entries of the secret
permutation u are revealed.

In cases when Xi+1 contains z1, z2, . . . , zv, the
attacker applies the procedure for each zm, 1 ≤
m ≤ v, each time assuming that u(zm) = i + 1.

For false candidates, we expect the iteration to
yield an empty set at some point. Namely, if the set
LR(zm)\LR(xi+1) is not contained in any LR(w),
then u(zm) �= i + 1 and we eliminate the candi-
date zm.

The iterations of the attack are expressed as
a recursion in Algorithm 1. The recursive function
is FindNext() which takes no arguments. The con-
stant data of the algorithm are the sets LR(k), ∀ k ∈
{1, 2, . . . , n}. The algorithm manipulates the global
variables b and i. The variable i shows the por-
tion of b that is assumed to have been revealed.
Namely, the function FindNext() assumes that
b(1), b(2), . . . , b(i) have already been revealed. Note
that we also assume that the values b(1) and b(2)
are initially known.

In Algorithm 1, Line 3, we find the candi-
dates for b(i + 1). In doing so, we exclude the

set {b(1), b(2), . . . , b(i)} which is assumed to have
been revealed so far. For each candidate z, Lines
6–10 recursively apply the algorithm assuming that
u(z) = i + 1. The function FindNext() returns in
Line 13 when no candidates are found. It means
that the recursion cannot go any deeper because a
wrong assumption about the permutation value has
been made. In this case, Line 11 backtracks once
and another candidate is tried.

The space complexity of the attack depends on
the memory required to store the matrix T. Assum-
ing that we have a N×M image and R rounds, T is
stored in N2M2 bits. However, T is sparse when the
attack is feasible. Therefore, the memory require-
ment drops down to O(2RNM ) bits.

4. Simulations

We first illustrate the attack with an artificially
small image size. We choose R = 3 and assume an
image size of 4 × 4. Therefore, the secret permuta-
tion u maps within the set {1, 2, . . . 16}. We gener-
ated the permutation randomly and it is given as

u =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 8 6 12 1 11 14 15 7 3 10 2 16 5 4 13

)
.

The other fixed functions g and h are chosen randomly. The attacker calculates the matrix T as

T =




0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0
0 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0
1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1
0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0
1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0
0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0




.

For the ith column of the matrix T, the row
indices of 1’s give the set L3(i).

First, the attacker reveals b(1). For this, he finds
the minimum sum column which is column 5. Thus,
the attacker reveals that u(5) = 1, or equivalently

that b(1) = 5. From the fifth column, the attacker
sees that L3(5) = {6, 7, 14, 15}. He then uses
Lemma 5 and searches for the column that has 1’s in
its sixth, seventh, 14th and 15th rows. This column
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turns out to be the 12th one. Hence, he concludes
b(2) = 12. Now that the attacker knows the values
of b(1) and b(2), next, he applies Algorithm 1. Using
the matrix T, he calculates that L3(12)\L3(5) =
{13}. Searching through the columns of T, the
attacker finds that columns 1, 7, 10, 11, 16 have
1 in their 13th rows. Thus, Z = {1, 7, 10, 11, 16}.
Now, he tries those as candidates for b(3). First, he
assumes b(3) = 1. On this assumption, he calculates
the set L3(1)\L3(12) = {3, 4, 5, 10, 11}. But, there is
no column that has 1’s in its rows corresponding to
this set. Hence, b(3) �= 1. Next, he tries b(3) = 7. He
calculates L3(7)\L3(12) = {1, 3, 4, 11, 12}. Again,
there is no column that has 1’s in its rows cor-
responding to this set. The third candidate is 10,
which happens to be the correct one. Assuming
b(3) = 10, the attacker quickly reveals the rest of
the secret permutation b.

We now give the results of the attack for an
image size of 256 × 256.

We used R = 10 as suggested in [Fridrich, 1998].
We generated permutation u using the Baker’s Map
with the keys as K = [2 4 2 8 4 8 4]. The fixed
functions g and h are again chosen randomly.

Simulations are performed under GNU gcc
compiler running on Mac OS X 10.5.4 with Intel
Core 2 Duo 2.16 GHz processor and 2GB RAM.
The whole map u is recovered successfully in
less than 20 minutes. Moreover, the total mem-
ory requirement for the whole implementation
was approximately 1GB. In order to make the
Algorithm 1 run more efficiently, we used a sparse
matrix data structure for matrix T . Thus, we
reduced the search time needed for constructing the
set Z in Line 3 of the algorithm.

5. Conclusions

Since its proposal in 1998, Fridrich’s chaotic image
encryption has generally been considered secure.
Indeed, many image encryption algorithms have
taken it as a benchmark against which their effi-
ciencies are measured.

In this paper, we have given a cryptanalysis of
Fridrich’s chaotic image cipher. We have demon-
strated that rather than attacking the underlying
secret keys, an attacker can instead reveal the secret
permutation. In attacking the permutation, the
attacker uses the overlaps among the sets of indices
of ciphertext pixels that affect related plaintext pix-
els. We demonstrated the success of the attacks on
an image of realistic size.

The chosen-ciphertext attack that we proposed
can be applied to other encryption algorithms that
have a structure similar to the one in [Fridrich,
1998]. Naturally, every encryption algorithm has a
particular algebraic structure that has to be taken
into account in its cryptanalysis. Here, for the sake
of illustration, we briefly discuss a particular appli-
cation of our proposed attack.

One of the well-known chaotic image encryp-
tion algorithms in the literature is that proposed in
[Chen et al., 2004]. Similar to [Fridrich, 1998], the
algorithm consists of multiple rounds of permuta-
tion and diffusion. The permutation step is imple-
mented using a 3D cat map. Similar to [Fridrich,
1998], the diffusion step mixes consecutive pixels of
the permuted image using a chaotically modulated
XOR function. Although a 3D chaotic map provides
a better scattering of pixels compared to 2D maps,
our attack is still applicable in this case because
we do not make any assumptions on how the secret
permutation b in Eq. (5) is obtained. Likewise, our
attack does not depend on any assumptions on the
nonlinear function g in Eq. (5). Hence, our attack
can be launched without modification against the
algorithm proposed in [Chen et al., 2004].

The success of our attack mainly depends on
the small size of the set Z on Line 3 of Algorithm
1. For realistic image sizes and a 10-round encryp-
tion, Z contains only a single element in most cases.
If the number of rounds R is increased, the sets
LR(x) contain more and more elements. Assum-
ing that the causality paths do not have overlaps,
the set LR(x) contains 2R elements. When R is
increased to R = log2 n,LR(x) contains n elements,
i.e. LR(x) = {1, 2, . . . , n}. Thus, Z in Line 3 of
the algorithm contains all the unrevealed elements.
Therefore, the number of trials in Line 6 of the
attack algorithm increases to n. This makes the
present attack infeasible.

Although the increase of rounds appears to sug-
gest an obvious defense against our attack, larger
images would still present a problem because in
that case the sets Z would become smaller making
the attack feasible again. One solution might be
to break the images into smaller fragments and
encrypt each fragment using a fixed number of
rounds. If each partition has n0 pixels, in order to
resist our attack, n0 has to be smaller than 2R.

Modifying the way the pixels are passed
through the nonlinear function might also pro-
vide a defense against our attack. In the proposed
scheme, for one round, a plaintext pixel is affected
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by at most two ciphertext pixels. This depen-
dence can be increased by several methods. One
particularly easy method would be to nonlinearly
mix more than two pixels. Indeed, if m pixels of
ciphertext affect one pixel of plaintext, then hav-
ing R satisfy R > logm n would provide a depen-
dence complicated enough to preclude the present
attack.

Another possible defense is to modify the per-
mutation function b in each round. This can be done
using a key scheduling mechanism that generates R
different permutations depending on the key.

Of course, each of these defenses require a rig-
orous analysis of the whole new algorithm for weak-
nesses and statistical properties.
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