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ABSTRACT
Online Controlled Experiments (OCEs) are the gold standard in
evaluating the effectiveness of changes to websites. An important
type of OCE evaluates different personalization strategies, which
present challenges in low test power and lack of full control in group
assignment. We argue that getting the right experiment setup —
the allocation of users to treatment/analysis groups — should take
precedence of post-hoc variance reduction techniques in order to
enable the scaling of the number of experiments. We present an
evaluation framework that, along with a few rule of thumbs, allow
experimenters to quickly compare which experiment setup will
lead to the highest probability of detecting a treatment effect under
their particular circumstance.
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Experimentation, Experiment design, Personalization strategies,
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1 INTRODUCTION
The use of Online Controlled Experiments (OCEs, e.g. A/B tests) has
become popular in measuring the impact of products and guiding
business decisions on the Web. Major companies report running
thousands of OCEs on any given day and many startups exist purely
to manage OCEs. A large number of OCEs address simple varia-
tions on elements of the user experience based on random splits, e.g.
showing a different colored button to users based on a user ID hash
bucket. Here, we are interested in experiments that compare person-
alization strategies, complex sets of targeted customer interactions
that are common in e-commerce and digital marketing. Examples
of personalization strategies include the scheduling, budgeting and
ordering of marketing activities directed at a user based on their
purchase history.

Experiments for personalization strategies face two unique chal-
lenges. Firstly, strategies are often only applicable to a small fraction
of the user base, and thus many simple experiment designs suf-
fer from either a lack of sample size / statistical power, or diluted
metric movement by including irrelevant samples [2]. Secondly,
as users are not randomly assigned a priori, but must qualify to
be treated with a strategy via their actions or attributes, groups
of users subjected to different strategies cannot be assumed to be
statistically equivalent and hence are not directly comparable.

While there are a number of variance reduction techniques (in-
cluding stratification and control variates [3, 7]) that partially ad-
dress the challenges, the strata and control variates involved can
vary dramatically from one personalization strategy experiment
to another, requiring many ad hoc adjustments. As a result, such
techniques may not scale well when organizations design and run
hundreds or thousands of experiments at any given time.

We argue that personalization strategy experiments should focus
on the assignment of users from the strategies they qualified for
to the treatment/analysis groups. We call this mapping process an
experiment setup. Identifying the best experiment setup increases
the chance to detect any treatment effect. An experimentation
framework can also reuse and switch between different setups
quickly with little custom input, ensuring the operation can scale.
More importantly, the process does not hinder the subsequent
application of variance reduction techniques, meaning that we can
still apply the techniques if required.

To date, many experiment setups exist to compare personaliza-
tion strategies. An increasingly popular approach is to compare the
strategies using multiple control groups — Quantcast calls it a dual
control [1], and Facebook calls it a multi-cell lift study [5]. In the
two-strategy case, this involves running two experiments on two
random partitions of the user base in parallel, with each experiment
further splitting the respective partition into treatment/control and
measuring the incrementality (the change in a metric as compared
to the case where nothing is done) of each strategy. The incremen-
tality of the strategies are then compared against each other.

Despite the setup above gaining traction in display advertising,
there is a lack of literature on whether it (or any other candidate)
is a good setup — one that has a higher sensitivity and/or apparent
effect size than other setups. While Liu et al. [5] noted that multi-
cell lift studies require a large number of users, they did not discuss
how the number compares to other setups.1 The ability to identify
and adopt a better experiment setup can reduce the required sample
size, and hence enable more cost-effective experimentation.

We address the gap in the literature by introducing an evaluation
framework that compares experiment setups given two personal-
ization strategies. The framework is designed to be flexible so that
it is able to deal with a wide range of baselines and changes in user
responses presented by any pairs of strategies (situations hereafter).
We also recognize the need to quickly compare common setups, and
provide some rule of thumbs on situations where a setup will be
better than another. In particular, we outline the conditions where
employing a multi-cell setup, as well as metric dilution, is desirable.

To summarize, our contributions are: (i) We develop a flexible
evaluation framework for personalization strategy experiments,
where one can compare two experiment setups given the situation
presented by two competing strategies (Sec. 2); (ii) We provide
simple rule of thumbs to enable experimenters who do not require
the full flexibility of the framework to quickly compare common
setups (Sec. 3); and (iii) We make our results useful to practitioners
by making the code used in the paper (Sec. 4) publicly available.2

1A single-cell lift study is often used to measure the incrementality of a single person-
alization strategy, and hence is not a representative comparison.
2Code/supp. documents available on: github.com/liuchbryan/experiment_design_evaluation.
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Figure 1: Venn diagram of the user groups in our evaluation
framework. The outer, left inner (red), and right inner (blue)
boxes represent the entire user base, those who qualify for
strategy 1, and those who qualify for strategy 2 respectively.

2 EVALUATION FRAMEWORK
We first present our evaluation framework for personalization strat-
egy experiments. The experiments compare two personalization
strategies, which we refer to as strategy 1 and strategy 2. Often one
of them is the existing strategy, and the other is a new strategy we
intend to test and learn from. In this section we introduce (i) how
users qualifying themselves into strategies creates non-statistically
equivalent groups, (ii) how experimenters usually assign the users,
and (iii) when we would consider an assignment to be better.

2.1 User grouping
As users qualify themselves into the two strategies, four disjoint
groups emerge: those who qualify for neither strategy, those who
qualify only for strategy 1, those who qualify only for strategy 2,
and those who qualify for both strategies. We denote these groups
(user) groups 0, 1, 2, and 3 respectively (see Fig. 1). It is perhaps
obvious that we cannot assume those in different user groups are
statistically equivalent and compare them directly.

We assume groups 0, 1, 2, 3 have 𝑛0, 𝑛1, 𝑛2, and 𝑛3 users re-
spectively. We also assume the metric has a different distribution
between groups, and within the same group, between the scenario
where the group is subjected to the treatment associated to the cor-
responding strategy and where nothing is done (baseline). We list
all group-scenario combinations in Table 1, and denote the mean
and variance of the metric (𝜇𝐺 , 𝜎2

𝐺
) for a combination 𝐺 .3

2.2 Experiment setups
Many experiment setups exist and are in use in different organiza-
tions. Here we introduce four common setups of various sophisti-
cation, which we also illustrate in Fig. 2.

Setup 1 (Users in the intersection only). The setup considers users
who qualify for both strategies only. The said users are randomly
split (usually 50/50) into two (analysis) groups 𝐴 and 𝐵, and are
prescribed the treatment specified by strategies 1 and 2 respectively.
The setup is easy to implement, though it is difficult to translate
any learnings obtained from the setup to other user groups (e.g.
those who qualify for one strategy only) [4].

Setup 2 (All samples). The setup is a simple A/B test where it
considers all users, regardless on whether they qualify for any
3For example, the metric for Group 1 without any interventions has mean and variance
(𝜇𝐶1 , 𝜎2

𝐶1), and that for Group 2 with the treatment prescribed under strategy 2 has
mean and variance (𝜇𝐼2 , 𝜎2

𝐼2).
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Figure 2: Experiment setups overlaid on the user grouping
Venn diagram in Fig. 1. The hatched boxes indicate who are
included in the analysis, and the downward triangles and
dots indicate who are subjected to treatment prescribed un-
der strategies 1 and 2 respectively. See Sec. 2.2 for a detailed
description.

strategy or not. The users are randomly split into two analysis
groups 𝐴 and 𝐵, and are prescribed the treatment specified by
strategy 1(2) if (i) they qualify under the strategy and (ii) they are in
analysis group 𝐴(𝐵). This setup is easiest to implement but usually
suffers severely from a dilution in metric [2].

Setup 3 (Qualified users only). The setup is similar to Setup 2
except only those who qualified for at least one strategy (“triggered”
users in some literature [2]) are included in the analysis groups. The
setup sits between Setup 1 and Setup 2 in terms of user coverage,
and has the advantage of capturing the most number of useful
samples yet having the least metric dilution. However, the setup
also prevents one from telling the incrementality of a strategy itself,
but only the difference in incrementalities between two strategies.

Setup 4 (Dual control / multi-cell lift test). As described in Sec-
tion 1, the setup first split the users randomly into two randomiza-
tion groups. For the first randomization group, we consider those
who qualify for strategy 1, and split them into analysis groups 𝐴1
and 𝐴2. Group 𝐴2 receives the treatment prescribed under strategy
1, and group 𝐴1 acts as control. The incrementality for strategy 1
is then the difference in metric between groups 𝐴2 and 𝐴1. We
apply the same process to the second randomization group, with
strategy 2 and analysis groups 𝐵1 and 𝐵2 in place, and compare
the incrementality for strategies 1 and 2. The setup allows one to
obtain the incrementality of each individual strategy and minimizes
metric dilution. Though it also leaves a number of samples unused
and creates extra analysis groups, and hence generally suffers from
a low test power [5].

2.3 Evaluation criteria
There are a number of considerations when one evaluates compet-
ing experiment setups. They range from technical considerations
(e.g. the complexity of setting up the setups) to business considera-
tions (e.g. if the incrementality of individual strategies is required).
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Group 0 Group 1 Group 2 Group 3
Baseline (Control) 𝐶0 𝐶1 𝐶2 𝐶3

Under treatment (Intervention) / 𝐼1 𝐼2 Under strategy 1: I𝜙
Under strategy 2: I𝜓

Table 1: All group-scenario combinations in our evaluation framework for personalization strategy experiments. The columns
represent the groups described in Fig. 1. The baseline represents the scenario where nothing is done. We assume those who
qualify for both strategies (Group 3) can only receive treatment(s) associated to either strategy.

Here we focus on the statistical aspect and propose two evalua-
tion criteria: (i) the actual effect size of a treatment as presented by
the two analysis groups in an experiment setup, and (ii) the sensitiv-
ity of the experiment represented by the minimum detectable effect
(MDE) under a pre-specified test power. Both criteria are necessary
as the former indicates whether a setup suffers frommetric dilution,
whereas the latter indicates whether the setup suffers from lack of
power/sample size. An ideal setup should yield a high actual effect
size and a high sensitivity (i.e. a low MDE),4 though as we observe
in the next section it is usually a trade-off.

We formally define the two evaluation criteria from first prin-
ciples while introducing relevant notations along the way. Let 𝐴
and 𝐵 be the two analysis groups in an experiment setup, with user
responses randomly distributed with mean and variance (𝜇𝐴, 𝜎2

𝐴
)

and (𝜇𝐵, 𝜎2
𝐵
) respectively. We first recall that if there are sufficient

samples, the sample mean of the two groups approximately follows
the normal distribution by the Central Limit Theorem:

𝐴
approx.∼ N

(
𝜇𝐴, 𝜎

2
𝐴/𝑛𝐴

)
, 𝐵

approx.∼ N
(
𝜇𝐵, 𝜎

2
𝐵/𝑛𝐵

)
, (1)

where 𝑛𝐴 and 𝑛𝐵 are the number of samples taken from 𝐴 and 𝐵

respectively. The difference in the sample means then also approxi-
mately follows a normal distribution:

𝐷̄ ≜ (𝐵 −𝐴) approx.∼ N
(
Δ ≜ 𝜇𝐵 − 𝜇𝐴, 𝜎

2
𝐷̄
≜ 𝜎2

𝐴/𝑛𝐴 + 𝜎2
𝐵/𝑛𝐵

)
. (2)

Here, Δ is the actual effect size that we are interested in.
The definition of the MDE 𝜃∗ requires a primer to the power of

a statistical test. A common null hypothesis statistical test in per-
sonalization strategy experiments uses the two-tailed hypotheses
𝐻0 : Δ = 0 and 𝐻1 : Δ ≠ 0, with the test statistic under 𝐻0 being:

𝑇 ≜ 𝐷/𝜎𝐷̄
approx.∼ N (0, 1) . (3)

We recall the null hypothesis will be rejected if |𝑇 | > 𝑧1−𝛼/2, where
𝛼 is the significance level and 𝑧1−𝛼/2 is the 1 − 𝛼/2 quantile of a
standard normal. Under a specific alternate hypothesis Δ = 𝜃 , the
power is specified as

1 − 𝛽𝜃 ≜ Pr
(
|𝑇 | > 𝑧1−𝛼/2 | Δ = 𝜃

)
≈ 1 − Φ

(
𝑧1−𝛼/2 − |𝜃 |/𝜎𝐷̄

)
. (4)

where Φ denotes the cumulative density function of a standard
normal.5 To achieve a minimum test power 𝜋min, we require that
1 − 𝛽𝜃 > 𝜋min. Substituting Eq. (4) into the inequality and rearrang-
ing to make 𝜃 the subject yields the effect sizes that the test will be
able to detect with the specified power:

|𝜃 | > (𝑧1−𝛼/2 − 𝑧1−𝜋min ) 𝜎𝐷̄ . (5)

𝜃∗ is then defined as the positive minimum 𝜃 that satisfies Ineq. (5),
i.e. that specified by the RHS of the inequality.
4We will use the terms “high(er) sensitivity” and “low(er) MDE” interchangeably.
5The approximation in Eq. (4) is tight for experiment design purposes, where 𝛼 < 0.2
and 1 − 𝛽 > 0.6 for nearly all cases.

We finally define what it means to be better under these evalu-
ation criteria. WLOG we assume the actual effect size of the two
competing experiment setups are positive,6 and say a setup 𝑆 is
superior to another setup 𝑅 if, all else being equal,
(i) 𝑆 produces a higher actual effect size (Δ𝑆 > Δ𝑅 ) and a lower

minimum detectable effect size (𝜃∗
𝑆
< 𝜃∗

𝑅
), or

(ii) The gain in actual effect is greater than the loss in sensitivity:

Δ𝑆 − Δ𝑅 > 𝜃∗𝑆 − 𝜃∗𝑅 , (6)

which means an actual effect still stands a higher chance to be
observed under 𝑆 .

3 COMPARING EXPERIMENT SETUPS
Having described the evaluation framework above, in this section
we use the framework to compare the common experiment setups
described in Sec. 2.2. We will first derive the actual effect size and
MDE in Sec. 3.1, and using the result to create rule of thumbs on
(i) whether diluting the metric by including users who qualify for
neither strategies is beneficial (Sec. 3.2) and (ii) if dual control is
a better setup for personalization strategy experiments (Sec. 3.3),
two questions that are often discussed among e-commerce and
marketing-focused experimenters. For brevity, we relegate most
of the intermediate algebraic work when deriving the actual &
minimum detectable effect sizes, as well as the conditions that lead
to a setup being superior, to our supplementary document.2

3.1 Actual & minimum detectable effect sizes
We first present the actual effect size and MDE of the four exper-
iment designs. For each setup we first compute the sample size,
metric mean, and metric variance of the analysis groups (here we
present only one of them),7 which arises as a mixture of user groups
described in Sec. 2.1. We then substitute the quantities computed
into the definitions of Δ (see Eq. (2)) and 𝜃∗ (see Ineq. (5)) to obtain
the setup-specific actual effect size andMDE.We assume all random
splits are done 50/50 in these setups to maximize the test power.

3.1.1 Setup 1 (Users in the intersection only). The setup randomly
splits user group 3 into two analysis groups, each with 𝑛3/2 samples.
Users in analysis group 𝐴 are provided treatment under strategy 1,
and hence the group metric has a mean and variance of (𝜇𝐼𝜙 , 𝜎2

𝐼𝜙
).

The actual effect size and MDE for Setup 1 are hence:

Δ𝑆1 = 𝜇𝐼𝜓 − 𝜇𝐼𝜙 , (7)

𝜃∗𝑆1 = (𝑧1−𝛼/2 − 𝑧1−𝜋min )
√

2(𝜎2
𝐼𝜙

+ 𝜎2
𝐼𝜓
)/𝑛3 . (8)

6If both the actual effect sizes are negative, we simply swap the analysis groups. If the
actual effect sizes are of opposite signs, it is likely an error.
7Expressions for other analysis groups can be easily obtained by substituting in the
corresponding user groups.
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3.1.2 Setup 2 (All samples). This setup also contains two analysis
groups, 𝐴 and 𝐵, each taking half of the population (i.e. (𝑛0 + 𝑛1 +
𝑛2 + 𝑛3)/2). The metric mean and variance for groups 𝐴 and 𝐵 are
the weighted metric mean and variance of the constituent user
groups. As we only provide treatment to those who qualify for
strategy 1 in group 𝐴, and likewise for group 𝐵 with strategy 2,
each user group will give different responses, e.g. for group 𝐴:

𝜇𝐴 = (𝑛0𝜇𝐶0 + 𝑛1𝜇𝐼1 + 𝑛2𝜇𝐶2 + 𝑛3𝜇𝐼𝜙 )/(𝑛0 + 𝑛1 + 𝑛2 + 𝑛3), (9)

𝜎2
𝐴 = (𝑛0𝜎

2
𝐶0 + 𝑛1𝜎

2
𝐼1 + 𝑛2𝜎

2
𝐶2 + 𝑛3𝜎

2
𝐼𝜙
)/(𝑛0 + 𝑛1 + 𝑛2 + 𝑛3) . (10)

Substituting the above (and that for group 𝐵) into the definitions
of actual effect size and MDE we have:

Δ𝑆2 =
𝑛1 (𝜇𝐶1 − 𝜇𝐼1) + 𝑛2 (𝜇𝐼2 − 𝜇𝐶2) + 𝑛3 (𝜇𝐼𝜓 − 𝜇𝐼𝜙 )

𝑛0 + 𝑛1 + 𝑛2 + 𝑛3
, (11)

𝜃∗𝑆2 = (𝑧1−𝛼/2 − 𝑧1−𝜋min ) ×

√√√√√√ 2
(
𝑛0 (2𝜎2

𝐶0) + 𝑛1 (𝜎2
𝐼1 + 𝜎2

𝐶1)+
𝑛2 (𝜎2

𝐶2 + 𝜎2
𝐼2) + 𝑛3 (𝜎2

𝐼𝜙
+ 𝜎2

𝐼𝜓
)
)

(𝑛0 + 𝑛1 + 𝑛2 + 𝑛3)2 .

(12)

3.1.3 Setup 3 (Qualified users only). The setup is very similar to
Setup 2, with members from user group 0 excluded. This leads to
both analysis groups having (𝑛1 + 𝑛2 + 𝑛3)/2 users. The absence of
group 0 users means they are not featured in the weighted metric
mean and variance of the two analysis groups, e.g. for group A:

𝜇𝐴 =
𝑛1𝜇𝐼1 + 𝑛2𝜇𝐶2 + 𝑛3𝜇𝐼𝜙

𝑛1 + 𝑛2 + 𝑛3
, 𝜎2

𝐴 =

𝑛1𝜎2
𝐼1 + 𝑛2𝜎2

𝐶2 + 𝑛3𝜎2
𝐼𝜙

𝑛1 + 𝑛2 + 𝑛3
. (13)

This leads to the following actual effect size and MDE for Setup 3:

Δ𝑆3 =
𝑛1 (𝜇𝐶1 − 𝜇𝐼1) + 𝑛2 (𝜇𝐼2 − 𝜇𝐶2) + 𝑛3 (𝜇𝐼𝜓 − 𝜇𝐼𝜙 )

𝑛1 + 𝑛2 + 𝑛3
, (14)

𝜃∗𝑆3 =(𝑧1−𝛼/2−𝑧1−𝜋min )

√√√
2
(
𝑛1 (𝜎2

𝐼1+𝜎
2
𝐶1)+𝑛2 (𝜎2

𝐶2+𝜎
2
𝐼2)+𝑛3 (𝜎2

𝐼𝜙
+𝜎2

𝐼𝜓
)
)

(𝑛1 + 𝑛2 + 𝑛3)2 .

(15)

3.1.4 Setup 4 (Dual control). The setup is the odd one out as it has
four analysis groups. Two of the analysis groups (𝐴1 and 𝐴2) are
drawn from those who qualified into strategy 1 and are allocated
into the first randomization group, and the other two (𝐵1 and 𝐵2)
are drawn from those who are qualified into strategy 2 and are
allocated into the second randomization group:

𝑛𝐴1 = 𝑛𝐴2 = (𝑛1 + 𝑛3)/4 , 𝑛𝐵1 = 𝑛𝐵2 = (𝑛2 + 𝑛3)/4. (16)

The metric mean and variance for group 𝐴1 are:

𝜇𝐴1 =
𝑛1𝜇𝐶1 + 𝑛3𝜇𝐶3

𝑛1 + 𝑛3
, 𝜎2

𝐴1 =
𝑛1𝜎2

𝐶1 + 𝑛3𝜎2
𝐶3

𝑛1 + 𝑛3
. (17)

As the setup takes the difference of differences in the metric
(i.e. the difference between groups 𝐵2 and 𝐵1, and the difference
between groups 𝐴2 and 𝐴1), the actual effect size is as follows:

Δ𝑆4 = (𝜇𝐵2 − 𝜇𝐵1) − (𝜇𝐴2 − 𝜇𝐴1)

=
𝑛2 (𝜇𝐼2−𝜇𝐶2) + 𝑛3 (𝜇𝐼𝜓 −𝜇𝐶3)

𝑛2 + 𝑛3
−
𝑛2 (𝜇𝐼1−𝜇𝐶1) + 𝑛3 (𝜇𝐼𝜙−𝜇𝐶3)

𝑛1 + 𝑛3
.

(18)

The MDE for Setup 4 is similar to that specified in RHS of Ineq. (5),
albeit with more groups:

𝜃∗𝑆4 = (𝑧1−𝛼/2−𝑧1−𝜋min )
√
𝜎2
𝐴1/𝑛𝐴1 + 𝜎2

𝐴2/𝑛𝐴2 + 𝜎2
𝐵1/𝑛𝐵1 + 𝜎2

𝐵2/𝑛𝐵2

= 2 · (𝑧1−𝛼/2 − 𝑧1−𝜋min )×√√
𝑛1 (𝜎2

𝐶1+𝜎
2
𝐼1)+𝑛3 (𝜎2

𝐶3+𝜎
2
𝐼𝜙
)

(𝑛1 + 𝑛3)2 +
𝑛2 (𝜎2

𝐶2+𝜎
2
𝐼2)+𝑛3 (𝜎2

𝐶3+𝜎
2
𝐼𝜓
)

(𝑛2 + 𝑛3)2 .

(19)

3.2 Is dilution always bad?
The use of responses from users who do not qualify for any of
the strategies we are comparing, an act known as metric dilution,
has stirred countless debates in experimentation teams. On one
hand, responses from these users make any treatment effect less
pronounced by contributing exactly zero; on the other hand, it
might be necessary as one does not know who actually qualify [5],
or it might be desirable as they can be leveraged to reduce the
variance of the treatment effect estimator [2].

Here, we are interested in whether we should engage in the act
of dilution given the assumed user responses prior to an experiment.
This can be clarified by understanding the conditions where Setup 3
would emerge superior (as defined in Sec. 2.3) to Setup 2. By in-
specting Eqs. (11) and (14), it is clear that Δ𝑆3 > Δ𝑆2 if 𝑛0 > 0. Thus,
Setup 3 is superior to Setup 2 under the first criterion if 𝜃∗

𝑆3 < 𝜃∗
𝑆2,

which is the case if 𝜎2
𝐶0, the metric variance of users who qualify

for neither strategies, is large. This can be shown by substituting
Eqs. (12) and (15) into the 𝜃 -inequality and rearranging the terms
to obtain:(

𝑛1 (𝜎2
𝐼1 + 𝜎2

𝐶1) + 𝑛2 (𝜎2
𝐶2 + 𝜎2

𝐼2) + 𝑛3 (𝜎2
𝐼𝜙

+ 𝜎2
𝐼𝜓
)
)
·

(𝑛0 + 2𝑛1 + 2𝑛2 + 2𝑛3)
2(𝑛1 + 𝑛2 + 𝑛3)2 < 𝜎2

𝐶0 . (20)

If we assume the metric variance does not vary much for users who
qualified for at least one strategy, i.e. 𝜎2

𝐼1 ≈ 𝜎2
𝐶1 ≈ · · · ≈ 𝜎2

𝐼𝜓
≈ 𝜎2

𝑆
,

Ineq. (20) can then be simplified as

𝜎2
𝑆

(
𝑛0

𝑛1 + 𝑛2 + 𝑛3
+ 2

)
< 𝜎2

𝐶0, (21)

where it can be used to quickly determine if one should consider
dilution at all.

If Ineq. (20) is not true (i.e. 𝜃∗
𝑆3 ≥ 𝜃∗

𝑆2), we should then consider
when the second criterion (i.e.Δ𝑆3−Δ𝑆2 > 𝜃∗

𝑆3−𝜃
∗
𝑆2) is met.Writing

𝜂 = 𝑛1 (𝜇𝐶1 − 𝜇𝐼1) + 𝑛2 (𝜇𝐼2 − 𝜇𝐶2) + 𝑛3 (𝜇𝐼𝜓 − 𝜇𝐼𝜙 ),
𝜉 = 𝑛1 (𝜎2

𝐶1 + 𝜎2
𝐼1) + 𝑛2 (𝜎2

𝐼2 + 𝜎2
𝐶2) + 𝑛3 (𝜎2

𝐼𝜓
+ 𝜎2

𝐼𝜙
), and

𝑧 = 𝑧1−𝛼/2 − 𝑧1−𝜋min ,

we can substitute Eqs. (11), (12), (14), (15) into the inequality and
rearrange to obtain

𝑛1 + 𝑛2 + 𝑛3
𝑛0

√
2𝑛0𝜎2

𝐶0 + 𝜉 >
𝑛0 + 𝑛1 + 𝑛2 + 𝑛3

𝑛0

√
𝜉 − 𝜂

√
2𝑧

. (22)

As the LHS of Ineq. (22) is always positive, Setup 3 is superior if
the RHS ≤ 0. Noting

Δ𝑆3 = 𝜂/(𝑛1 + 𝑛2 + 𝑛3) and 𝜃∗𝑆3 =
√

2 · 𝑧 ·
√
𝜉/(𝑛1 + 𝑛2 + 𝑛3),

the trivial case is satisfied if (𝑛0 + 𝑛1 + 𝑛2 + 𝑛3)/(𝑛0) · 𝜃∗𝑆3 ≤ Δ𝑆3.
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If the RHS of Ineq. (22) is positive, we can safely square both
sides and use the identities for Δ𝑆3 and 𝜃∗

𝑆3 to get

2𝜎2
𝐶0
𝑛0

>

[(
𝜃∗
𝑆3 − Δ𝑆3 + 𝑛1+𝑛2+𝑛3

𝑛0
𝜃∗
𝑆3

)2
−
(
𝑛1+𝑛2+𝑛3

𝑛0
𝜃∗
𝑆3

)2
]

2𝑧2 . (23)

As the LHS is always positive, the second criterion is met if

𝜃∗𝑆3 ≤ Δ𝑆3 . (24)

Note this is a weaker, and thus more easily satisfiable condition
than that introduced in the previous paragraph. This suggests an
experiment setup is always superior to an diluted alternative if
the experiment is already adequately powered. Introducing any
dilution will simply make things worse.

Failing the condition in Ineq. (24), we can always fall back to
Ineq. (23). While the inequality operates in squared space, it is
essentially comparing the standard error of user group 0 (LHS) —
those who qualify for neither strategies — to the gap between the
minimum detectable and actual effects (𝜃∗

𝑆3 − Δ𝑆3). The gap can
be interpreted as the existing noise level, thus a higher standard
error means mixing in group 0 users will introduce extra noise,
and one is better off without them. Conversely, a smaller standard
error means group 0 users can lower the noise level, i.e. stabilize
the metric fluctuation, and one should take advantage of them.

To summarize, diluting a personalization strategies experiment
setup is not helpful if (i) users who do not qualify for any strategies
have a large metric variance (Ineq. (20)) or (ii) the experiment is
already adequately powered (Ineq. (24)). It could help if the ex-
periment has not gained sufficient power yet and users who do
not qualify for any strategy provide low-variance responses, such
that they exhibit stabilizing effects when included into the analysis
(complement of Ineq. (23)).

3.3 When is a dual-control more effective?
Often when advertisers compare two personalization strategies,
the question on whether to use a dual control/multi-cell design
comes up. Proponents of such approach celebrate its ability to tell
a story by making the incrementality of an individual strategy
available, while opponents voice concerns on the complexity in
setting up the design. Here we are interested if Setup 4 (dual control)
is superior to Setup 3 (a simple A/B test) from a power/detectable
effect perspective, and if so, under what circumstances.

We first observe 𝜃∗
𝑆4 > 𝜃

∗
𝑆3 is always true, and hence a dual control

setup will never be superior to a simpler setup under the first
criterion. This can be verified by substituting in Eqs. (19) and (15)
and rearranging the terms to show the inequality is equivalent to

2
(

𝑛1
(𝑛1+𝑛3)2 (𝜎2

𝐶1 + 𝜎2
𝐼1) +

𝑛2
(𝑛2+𝑛3)2 (𝜎2

𝐶2 + 𝜎2
𝐼2) +

𝑛3
(𝑛1+𝑛3)2 𝜎

2
𝐼𝜙
+

𝑛3
(𝑛2+𝑛3)2 𝜎

2
𝐼𝜓

+
(

𝑛3
(𝑛1+𝑛3)2 + 𝑛3

(𝑛2+𝑛3)2

)
𝜎2
𝐶3

)
>

𝑛1
(𝑛1+𝑛2+𝑛3)2 (𝜎2

𝐶1 + 𝜎2
𝐼1) +

𝑛2
(𝑛1+𝑛2+𝑛3)2 (𝜎2

𝐶2 + 𝜎2
𝐼2)+

𝑛3
(𝑛1+𝑛2+𝑛3)2 𝜎

2
𝐼𝜙

+ 𝑛3
(𝑛1+𝑛2+𝑛3)2 𝜎

2
𝐼𝜓
, (25)

which is always true given the 𝑛s are non-negative and the 𝜎2s are
positive: not only the coefficients of the 𝜎2-terms are larger on the
LHS than their RHS counterparts, the LHS also carries an extra 𝜎2

𝐶3
term with non-negative coefficient and a factor of two.

Moving on to the second evaluation criterion, we recall that
Setup 4 is superior if Δ𝑆4 − Δ𝑆3 > 𝜃∗

𝑆4 − 𝜃∗
𝑆3, otherwise Setup 3 is

superior under the same criterion. The full flexibility of the model
can be seen by substituting Eqs. (14), (15), (18), and (19) into the
inequality and rearrange to obtain

𝑛1
𝑛2 (𝜇𝐼2−𝜇𝐶2)+𝑛3 (𝜇𝐼𝜓−𝜇𝐶3)

𝑛2+𝑛3
+ 𝑛2

𝑛1 (𝜇𝐼1−𝜇𝐶1)+𝑛3 (𝜇𝐼𝜙−𝜇𝐶3)
𝑛1+𝑛3√

𝑛1 (𝜎2
𝐶1 + 𝜎2

𝐼1) + 𝑛2 (𝜎2
𝐶2 + 𝜎2

𝐼2) + 𝑛3 (𝜎2
𝐼𝜙

+ 𝜎2
𝐼𝜓
)

> (26)

√
2𝑧



√√√√√√√√√
2 ·

(1 + 𝑛2
𝑛1+𝑛3

)2 [𝑛1 (𝜎2
𝐶1 + 𝜎2

𝐼1) + 𝑛3 (𝜎2
𝐶3 + 𝜎2

𝐼𝜙
)]+

(1 + 𝑛1
𝑛2+𝑛3

)2 [𝑛2 (𝜎2
𝐶2 + 𝜎2

𝐼2) + 𝑛3 (𝜎2
𝐶3 + 𝜎2

𝐼𝜓
)]

𝑛1 (𝜎2
𝐶1 + 𝜎2

𝐼1) + 𝑛2 (𝜎2
𝐶2 + 𝜎2

𝐼2) + 𝑛3 (𝜎2
𝐼𝜙

+ 𝜎2
𝐼𝜓
)

− 1

,
where 𝑧 = 𝑧1−𝛼/2 − 𝑧1−𝜋min .

A key observation from inspecting Ineq. (26) is that the LHS
of the inequality scales along 𝑂 (

√
𝑛), while the RHS remains a

constant. This leads to the insight that Setup 4 is more likely to be
superior if the 𝑛s are large. Here we assume the ratio 𝑛1 : 𝑛2 : 𝑛3
remains unchanged when we scale the number of samples, an
assumption that generally holds when an organization increases
their reach while maintaining their user mix. It is worth pointing
out that our claim is stronger than that in previous work — we have
shown that having a large user base not only fulfills the requirement
of running a dual control experiment as described in [5], it also
makes a dual control experiment a better setup than its simpler
counterparts in terms of apparent and detectable effect sizes.

The scaling relationship can be seen more clearly if we ap-
ply some simplifying assumptions to the 𝜎2- and 𝑛-terms. If we
assume the metric variances are similar across user groups (i.e.
𝜎2
𝐶1 ≈ 𝜎2

𝐼1 ≈ · · · ≈ 𝜎2
𝐼𝜓

≈ 𝜎2
𝑆
), the RHS of Ineq. (26) becomes

√
2𝑧

[√
𝑛1 + 𝑛2 + 𝑛3
𝑛1 + 𝑛3

+ 𝑛1 + 𝑛2 + 𝑛3
𝑛2 + 𝑛3

− 1
]
, (27)

which remains a constant if the ratio 𝑛1 : 𝑛2 : 𝑛3 remains un-
changed. If we assume the number of users in groups 1, 2, 3 are
similar (i.e. 𝑛1 = 𝑛2 = 𝑛3 = 𝑛), the LHS of Ineq. (26) becomes

√
𝑛
(
(𝜇𝐼2 − 𝜇𝐶2) − (𝜇𝐼1 − 𝜇𝐶1) + 𝜇𝐼𝜓 − 𝜇𝐼𝜙

)
2
√
𝜎2
𝐶1 + 𝜎2

𝐼1 + 𝜎2
𝐶2 + 𝜎2

𝐼2 + 𝜎2
𝐼𝜙

+ 𝜎2
𝐼𝜓

, (28)

which clearly scales along 𝑂 (
√
𝑛).

We conclude the section by providing an indication on what
a large 𝑛 may look like, if we assume both the metric variances
and the number of users are are similar across user groups, we can
rearrange Ineq. (26) to make 𝑛 the subject:

𝑛 >

(
2
√

12
(√

6 − 1
)
𝑧

)2 𝜎2
𝑆

Δ2 , (29)

where Δ = (𝜇𝐼2 − 𝜇𝐶2) − (𝜇𝐼1 − 𝜇𝐶1) + 𝜇𝐼𝜓 − 𝜇𝐼𝜙 is the effect size.
With a 5% significance level and 80% power, the first coefficient
amounts to around 791, which is roughly 50 times the coefficient
one would use to determine the sample size of a simple A/B test [6].
This suggests a dual control setup is perhaps a luxury accessible
only to the largest advertising platforms and their top advertisers.
For example, consider an experiment to optimize conversion rate
where the baselines attain 20% (hence having a metric variance of
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Actual effect size Minimum detectable effect
Setup 1 1049/1099 (95.45%) 66/81 (81.48%)
Setup 2 853/999 (85.38%) 87/106 (82.08%)
Setup 3 922/1099 (83.89%) 93/116 (80.18%)
Setup 4 240/333 (72.07%) 149/185 (80.54%)

Table 2: Number of evaluations where the theoretical value
of the quantities (columns) falls between the 95% bootstrap
confidence interval for each experiment setup (rows). See
Section 4 for a detailed description on the evaluations.

0.2(1 − 0.2) = 0.16). If there is a 2.5% relative (i.e. 0.5% absolute)
effect between the competing strategies, the dual control setup will
only be superior if there are > 5M users in each user group.

4 EXPERIMENTS
Having performed theoretical calculations for the actual and de-
tectable effects and conditions where an experiment setup is supe-
rior to another, here we verify those calculations using simulation
results. We focus on the results presented in Section 3.1, as the rest
of the results presented followed from those calculations.

In each experiment setup evaluation, we randomly select the
value of the parameters (i.e. the 𝜇s, 𝜎2s, and 𝑛s), and take 1,000
actual effect samples, each by (i) sampling the responses from the
user groups under the specified parameters, (ii) computing themean
for the analysis groups, and (iii) taking the difference of the means.

We also take 100 MDE samples in separate evaluations, each
by (i) sampling a critical value under null hypothesis; (ii) comput-
ing the test power under a large number of possible effect sizes,
each using the critical value and sampled metric means under the
alternate hypothesis; and (iii) searching the effect size space for
the value that gives the predefined power. As the power vs. effect
size curve is noisy given the use of simulated power samples, we
use the bisection algorithm provided by the noisyopt package to
perform the search. The algorithm dynamically adjusts the number
of samples taken from the same point on the curve to ensure the
noise does not send us down the wrong search space.

We expect the mean of the sampled actual effect and MDE to
match the theoretical value. To verify this, we perform 1,000 boot-
strap resamplings on the samples obtained above to obtain an em-
pirical bootstrap distribution of the sample mean in each evaluation.
The 95% bootstrap resampling confidence interval (BRCI) should
then contain the theoretical mean 95% of the times. The histogram
of the percentile rank of the theoretical quantity in relation to the
bootstrap samples across multiple evaluations should also follow a
uniform distribution [8].

The result is shown in Table 2. One can observe that there are
more evaluations having their theoretical quantity lying outside
than the BRCI than expected. Upon further investigation, we ob-
served a characteristic ∪-shape from the histograms of the per-
centile ranks for the actual effects. This suggests the bootstrap
samples may be under-dispersed but otherwise centered on the
theoretical quantities.

We also observed the histograms forMDEs curving upward to the
right, this suggests that the theoretical value is a slight overestimate
(of < 1% to the bootstrap mean in all cases). We believe this is likely

due to a small bias in the bisection algorithm. The algorithm tests
if the mean of the power samples is less than the target power to
decide which half of the search space to continue along. Given we
can bisect up to 10 times in each evaluation, it is likely to see a
false positive even when we set the significance level for individual
comparisons to 1%. This leads to the algorithm favoring a smaller
MDE sample. Having that said, since we have tested for a wide
range of parameters and the overall bias is small, we are satisfied
with the theoretical quantities for experiment design purposes.

5 CONCLUSION
We have addressed the problem of comparing experiment designs
for personalization strategies by presenting an evaluation frame-
work that allows experimenters to evaluate which experiment setup
should be adopted given the situation. The flexible framework can
be easily extended to compare setups that compare more than two
strategies by adding more user groups (i.e. new sets to the Venn
diagram in Fig. 1). A new setup can also be incorporated quickly
as it is essentially a different weighting of user group-scenario
combinations shown in Table 1. The framework also allows the
development of simple rule of thumbs such as:
(i) Metric dilution should never be employed if the experiment

already has sufficient power; though it can be useful if the
experiment is under-powered and the non-qualifying users
provide a “stabilizing effect”; and

(ii) A dual control setup is superior to simpler setups only if one
has access to the user base of the largest organizations.

We have validated the theoretical results via simulations, and made
the code available2 so that practitioners can benefit from the results
immediately when designing their upcoming experiments.
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