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The death of distance revisited: cyber-place, physical and relational 

proximities 

Emmanouil Tranos, Peter Nijkamp 

Dept. of Spatial Economics, VU Amsterdam, Tinbergen Institute , e.tranos@vu.nl  

Abstract 

This paper studies the impact of physical distance and different relational proximity types on the 

formation of the Internet infrastructure. Although there is some anecdotal evidence on the ‘end of 

geography’ effect of the Internet, the relationship between physical space and the Internet has not been 

yet scrutinized. In addition, owing to the network nature of the Internet, the structure of the Internet 

infrastructure (the cyber-place) cannot be approached in a unidimensional way. Our paper builds upon 

recent studies in economic geography and relational proximities, and aims to study whether physical 

distance survives in virtual geography even after controlling for relational proximities. In order to do so, 

a unique and extensive database with geo-coded IP links is utilized. Based on this, a spatial interaction 

model with panel data specifications is constructed to study the impact of different types of proximity 

on the formation of cyber-place. The above analysis is framed by a complex network analysis exercise, 

which enhances our understanding of the complexity of the Internet infrastructure from a spatial 

network perspective. Our results indicate that physical distance, but also different relational proximities, 

have a significant impact on the intensity of the Internet infrastructure, highlighting the spatiality of the 

Internet. 
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1. Introduction 

This paper aims to study the impact of physical and relational proximity on the formation of the Internet 

infrastructure, which is defined as the cyber-place (CP), combining network analysis techniques with 

econometric modeling. CP is an integral part of Batty’s (1997) concept of virtual geography, and is 

defined as the projection of the infrastructural layer of cyberspace on traditional space. Thus, CP is 

defined in accordance with cyberspacei, the function of which is supported by CP. Just like other Internet 

terms including the Internet superhighways, virtual communities, web-surfing, telecommuting, etc., CP 

and cyberspace are geographic metaphors. Apart from being a way to understand the complexity of the 

Internet, such metaphors reveal its strong spatial underpinning (Graham 1998). Similarly to any other 

social and economic activity, which is “inscribed in space and takes place” (Swyngedouw 1993, p. 305), 

the Internet, as a platform for virtual interactions among individuals and organizations, has necessarily a 

geographical component. Following Batty’s conceptualization, the virtual geography’s element which is 

mostly responsible for the Internet’s spatiality is the CP, because of its tangible geographic signature 

(Malecki 2002).  

Despite the interpretation of early commentators that the Internet has an anti-spatial nature (Mitchell 

1995), the above discussion highlights the need to further explore the spatial dimension of such a 

system. Indeed, the rapid Internet penetration has generated research which approaches the impact of 

information and communication technologies (ICTs) in a rather deterministic way, declaring the 

emergence of telecottages (Toffler 1980), the rising of a ‘borderless world’ (Ohmae 1995), the death of 

cities (Gilder 1995; Drucker 1998; Kolko 1999), and in general the ‘end of geography’ (O'Brien 1992) and 

the ‘death of distance’ (Cairncross 2001). However, such narratives, with the most recent one being 

Friedman’s best seller book “The World is Flat” (2005), have not been accompanied by empirical 

investigation and hard evidence. Although we know that “cities are well and alive” (Malecki 2002, p. 

419), and that ICTs did not generate such one-way dramatic impacts, there is not yet sufficient empirical 
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knowledge about the relation between the Internet and physical space, and most importantly on 

whether distance performs a meaningful role in virtual geography.  

Despite the death of distance thesis, geographical proximity, as depicted by Euclidean distance, 

performs important economic roles: it triggers agglomeration economies, underpins regional economics 

and provides the foundation for vital theoretical contributions including Central Place Theory and New 

Economic Geography (Partridge et al. 2008). Rietveld and Vickerman (2004, p. 241) characterized the 

‘death of distance’ discussion, which is based on assertions regarding the dominance of footloose 

economic activities, the vanishing of agglomeration economies and the annihilation of communication 

cost,  as “unmistakably premature”. Polèse and Shearmur (2004) found that factors such as physical 

distance and city size remain good predictors for most industrial activity, both in manufacturing and 

services. Disdier and Head (2008) suggested that despite the digital revolution, distance’s explanatory 

power as an international trade determinant increases over time. Similarly, Gaspar and Glaeser (1998) 

concluded that telecommunication improvements will result in increased demand for face-to-face 

interactions (see also Brakman and Marrewijk 2008) and therefore, the importance of cities in spatial 

structure and economic activity, as centers of interaction, will also increase.  Simai and Waldfogel (2004) 

raised the question whether the Internet is a substitute or a compliment of cities. Based on information 

regarding the geographic scope (local/non local) of online information, they concluded that the 

complementarity of local websites with local agglomeration offsets the Internet’s substitution effect. 

Moreover, Forman at al. (2005), using data from 2000, concluded that although Internet adoption for 

firms with more than 100 employees was faster in smaller cities in 2000, the adoption of more 

sophisticated Internet based applications was positively related with urban size.  

Drawing upon the above, the first research question of this paper is whether physical distance survives 

in the frame of the digital economy. Although we know that spatial configuration and the importance of 
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agglomeration for social and economic activities is valid in the context of the digital economy, we still do 

not know if and how the Internet itself is affected by the tyranny of distance. While it is well established 

that the Internet is a friction-reducing technology (Cohen, Salomon, and Nijkamp 2002; Cohen-

Blankshtain and Nijkamp 2004), the effect of distance and proximity on its structure is vague. Even 

though Wang et al. (2003) presented some first evidence on the distance decay effect on information 

accessibility and D’Ignazio and Giovannetti (2007) highlighted the importance of proximity in bilateral 

interconnection decisions at Internet Exchange Points in Europe, we still do not know whether the 

Internet’s infrastructural layer is affected by centripetal or centrifugal forces resulting in spatial 

clustering. Put simply, we do not know if the cost related with physical distance affects the structure of a 

digital system as complex as the Internet.  

However, our analysis is not limited only to physical distance. Other proximity types may also affect the 

topology of this digital infrastructural system. Following Massey (1993), we understand the Internet as a 

relational notion which cannot be approached in a unidimensional way, just as a Cartesian spatial object 

(Graham 1998). The underlying technological, economic, and social complexities of the formation of the 

CP force us to explore the impact of other types of proximity on the formation of CP including 

cognitive/technological, organizational, and institutional distance. Just like physical distance, the above 

types of relational proximities are approached here as different costs for the formation of CP. To study 

these different types of costs on the formation of CP, we create a multi-dimensional space where 

physical and relational proximities co-exist. In other words, we empirically test here whether Tobler‘s 

(1970) First Law of Geographyii is valid in the formation of CP, but we expand the notion of distance to 

include relational proximities as well. 

The novelty of our approach lies in the fact that although the geographic analysis of the Internet already 

has a short history of almost 15 years (Moss and Townsend 1997; Wheeler and O'Kelly 1999; Malecki 
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and Gorman 2001), the impact of distance on the formation of the Internet and the CP has not yet been 

empirically tested. In addition, research has largely ignored the role that relational types of proximity 

play in the topology of CP. These remarks reflect the overall disregard of the Internet by spatial sciences 

because of its intangible, elusive, and complex technical nature (Bakis 1981; Hepworth 1989; Kellerman 

1993). After all, telecommunications infrastructure only becomes visible when it stops working (Star 

1999). 

The second research question of this paper is related with shedding more light on the complex nature of 

the CP from a spatial network perspective. The infrastructural layer of the Internet has been developed 

as a network of numerous different networks. Although the complexity of the Internet has been 

extensively studied from a complex system perspective (e.g. Faloutsos, Faloutsos, and Faloutsos 1999; 

Pastor-Satorras and Vespignani 2004; Adamic and Huberman 2002) and was one of the main test-beds 

for scale free network models (Barabási and Albert 1999; Albert and Barabási 2002), to date insufficient 

effort has been made to approach this complexity from a spatial perspectiveiii. Apart from bridging this 

gap, gaining knowledge of the spatial network attributes of CP is essential to interpret the impact of 

distance and relational proximities on the formation of the digital infrastructure. 

To empirically test the above research questions, we utilize here an extensive aggregated data set for 

the European CP, which, as far as we are aware, has never been used before in a spatial context. 

Complex network analysis and spatial interaction models with panel data specifications, will be 

employed to quantitatively approach the research questions. 

The structure of the paper is as follows. Next, in Section 2, the CP database is described. Then, in Section 

3, the network structure of CP is explored using complex network analysis methods. Section 4 presents 

the modeling exercise on the impact of different types of proximity on the formation of CP. Finally, the 

paper ends in Section 5 with some concluding remarks. 
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2. Database Description 

The main data used for this study is the output of the DIMES project. This is “a distributed scientific 

research project, aimed to study the structure and topology of the Internet, with the help of a volunteer 

community” (DIMES 2010). It is based on 3–6 million tracerouteiv measurements made daily by a global 

network of more than 10,000 agents, who are voluntarily participating in this research project (Carmi et 

al. 2007; for a description of the DIMES project, see also Shavitt and Shir 2005). The final outcome of the 

DIMES project is derived after the triangulation and geo-location of the IP (Internet Protocol) links 

discovered by the DIMES volunteers, and it contains all the IP links between any two cities discovered by 

the DIMES agents. Although overlapping connections between any two regions are included in the 

database, there is no indication of the capacity of these links. However, this is still an infrastructural 

measure, as the IP links represent physical (overlapping) data links between cities, which follow the IP 

protocolv. 

Nonetheless, a few important points need to be highlighted here. Firstly, this is only a very small fraction 

of the Internet. Indeed, the DIMES project only includes the IP links which have been captured by the 

volunteers who acted as the DIMES agents. By sending data packets from the agents’ locations to known 

destinations, DIMES researchers record the different IP links used by its agents, completing in this way 

the largest available data source for geo-coded IP links.  

In addition, an inherent limitation of the geographic analysis of the Internet is its topological rather than 

geographic basis. Indeed, the Internet was designed as a logical network, the links of which are defined 

in topological terms, not using geographic coordinates. Thus, the Internet architecture of topological 

destinations (IP addresses) has little to do with geographical locations (Dodge and Zook 2009). In order 

to understand the above structure from a geographic perspective, an indirect approach is adopted and 

effort is spent to geo-code the different IP addresses using IP registration tables. This task is part of the 
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DIMES project. We need to highlight here a potential accuracy issue due to the geo-coding process. It is 

common that IP addresses are owned by specific firms, which lease these IP addresses to the content 

providers (Dodge and Zook 2009). The outcome of this process is that usually the physical location of the 

IP address, which is derived by the geo-coding process, does not match with the location of the content. 

However, this does not create any bias here, as the focus of this paper is the CP and the physical 

infrastructure of the Internet.  

For the purposes of our analysis, an aggregation process has been carried out. Initially, the IP links 

provided by the DIMES project, were geo-coded at the city level. In order to homogenize and 

standardize the data, the IP links among European cities were aggregated at the regional NUTS-3vi level 

in such a way that the city-to-city links were transformed to region-to-region links. The intra-regional 

links derived from the aggregation process were also included in the analysis. In total, the database 

follows panel specifications including IP links among almost all NUTS-3 regions for the period 2005-2008 

at an annual base. Table 1 below provides the details. 

Table 1: IP links data 

description 

Year Inter-region links 

2005 22259 

2006 21277 

2007 21756 

2008 18408 

Total 83700 

Unique 44518 
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In general, although specific limitations exist in studying the Internet from a geographic perspective, the 

DIMES data set appears to be the richest available data source with a geographic projection of the 

Internet infrastructure. Despite the above-mentioned limitations, the size of the DIMES experiment and 

the scattered locations of the DIMES agents enable us to safely use this data set, especially considering 

the general lack of geographic data on the Internet and the Internet infrastructure. 

 

3. The Network Structure of CP 

The first step of our analysis explores the network topology of the IP links using concepts and methods 

from the complex network analysis (CNA) field. To provide a brief introduction, the ideas which 

underpin this section are derived from the new science of networks (Barabási 2002; Buchanan 2002; 

Watts 2003, 2004), an analytical field which focuses on large-scale real-world networks and their 

universal, structural, and statistical properties (Newman 2003). Despite the fact that the CNA starting 

point was governed by statistical physics, strong parallels exist between CNA and regional science, as the 

latter traditionally has a strong interest in networks and interregional systems (Cornell University 2010): 

while regional science focuses on spatial structure, network analysis focuses on topological structure; 

and, while the former emphasizes the economic meaning of functional forms, the latter stresses the 

connectivity patterns of functional forms (Reggiani 2009; Reggiani and Nijkamp 2009). Drawing upon 

this conceptual parallel, CNA is utilized here as a tool to explore connectivity patterns in the topological 

configuration of the CP.  The understanding of the latter is an essential step in order to move on to the 

second part of our analysis, where the impact of distance and different relational proximity types on the 

CP’s topology will be explored. 

Table 2 presents some basic network statistics for the CP for the years 2005 and 2008. Although it seems 

that the size of the CP has decreased over time, this refers to the part of the IP space captured by the 
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DIMES project and not to the overall Internet. Thus, we cannot draw immediate conclusions about the 

change of the size of the CP. Nonetheless, a change in the topology of the network can be observed. 

Although less IP links are included in the analysis for 2008, an increase in the average and maximum 

degree centrality is observed, with the latter being almost doubled during the study period. Degree 

centrality is a connectivity measure and, in this case, is defined as the number of the accumulated IP 

links in each region discovered by the DIMES agents during the course of one yearvii. The average and 

maximum value of this measure refer accordingly to the average and maximum degree centralities 

among all network nodes. Such measures reflect the topological attributes of the network and in this 

case the difference between average and maximum reflects the existence of some very well connected 

nodes, which perform hub roles in the network. To further illustrate the connectivity inequality among 

network nodes, the Gini coefficient is introduced. According to this measure, connectivity appears to 

follow a highly uneven distribution in both years. Notable is also the almost stable over time high 

inequality.  

Table 2: Network statistics 

Year # of 

European 

nodes 

# of intra-

European 

IP links 

av. 

degree
a
 

max. 

degree* 

Gini 

coef. 

density
a
 av. 

dist.
a
 

av. dist. 

RN 

CC
a
 CC RN 

2005 1376 23352 1084 44313 0.727 0.024 2.295 2.831 0.71 0.012 

2008 1276 19521 1490 77692 0.741 0.023 2.176 2.891 0.69 0.012 

a
 for these metrics, links between Europe and the rest of the world were also included in the analysis. 
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The outcome of the uneven distribution of the IP links among the European regions is an efficient CP. 

Indeed, despite the very low density of the CP, the average network distance is exceptionally short. In 

the CNA framework, distance does not refer to Euclidean distance, but to the number of nodes that 

separate any two nodesviii. For the case of CP, any two regions are separated on average by one 

intermediate node, which results in a network distance a little higher than 2. The latter is an indication 

of efficiency, as it reflects the ability of the network to transfer data flows with minimal routing.   

The above qualities and the efficiency of the network can be attributed to the small world (SW) 

characteristics of the CP. The latter refers to a widely used network model, whose main characteristic is 

the existence of highly-connected cliquesix, which gain global connectivity via a few links that span the 

entire network, linking distant clusters (Watts and Strogatz 1998). This theoretical network model 

became popular because of its real-world applications. The CP resembles SW networks because of the 

short average distance – shorter than that observed in same size random networks (RN) – and the high 

clustering coefficientx – higher than that observed in same size RN. 

Apart from the latter, an essential element of the SW networks is the distribution of nodes’ degree 

centrality, which distinguishes this network type from another widely used type of network model 

known as scale free (SF). SF networks share the above characteristics with SW networks, but the degree 

distribution of their nodes follows power laws, contrary to the exponential laws which characterize SW 

networks. The different distributions reflect the difference between these two types of networks in 

terms of the nodes’ heterogeneity: while the power-law degree distribution of the SF networks reflects 

the existence of a very few super-connected hubs and a vast majority of less-connected vertices 

(Barabási and Albert 1999), the exponential-degree distribution of SW networks resembles highly-

connected cliques and less heterogeneous nodesxi. Following Newman (2005), the estimation of the 
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degree distribution curve is based on the cumulative degree function (CDF) derived from an inverse 

rank-plot graph. The CDFs for the years 2005 and 2008 are presented in Figure 1. 

  
2005 2008 

Figure 1: Cumulative degree distribution of NUTS-3 regions based on IP links 
 

The scatter plots reveal the existence of two different curves for both years: a straight line indicating a 

power function for the most-connected nodes of the IP network and a curve suggesting an exponential 

function for the least-connected nodes. This ‘dual’ character of the CDF suggests a power law with a 

cutoff, since the power function does not fit the overall distribution, but only the most-connected 

nodes. The above visual observations are supported statistically by curve estimations based on OLS and 

the relevant log-log transformations (Faloutsos, Faloutsos, and Faloutsos 1999; Gorman and Kulkarni 

2004; Patuelli et al. 2007; Schintler et al. 2004; Tranos 2011; Reggiani, Bucci, and Russo 2010). The 

results of the OLS are presented in Table 3, where three different forms are tested: exponential, power, 

and power with cutoff (Tanner function), accordingly: 
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                            (3) 

Table 3: Degree distribution fit 

       Exponential Power Tanner function 

  
N R

2
 Coef. R

2
 Coef. R

2
 

Power 

Coef. 

Exp. 

Coef. 

2005 1376 0.679 0.0003 0.733 -0.481 0.909 -0.323 -0.0002 

2008 1276 0.632 0.0002 0.712 -0.435 0.889 -0.305 -0.0001 

 

Indeed, the OLS results confirm the visual observation that Tanner functions better fit the overall 

distribution for both yearsxii. So, at an aggregated NUTS-3 level, the European IP network fails to form a 

clear SF structure. In spatial terms, this can be interpreted as an agglomeration effect of IP connectivity 

in a limited number of regions which act as hubs. At the same time, the exponential tail reflects the 

existence of a cluster of less-connected regions, which is more homogeneous in terms of IP connectivity 

than if a hierarchical and clear SF topology were present. Although the above analysis provides  

interesting insights into the nature of this infrastructural system at a global (i.e. overall network) level, it 

does not provide insights on the mechanisms behind the creation of these links. Moving a step forward, 

the next section will explore the impact of physical distance and relational proximities on the formation 

of this complex network. The knowledge gained in this section will be used as a tool to interpret the 

effect different proximities on this complex network.  
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4. CP and Proximities 

The main focus of this section is to test the impact of distance on the formation of CP. In addition, the 

empirical analysis is enriched by exploring the impact of other – relational – proximities on CP. The latter 

apart from offering fruitful results, enables us to test the sensitivity of distance (or in other words 

geographical proximity) against relational proximities. Drawing upon the economic geography literature, 

relational proximity is a multidimensional notion including notions such as cognitive, organizational, and 

institutional proximity. The main hypothesis is that distance as well as relational proximities affect the 

structure of the CP and the intensity of the IP connectivity between places. In addition, distance decay 

effect remains significant (and negative) event after controlling for relational proximities. The 

conceptual model of this analysis is formulated in the below generalized version of a spatial interaction 

model (SIM), according to which the number of IP installed links between i and j (IPij) is affected by the 

characteristics of i (Ai) and j (Bj) and various proximity types between i and j (F(dij)). 

               ,                    (4) 

Before presenting the econometric specifications and the results of the above simple unconstrained 

SIM, the different relational proximities are introduced, as well as their quantification in the CP 

framework.  

Different proximities 

 The starting point for defining the different dimensions of proximity lies in the French School of 

Proximity, which studied the spatial dimension of enterprises and organizations. The main objective of 

this group of industrial economists was to endogenize space in economic analysis, and, more specifically, 

to incorporate space and other territorial proximity elements in a research framework, which aims to 

better understand the dynamics of innovation (for a review of the French School of proximty, see Torre 

and Gilly 2000). A second development in further decomposing and analyzing the different components 
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of proximity was research related to innovation and territorial learning in the broader framework of 

evolutionary economic geography. In recent years we have experienced an increased interest in the 

factors which explain how firms and regions interact as part of a ‘collective learning process’, since 

learning and knowledge creation are an essential component of the firms’ and regions’ competitive 

advantage (Boschma 2005). The notion of proximity and its different components are juxtaposed with 

ideas about knowledge transfer and creation, tacit knowledge, and learning regions (Boschma 2004).  

The common basis of these approaches is the importance of non-spatial types of proximity in innovation 

creation. Although the latter is not the subject of the present paper, we can ‘borrow’ the conceptual 

work on the different proximity dimensions, redefine and use them in a new empirical framework to 

understand the impact of different types of proximity on the formation of the CP. After all, proximity 

and distance are just other facets of cost which needs to be incorporated in the connectivity decisions 

taken by Internet Service Providers (ISPs). Starting now from the French School, two different types of 

proximity can be identified: geographical and organized (Torre and Rallet 2005). The former type is 

more straightforward and reflects physical distance. Nonetheless, different conceptualizations of 

geographical proximity could also be utilized, as it might be affected not only by Euclidean distance, but 

also by the transportation cost between two places and their accessibility. In our case, geographical 

proximity is represented by the Euclidean distance between the centroids of two NUTS-3 regions and it 

is expected to negatively affect IP connectivity. 

Unlike geographical proximity, organized proximity is a relational notion, and refers to the ability of an 

organization to enhance interaction between its members. The main point behind this concept is that 

members of the same organization will interact together more easily than actors outside the 

organization. This is based on two different logics (Torre and Gilly 2000): (a) adherence logic, according 

to which actors, who are close in organizational terms, such as a firm, network etc., are part of the same 
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relational space; and (b) similarity logic, according to which the organizationally close actors tend to be 

alike. In a nutshell, while geographical proximity reflects separation in space regarding physical distance, 

organized proximity is considered as the overall framework in which the different actors interact. In the 

same vein, Boschma defined organizational proximity “as the extent to which relations are shared in an 

organizational arrangement, either within or between organizations” (Boschma 2005, p. 65). Since 

digital infrastructure follows the expected demand for IP communications, we would expect that IP 

connectivity would be higher among places which are organizationally proximate.  

The main difficulty in quantifying and transferring organizational proximity to our CP context is the 

aggregate level of our analysis. Indeed, this relational proximity type was initially conceptualized at the 

micro-firm level. Nonetheless, we argue here that such a concept is also applicable to the aggregated 

regional level, as firms do not operate in a vacuum. On the contrary, agglomeration forces perform a 

significant role in the firm’s location factors. The summation of organizational links in a region can 

provide an overview of the organizational profile of that region. In order to build a proxy for this type of 

proximity, the world city ranking by Peter Taylor is utilized (GaWC 2008). The latter is a well-known 

research approach in the world cities research field, according to which urban hierarchies are derived 

based on the links that advanced producer service firms share with the rest of the world. In more detail, 

Taylor (e.g. 2004), instead of directly using cities as the nodal level of his network, created a third sub-

nodal level in order to include in his analysis the agents which “taken together, are primarily responsible 

for shaping the world city network”; these are service firms, city governments, service-sector 

institutions, and nation states (Taylor 2004, p. 58). From these four, he identified service firms and more 

specifically Sassen’s (1991) advanced producer services as the main agent for world city formation. His 

latest version of the world city network (Taylor et al. 2010) is based on relational data from about 175 

multinational firms, which can be identified as advanced producer services. Using the intra-firm 

connections, he created a roster of 525 cities. Drawing upon this work, here we propose a dummy 
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variable which takes the value 1 when both ends of an IP link are included in Taylor’s world city network. 

This is an aggregated measure of organizational proximity, as virtual interaction, and, consequently, the 

digital infrastructure between two cities with extensive global urban organizational links, is expected to 

be higher than interaction between less-connected cities. 

Building upon the French School of proximity findings, Boschma (2005) approached proximity as a five-

dimension notion. Cognitive proximity is the point of departure for his conceptual framework and is 

defined as the level of similarity of the knowledge base of different organizations (Nooteboom 2000; 

Balland 2011). Organizations collaborate and form links and networks using as criteria for their choices 

the knowledge background of the potential partners, as people and organizations, which share the same 

knowledge background and expertise may learn from each other (Boschma 2005). The complexity of the 

learning process is reflected in the non-linear effect of cognitive proximity in learning. In order for 

knowledge to be transferred, gained or created, there is a need for optimal cognitive proximity, since 

too high cognitive proximity will eliminate any novelty from the interaction, while, vice versa, too high 

cognitive distance will result in communication difficulties (Nooteboom 2000).  

Despite the effort spent in the relevant literature, cognitive proximity is still a rather fuzzy concept, and 

it is difficult to quantify. Strong links can also be identified between cognitive proximity and 

technological similarity. While some authors distinguish these two (e.g. Knoben and Oerlemans 2006), 

more often than not these notions are used interchangeably in an empirical context (e.g. Marrocu, Paci, 

and Usai 2011; Walukiewicz 2007). While cognitive proximity represents the similarity of the knowledge 

bases of two organizations or regions, technological proximity reflects the similarity between the 

technological knowledge among economic actors (Dangelico, Garavelli, and Petruzzelli 2010). Examples 

of the empirical specification of cognitive and technological proximity include, among other things, the 

use of human capital skills in an organization (Criscuolo, Salter, and Wal 2010), the economic activity and 
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technological classification of firms (Broekel and Boschma 2011), and the use of patents (Dangelico, 

Garavelli, and Petruzzelli 2010). In the view of this, and because of the strong technological nature of 

the main research subject of this paper, here we introduce two dummy variables in order to capture 

technological proximity in the context of digital infrastructure. The first variable is equal to 1 for those IP 

links which connect regions which are part of the topological core of the IP network. The second dummy 

variable is equal to 1 when the IP link connects a peripheral with a core region. The core and the 

periphery of the IP network are defined here as those regions which are placed, respectively, in the first 

and the fourth quartile of the IP degree distribution. These variables also reflect the discussion in the 

previous section regarding the node degree distribution and the few super-connected hubs. In order to 

avoid endogeneity issues, the degree distribution, just as in the previous section, is derived after the 

inclusion in the analysis of the IP links between European and non-European destinations. With regard 

to the expected sign in the regression, a positive impact is expected for the core-to-core dummy 

variable, since core IP hubs need to intensively connect to each other as their spokes gain global 

connectivity through them. On the other hand, the links between the spokes and the hubs are of less 

structural importance for the overall network, so that the impact of the core-to-periphery variable is 

expected to be negative.  

In addition, institutional proximity is a concept also proposed by the French School (Kirat and Lung 

1999). Following North’s (1993) definition, institutions are the amalgamation of formal rules and 

informal constraints including behavioral and social standards, while organizations can be approached as 

a group of agents performing the same activity. Put simply, organizations define agents’ practices and 

strategies in the overall context provided by the institutional ecosystem in which they are positioned 

(Kirat and Lung 1999). In our context, following Hoekman et al. (2009), institutional proximity is defined 

on the basis of whether or not two regions are part of the same country. The underlying assumption is 

that two regions, which share the same institutional-country characteristics, will be characterized by a 
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higher level of virtual interaction than two regions from different countries. Thus, the installed digital 

infrastructure between nearby places in institutional terms is expected to be more intensive than 

between distant places. For this reason, a dummy variable is built with 0 denoting an IP link between 

two regions from a different country and 1 indicating an intra-country IP link. In addition, the adopted 

level of analysis enables us to capture even more detailed institutional characteristics, as the adopted 

city-region spatial unit is characterised by a degree of functional integration. On that basis, it may be 

assumed that the location of two cities in the same region will positively affect the intensity of the 

digital infrastructure between them. For this reason, a second dummy variable is built with 1 indicating 

intra-regional IP links, and 0 vice versa.  

In total, six variables denoting four different types of proximity (geographical (1), cognitive (2), 

organizational (1), and institutional (2)) will be used in order to explore the impact of proximity on the 

formation of CP. In addition, a variable indicating the population difference between the linked regions 

is also included in our analysis in order to capture size effects. Due to the lack of previous research in 

this area, it is difficult to predict if there is a cost in digitally connecting dissimilar agglomerations. The 

expected signs and a brief description are presented in Table 4. 

Table 4: Proximity types and related variables 

 

 

 Proximity type Variable Data source Variable name Expected 

sign 

Geographic 
Physical distance in km 

(natural logarithm) 
Own calculations           

- 

Cognitive Core-to-core (IP) Own calculations        + 
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Core-to-periphery (IP) Own calculations        - 

Organizational World cities 
GaWC, own 

calculations 
       + 

Institutional 

Intra-country virtual 

interaction 
Own calculations        + 

Intra-region virtual interaction Own calculations         + 

Population 

Absolute population distance  

(natural logarithm + 1) 

Eurostat,  

own calculations 

               ? 

 

Empirical results 

In order to investigate the impact of physical distance and other types of proximity on the intensity of CP 

links, equation (4) has been expanded to the following simple unconstrained SIM:  

                                                                          

                                                               
  

           

(5) 

The dependent variable here is the natural logarithm of the number of IP links between any i and j 

during the period 2005-2008. The right-hand side variables reflect the different types of proximity, and 

are described in Table 2. In addition,        
  

    represents an array of dummy variables controlling for 

unobserved country-to-country effects. In total, 34 European countries are included in the analysis. Out 

of the 561 potential country-to-country combinationsxiii, 508 different country-to-country pairs have 

been derived from the NUTS 3 to NUTS 3 region links. Furthermore, IP_lnit and IP_lnjt  are the masses of 
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the Newtonian formula, and in this case they represent the natural logarithm of the weighted degree 

centrality of the IP links. Simply put, these variables present the total number of IP links originating or 

terminating in i and j. It should be noted here that for the calculation of these variables, apart from the 

intra-European city-to-city links, the IP links of European cities with the rest of the world were also 

included in the analysis. This choice was made in order to better reflect the overall importance of i and j 

in CP. Finally, yearly effects t2-t4 are also included in the regressions, α0 is the effect common to all years 

and pairs of regions, and εijt is the error term. 

Instead of estimating the above model cross-sectionally, a panel data specification is preferred. Firstly, 

panel data improves the researchers’ ability to control for missing or unobserved variables (Hsiao 2003). 

Such an omitted-variable bias as a result of unobserved heterogeneity is a common problem in cross-

section models. In addition, potential selection bias in IP links due to the traceroute process can be 

addressed more efficiently with panel data. In a nutshell, a panel data specification reduces the risk of 

obtaining biased estimators (Baltagi 2001).  

While panel data introduces substantial gains, there are also methodological shortcomings that need to 

be addressed. According to the literature (Wooldridge 2003), the most widely used panel data models 

are the fixed effects (FE) and random effects (RE). As the main aim of this paper is to estimate the impact 

of the different proximity measures on the creation of CP, a RE model would have been preferred at a 

first instance because the first differentiation process of the within estimator (FE) would have resulted in 

the elimination of most of the time-invariant proximity measures (e.g. Brun et al. 2005; Etzo 2011). 

Nonetheless, the efficiency of the RE model does not come for free: in order for the RE estimates to be 

consistent, there is a need for the unobserved random effects to be uncorrelated with the regressors. 

For instance, the proximity variables might be endogenous by being correlated with omitted variables 

which affect the installation of IP links between regions (Baier and Bergstrand 2001). If this is the case, 
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the instrumentation of the endogenous variables would be necessary in order to obtain unbiased 

estimators. However, such instrumentation is not be an easy task given the complexity of the CP and the 

lack of prior empirical research in this area. Therefore, a two-way fixed-effects estimation is adopted to 

overcome the estimation problem. This specification is differentiated by the usual FE because it 

addresses unobserved effects at two dimensions (Baltagi 1995). Thus, the error term εijt from equation 

(5) can be analyzed as following:                 . In this case, μit and λjt are the i and j as well as 

time-specific effects and υij the remainder stochastic disturbance term. The two-way FE will result in 

omitting the i and j time-specific effects (i.e. the masses of the Newtonian equation which are time-

variant) as well as the yearly effects and enable the estimation the effect of distance and the other 

relational proximities. However, it should be highlighted here that because of the high dimensionality of 

the it and jt effects (around 5000 effects for each case), the estimation of this model needs more 

sophisticated methods than a simple introduction of dummy variables and within transformation. To 

overcome this computational problem the Stata algorithm felsdvreg (Cornelissen 2008) is utilized here. 

This algorithm estimates a linear regression model with two high-dimensional fixed effects: one effect is 

eliminated by the within transformation and the other is included as dummy variables. This algorithm 

omits the creation of dummy variables and based on the information provided by the group identifiers, 

it creates the cross-product matrices for least-squares equations. Elsewhere (Andrews, Schank, and 

Upward 2006), this method has been named as FEiLSDVj owing to the combination of FE and least-

squares dummy variable model. In addition to the two-way FE, pooled OLS, RE and Poisson estimations 

are also presented as a sensitivity test. 

Table 5 presents the results of the different specifications of the spatial interaction model. Starting in 

the first column with a regression including only the effect of physical distance and of course the fixed 

effects which have not been estimated, the first indication of the negative effect of distance on the 

intensity of IP connectivity can be observed. Thus, 1% increase in distance between two locations will 
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result in 1.2% decrease of the installed IP infrastructure between these two locations. To investigate the 

combined effect of distance with relative proximities on the formation of CP, the relational proximity 

variables are incrementally introduced into the regressions. Firstly, the effect of cognitive proximity is 

explored. The analysis reveals the cost in establishing digital links between regions with a different level 

of IP infrastructure. Indeed, while links between core and peripheral regions are less favored in terms of 

connectivity intensity, the exact opposite applies to the core-to-core IP links (column 2). This is not 

surprising as it reflects the partial hierarchical hub-and-spoke topology reflected in the Tanner function, 

which was discussed in the previous section. IP connectivity between nodal locations is expected to be 

higher than connectivity between nodal and peripheral ones on account of the structural roles that 

former links perform for the overall network function. At the same time, the cost of establishing IP links 

in highly connected locations is expected to be lower because of the local knowledge and the associated 

human capital expertise. It needs to be noted here that the c2c variable loses its significance when the 

organization proximity variable reflecting intra-regional IP connections is included in the model (see for 

instance columns 7 and 8). Interestingly enough, although technological proximity is a significant 

predictor of the intensity of IP connectivity, the elasticity of distant is only slightly decreased after the 

inclusion of the variables reflecting the former.  

Similarly, organizational proximity has a positive impact on the formation of the CP. Indeed, the intensity 

of IP links appears to be higher between regions with cities which are part of the world city network. The 

rationale behind this lies in the increased demand for IP communications among cities which are 

intensively inter-linked with the global economy. The positive impact of this variable can also be 

approached as a justification for the importance of the digital economy in the formation of the world 

city network, since the digital infrastructure is an underpinning layer of global urban interdependencies 

(Tranos 2011). Again, the inclusion of the organizational proximity variable does not affect the 

importance of physical distance in the formation of CP (column 3). 
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A different effect is captured by institutional proximity, which has a positive impact on the formation of 

the CP. Column 4 indicates the increased demand for intra-country IP links, or otherwise, an increased 

cost for country-to-country IP links, which represents a border effect. Despite the importance of 

transnational IP links in gaining global connectivity, it seems that the number of IP links is positively 

affected by institutional proximity. In the same vein, an institutional effect also emerges at the regional 

level suggesting localization effects on the structure of the IP network. The latter result confirms the 

argumentation provided in Section 3 about the SW attributes of the CP. Nonetheless, it needs to be 

highlighted here that the focus of the analysis is on the IP connectivity and the number of IP addresses, 

and not the actual capacity of these links. If capacity data were available at such a fine scale, then we 

would expect to identify a relatively small number of international links, which are characterized by very 

high capacity (Tranos and Gillespie 2009, 2011). Owing to data constraints, such conclusions cannot be 

drawn here. After the inclusion of the country-pair effect (columns 6, 7 and 8) it becomes apparent that 

intra-country effect is stronger than the intra-regional effect. Regarding physical distance, the high 

coefficients of these two dummy variables result in a significant decrease of the distant effect. This is 

not surprising as distance is related with intra-country and intra-region links. Nonetheless, what is 

important here is that physical distance remains significant even after the inclusion of these two 

variables. 

Moreover, population difference between linked regions has a negative effect, which becomes 

significant only after the inclusion of country-to-country effects (column 6) and highly significant after 

the exclusion of the regional institutional proximity variable (column 7). This result indicates the cost of 

establishing infrastructure and the lack of demand between dissimilar agglomerations. Despite its 

significance, it only affects marginally the distance elasticity.  
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In addition, column 8 in Table 5 also includes variables to control for selection bias. As the panel is 

unbalanced, the lack of IP connectivity in some regions is due to the DIMES IP capturing process. In 

order to correct for potential selection bias due to this process and following Nijman and Verbeek 

(1992), we introduce three additional explanatory variables including: the number of years that an IP 

link has been present in the panel (help_sel_b1 in Table 5); a dummy variable that takes the value 1 if an 

IP link is observed during the entire four-year period (help_sel_b2 in Table 5); and a dummy variable 

equal to 1 if an IP link is present in t-1 (help_sel_b3 in Table 5). Although all three variables are 

significant, the results remain unchanged. Not surprisingly, the inclusion of these variables results in a 

significant decrease of the effect of distance. In total, the distance decay is decreased by 76% after the 

inclusion of the relative proximity and control variables. Nonetheless, the importance of our findings is 

that despite the different relative proximities addressed by the models presented in Table 5, physical 

distance maintains its significant negative character in the formation of CP. 

Finally, to increase the robustness of the analysis, Table 6 presents the results of alternative estimators 

for model 5. Column 1 depicts a simple OLS without any fixed effects, column 2 presents the main 

effects (i, j and t) using a LSDV estimation following Egger and Pfaffermayr (2003) and column 3 

estimates 5 using RE. Moreover, column 4 addresses the count nature of the dependent variable using 

Poisson regression, which is estimated by means of maximum likelihood estimation techniques (see 

among others Fischer and Wang 2011). The latter addresses a potential drawback of the OLS based 

estimations, that the data might not meet the general assumption that counts of the dependent variable 

are log-normally distributed around their mean value with a constant variance (Hoekman, Frenken, and 

Tijssenc 2010). Not surprisingly, all above different specifications validate the previous outcome, since 

they result in a negative and of same magnitude (in absolute and relative terms) coefficient for the 

effect of distance on installed Internet backbone capacity between two regions.  
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Table 5: SIM results on the intensity of IP links (natural logarithm) 

Dep. Var.: IP_lnijt (1) (2) (3) (4) (5) (6) (7) (8) 

dist_lnij -1.204 -1.169 -1.164 -0.576 -0.56 -0.463 -0.59 -0.294 

 (131.00)*** (126.88)*** (126.36)*** (54.59)*** (51.15)*** (39.15)*** (50.23)*** (25.80)*** 

IP_lnit Omitted 

IP_lnjt Omitted 

c2pijt  -0.451 -0.398 -0.526 -0.5 -0.528 -0.419 -0.423 

  (16.96)*** (14.87)*** (20.83)*** (19.08)*** (20.42)*** (15.98)*** (17.18)*** 

c2cijt  0.662 0.652 -0.025 0 0.057 0.409 -0.048 

  (15.63)*** (15.43)*** (0.60) (0.00) (1.34) (9.67)*** (1.2) 

gawcij   0.599 0.297 0.272 0.36 0.133 0.304 

   (14.62)*** (7.68)*** (6.51)*** (8.62)*** (3.15)*** (7.66)*** 

cntrij    2.489 2.422 5.224 6.881 2.688 

    (74.81)*** (69.02)*** (2.09)** (2.70)*** (0.95) 

interij    2.322 2.337 2.339  1.753 

    (66.99)*** (48.67)*** (49.14)***  (38.31)*** 

pop_diff_lnijt     -0.003 -0.012 -0.234 -0.013 

     (0.50) (1.74)* (46.21)*** (2.01)** 

help_sel_b1ij        0.391 

        (34.10)*** 

help_sel_b2ij        0.503 

        (21.27)*** 

help_sel_b3ijt        0.323 

        (15.53)*** 

Country-pair 

effects 

no No no no no yes yes Yes 

Observations 83,700 83,700 83,700 83,700 77,553 77,553 77,553 77,553 

Unique links 44,518 44,518 44,518 44,518 42,396 42,396 42,396 42,396 
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* p<0.1; ** p<0.05; and *** p<0.01; t tests in parentheses. 

      

Table 6: SIM alternative specifications 

   Dep. Var.: IP_lnijt OLS OLS and 

main effects 

RE Poisson 

  (1) (2) (3) (4) 

dist_lnij -0.362 -0.572 -0.344 -0.13 

 

(45.76)*** (54.14)*** (35.59)*** (31.18)*** 

IP_lnit 0.575 0.637 0.571 0.214 

 

(113.43)*** (41.97)*** (100.66)*** (81.34)*** 

IP_lnjt 0.572 0.56 0.568 0.214 

 

(115.07)*** (37.29)*** (102.39)*** (83.00)*** 

c2pijt -0.149 -0.373 -0.153 -0.057 

 

(7.99)*** (17.01)*** (8.14)*** (6.46)*** 

c2cijt 0.386 0.147 0.368 0.211 

 

(12.42)*** (4.21)*** (12.15)*** (15.08)*** 

gawcij 0.491 0.326 0.303 0.076 

 

(14.19)*** (7.86)*** (6.79)*** (4.14)*** 

cntrij 1.885 2.379 1.823 0.74 

 

(96.62)*** (70.52)*** (79.77)*** (71.58)*** 

interij 3.017 2.269 2.967 0.784 

 

(73.52)*** (48.68)*** (56.05)*** (36.18)*** 

pop_diff_lnijt 0.079 -0.002 0.043 0.022 

 

(16.01)*** -0.25 (7.32)*** (8.34)*** 

t2 

 

-0.175 -0.211 -0.083 
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(10.36)*** (15.87)*** (13.58)*** 

t3 

 

-0.25 -0.265 -0.101 

  

(14.40)*** (19.46)*** (16.44)*** 

t4 

 

-0.308 -0.318 -0.132 

  

(15.07)*** (19.90)*** (18.24)*** 

i and j effects no yes no No 

constant -5.661 -4.428 -5.442 -1.604 

 

(64.61)*** (5.36)*** (54.31)*** (88.17)*** 

R
2
 0.36 0.47 

  Observations 77,553 77,553 77,553 77,553 

* p<0.1; ** p<0.05; and *** p<0.01; t tests in parentheses. 

 To summarize the results, IP connectivity appears to be higher between neighboring regions in terms of 

technological, organizational, and institutional proximity. Border and localization effects become 

significant, even for the digital infrastructure. In addition, costs are also observed in terms of linking 

dissimilar agglomerations. But most importantly, physical distance continues to play a significant 

negative role in the formation of CP event after addressing different relative proximities and controlling 

for selection bias. 

 

5. Conclusions 

Although spatiality is usually not an issue in the discussion around the Internet, our study addresses this 

viewpoint by approaching the Internet infrastructure from a spatial perspective, despite the technical 

and conceptual difficulties that such an exercise involves. The novelty of this paper lies not only in the 

spatial perspective adopted in the analysis, but also in the effort to quantify these issues through an 

evidence-based modeling approach. In addition and from a methodology point of view, this paper also 
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highlights the importance of network analysis in a mainstream econometric framework and the value 

added of bridging these two analytical strands.   

Our analysis reveals that Tobler’s First Law of Geography is valid in the CP. The intensity of IP 

connectivity is higher between neighboring regions indicating the role of physical distance in the 

formation of the CP. The latter can be approached both as an indication of cost in physical connectivity  

and also as an indication of higher demand in IP communications between nearer destinations. Our 

results also support previous evidence on the relation between physical distance and the digital 

infrastructure (Waxman 1988; Wang, Lai, and Sui 2003; D'Ignazio and Giovannetti 2007). Most 

importantly, physical distance survives in the virtual geography even after controlling for relational 

proximities. CP is not only affected by costs deriving from physical distance, but also by costs deriving 

from other relational proximities. The complex topology of the CP is the result of the impact of different 

costs projected on the different types of proximities analyzed here and the prospects of ISPs for the 

location of demand for IP communications. 

Drawing on the results of our analysis, specific spatial processes can be identified. Firstly, centripetal 

forces agglomerate IP links in specific locations, which act as the hubs of this digital infrastructure. 

During the four-year study period, the uneven distribution of IP connectivity has – marginally – 

increased. But, overall, CP appears to be strongly curved by agglomeration forces. On the other hand, 

centrifugal forces ‘protect’ the less-connected regions, securing a level of connectivity which would have 

not been observed if a clear SF structure was present. Other forces, including the – limited – provision of 

IP connectivity from non-private ISPs, ensure that less-connected regions are not as thinly connected as 

an SF structure would indicate. 

In addition, a core-periphery pattern can be identified at a global level. Regions which are strongly 

integrated with the global economy enjoy higher levels of connectivity. Such a pattern overcomes the 
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importance of national borders, and illustrates the significance of global urban interdependencies. At 

the same time, a counterbalancing force was also revealed from our analysis, as border and even local 

effects have a strong impact on IP connectivity reflecting both cost constraints and prospects for local 

communications. 

In total, this paper highlights the hidden spatiality of the so-called ‘placeless’ Internet. Its complexity 

decreases the explanatory value of (over-)simplistic approaches such as the cartoonish ‘shrinking world’ 

metaphor, and the subsequent Internet shrinking rather than recasting spatial impacts (Kirsch 1995). 
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i
 Cyberspace can be defined as a “new kind of space, invisible to our direct senses, a space which might become 
more important than physical space itself [and which is] layered on top of, within and between the fabric of 
traditional geographical space” (Batty 1993, p. 615-616) 
ii
 “Everything is related to everything else, but near things are more related than distant things” (Tobler 1970, p. 

236) 
iii
 Exceptions include among other the work of Gorman and Kulkarni (2004), Schintler et al. (2004), Vinciguerra et 

al. (2010), and Tranos (2011). 
iv
 Traceroutes are specific programs, which map the route that a data packet follows through different nodes in 

order to reach its final destination (Dodge and Zook 2009). 
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v
 These links function at level 3 of the OSI model. As noted elsewhere (Tranos forthcoming), the first three layers of 

the OSI model represent physical infrastructural capital, while the four highest layers reflect ‘infratechnologies’ 
(Tassey 1992, 2008). 
vi
 NUTS is the French acronym for the Nomenclature for Territorial Units of Statistics, and NUTS-3 is the most 

detailed level usually representing a province. 
vii

 This is a ‘weighted’ degree centrality measure in the sense that if two regions i and j are connected by multiple 
links, all of these links will be added in the degree centrality of i and j. If it had been a ‘binary’ centrality measure, 
then the multiplicity of the links between i and j would have been neglected.  
viii

 Because there are usually numerous different ways to connect any two given nodes (known as walks), research 
commonly focuses on the shortest path, known as distance (Nooy, Mrvar, and Batagelj 2005). 
ix
 A clique is a “sub-set of a network in which the actors are more closely and intensely tied to one another than 

they are to other members of the network” (Hanneman and Riddle 2005). 
x
 The clustering coefficient Ci of node i is the ratio between the number of edges Ei  that exist among its nearest 

neighbours (nodes which are directly connected with node i) and the maximum number of these edges, where ki is 

the number of nodes in clique: 2 ( 1)i i i iC E k k   (Latora and Marchiori 2001). 
xi
 For a review of the new science of networks from a spatial economics perspective, the reader is referred to 

Reggiani and Vinciguerra (2007), and, for an application of CNA on the Internet infrastructure, to Tranos (2011). 
xii

 In order to validate this result and because Tanner function is a nested function of the other two forms tested 
here, a cross-equation coefficient equality restriction was tested with the relevant F-tests, the null hypotheses of 
which (i.e. parameter equality) were rejected at the 5 per cent significance level (see also Reggiani and Nijkamp 
2012).  
xiii

 The maximum number of edges in a network is = n(n-1)/2. 


