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Abstract 19 

Photodynamic therapy (PDT) is an evolving method of treating superficial tumours that is 20 

non-invasive and carries minimal risk of toxicity. PDT combines tumour-selective photosensitiser 21 

dyes, tissue oxygen and targeted illumination to generate cytotoxic reactive oxygen species (ROS) 22 

within the tumour. In addition to directly acting on tumour cells, PDT damages and restricts tumour 23 

microvasculature, and causes a local inflammatory response that stimulates an immune response 24 

against the tumour. Unlike surgery or radiotherapy the surrounding extracellular matrix is 25 

unaffected by PDT, thus tissue healing is excellent and PDT seldom scars. This, combined with the 26 

ease of light application, has made PDT a popular treatment for cancers and pre-cancers in humans. 27 

Moreover, because photosensitiser dyes are fluorescent and selectively accumulate in tumour 28 

tissues, they can additionally be used to visualise and discriminate tumour from normal tissues, 29 

thereby improving the accuracy of tumour surgery. 30 

 31 

In veterinary practice, PDT has been used successfully for treatment of superficial squamous 32 

cell carcinoma of the feline nasal planum; urinary tract, bladder and prostate neoplasia in dogs; and 33 

for equine sarcoids. The purpose of this article is to make a comparative review of the current 34 

literature on PDT in human and veterinary medicine, to provide a basis for future development of 35 

PDT in veterinary medicine. 36 

 37 
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Introduction 42 

Photodynamic therapy (PDT) involves administration of a photosensitiser drug, or a pro-43 

drug, which selectively accumulates in target cells, followed by local illumination of the lesion with 44 

visible light (Luksiene, 2003; Wachowska et al., 2011). It is a minimally invasive therapeutic 45 

technique used in the management of various cancerous and pre-malignant diseases. The 46 

photosensitiser can also be visualised in tumour cells using an appropriate set of imaging filters to 47 

provide a means of tumour detection (Hefti et al., 2010, Mowatt et al., 2011, , Nguyen and Tsien 48 

2013, Allison 2016). 49 

 50 

In addition to cancer treatment, PDT has been used for the treatment of microbial infections 51 

(Kharkwal et al., 2011, Sharma et al., 2012, Wardlaw et al., 2012), including veterinary applications 52 

in dogs (Fabris et al., 2014) and sheep (Sellera et al., 2016). PDT has also been used for light-53 

triggered uptake of pharmaceuticals that would otherwise become entrapped and destroyed within 54 

cellular endosomes (photochemical internalisation, PCI; reviewed by Selbo et al., 2015 and Madsen 55 

2016). However, the focus of this review will be on the uses of PDT in cancer treatment and 56 

diagnosis. 57 

 58 

The origins of PDT can be traced back to ancient Egypt, where photosensitizing plant 59 

pigment extracts were applied to the skin and exposed to sunlight, as a treatment for psoriasis 60 

(Daniell and Hill 1991). The use of PDT for treatment of various human skin cancers was first 61 

investigated in the 1970’s by Dougherty et al (1978). Dougherty’s use of a haematoporphyrin 62 

derivative was based on pioneering work of Policard et al., (1924) who demonstrated that 63 

porphyrins were preferentially distributed into malignant rather than normal tissues. The technique 64 

was slow to gain acceptance because the ‘first generation’ photodynamic agents were slow to clear 65 

from normal cells with the result that treated human patients had to remain out of bright light 66 



(e.g.sunlight) for several weeks to avoid severe skin reactions. However, the potential for the 67 

technique in treating locally advanced carcinomas of the head and neck (Wile et al., 1984), bladder 68 

(Misaki et al., 1983), oesophagus and bronchus (Cortese and Kinsey 1984) outweighed this caveat 69 

and stimulated further research. 70 

 71 

The availability of haematoporphyrin derivatives with faster tissue clearance times 72 

stimulated more interest in PDT and numerous human clinical trials have now been published 73 

showing encouraging results with photosensitizing dyes administered topically or systemically 74 

(orally or intravenously) or instilled into hollow organs (e.g. bladder). A limited number of 75 

veterinary studies have been published, also showing promise. A previous review of PDT in 76 

veterinary medicine was published in 2013 (Buchholz and Walt, 2013), since then further advances 77 

have been made. The purpose of this review is to describe the basic principles of PDT and discuss 78 

the clinical application of PDT in humans and animals.  79 

 80 

Fundamentals and mechanisms 81 

 There are three basic requirements for PDT; (1) a compound with photosensitising 82 

properties (photosensitiser, PS), (2) a source of visible light and (3) oxygen. The photosensitizer is a 83 

chemical / dye that selectively accumulates in malignant tissues and can be activated by visible 84 

light. Energy from the light-excited PS is transferred to oxygen molecules (O2) to give reactive 85 

oxygen species (ROS), notably singlet oxygen (1O2) and superoxides, that damage biological 86 

molecules, initiating a cascade of biochemical events culminating in damage and death of neoplastic 87 

cells (Fig. 1) (Dougerthy et al., 1998, Juzeniene et al., 2007). Increasing tissue oxygenation can lead 88 

to increased ROS formation during PDT and improved outcomes (Maier et al., 2000). 89 

 90 



The mechanisms by which different photosensitisers localise selectively in malignant tissues 91 

are complex and not fully understood. Physical factors, such as increased vascular permeability and 92 

poor lymphatic drainage in tumours, coupled with an affinity for proliferating endothelium likely 93 

contribute to their accumulation in tumours (Dougherty et al., 1998). 94 

 95 

Three main processes by which ROS contribute to the destruction of tumours by PDT are 96 

direct cellular damage, indirect vascular shutdown and activation of immune response against 97 

tumour cells (Dougherty et al., 1998, Dolmans et al., 2003, Solban et al.,2006). Direct damage to 98 

tumour cells can result in cell death by both programmed (apoptotic) pathways and non-99 

programmed (necrotic) pathways (Oleinick et al., 2002; Igney and Krammer 2002, Allison and 100 

Moghissi 2013a). Generally, when the light intensity is low, apoptotic death may be initiated 101 

(Agarwal et al., 1991, Allison and Moghissi 2013b). At higher light intensities, tumour cells are 102 

rapidly ablated by necrosis due to destruction of cellular and subcellular membranes. This also leads 103 

to release of cytokines and lysosomal enzymes (Henderson and Fingar 1987) causing damage to 104 

cells nearby, the bystander effect (Dahle et al., 1997, Allison and Moghissi, 2013a). Release of 105 

inflammatory mediators from the treated region stimulates activation of leucocytes including 106 

neutrophils and macrophages and significant tumour cell death occurs through these activated 107 

immune cells (Coutier et al., 1999; Gollnick et al., 2003, Castano et al., 2006). This observation has 108 

led to the development of combination therapies of PDT with immunotherapy, by including 109 

immunoadjuvants against tumour-specific epitopes (Qiang et al., 2008, Kleinovink et al., 2015). 110 

 111 

 PDT also mediates a vascular effect within tumours (McMahon et al., 1994, Abels, 2004). 112 

Neovascular tumour endothelial cells may accumulate higher levels of PS than normal endothelium 113 

(Debefve et al., 2011) and following PDT, microvascular collapse can be observed and can lead to 114 

severe and persistent post-PDT tumour hypoxia (Star et al., 1986, Henderson et al., 1987, Chen et 115 



al., 2003). PDT may also lead to vessel constriction via inhibition of the production or release of 116 

nitric oxide by the endothelium (Gilissen et al., 1993). 117 

 118 

An important clinical consideration is effective analgesia. In humans PDT produces a 119 

sensation of stinging or burning during illumination, especially in sensitive areas such the face, and 120 

scalp (Halldin et al., 2011, Chaves et al., 2012). Treatment of large skin areas generally produces 121 

more pain than smaller areas (Grapenglesser et al., 2002, Hallidin et al., 2011, Chaves et al.,  2012). 122 

 123 

Photosensitizers for PDT 124 

 Photosensitising (PS) agents are natural or synthetic chemicals that transfer light energy to 125 

neighbouring molecules, importantly to dissolved oxygen (Allison et al., 2004). Most of the 126 

photosensitizers used in cancer therapy are based on a tetrapyrrole structure, similar to that of the 127 

protoporphyrin contained in haemoglobin. In clinical practice, a successful PS agent is: nontoxic 128 

until light activated, hydrophilic for easy systemic application, activated by a clinically useful light 129 

wavelength, and reliably generates a photodynamic reaction (PDR). It also concentrates in tumours, 130 

clears normal tissue quickly, and is eliminated from the patient relatively rapidly (Allison and 131 

Moghissi 2013a). 132 

 133 

 The first-generation photosensitizer, haematoporphyrin derivative (HPD) was a mixture of 134 

various monomers, dimers, and polymers of haematoporphyrin (Allison and Moghissi 2013a). The 135 

commercially available product, porfimer sodium, marketed under the tradename Photofrin was 136 

experimentally used in healthy dogs (Tochner et al., 1991; Panjehpour et al., 1993) and a canine 137 

glioma model (Whelan et al., 1993). It was approved for treatment of early stage of human lung 138 

cancer in 1998 and for Barrett’s esophagus in 2003. The clinical application of Photofrin has been 139 

limited by two factors: its absorption peak occurs at 630 nm, too short a wavelength to allow deep 140 



penetration of light in tissue. Secondly, Photofrin results in cutaneous photosensitivity lasting up to 141 

6 weeks (Zhu and Finlay, 2008). 142 

 143 

 These limitations stimulated the development of a second generation of photosensitizers 144 

with improved efficiency of ROS generation, more rapid clearance, fewer side effects, and 145 

absorption peaks at longer wavelengths (>630 nm red light) where the tissue penetration of light is 146 

deeper. One such second-generation photosensitiser is 5-aminolevulinic acid (ALA), a naturally 147 

occurring pro-photosensitiser and precursor for the biosynthesis of heme. For therapeutic purposes, 148 

ALA is administered topically (Morton et al., 2008, 2013), orally (Muller and Wilson, 2006), or 149 

intralesionally (Hage et al., 2007; Kim et al., 2012) and enters into all cells; although uptake is 150 

potentiated by transporters of beta-amino acids and GABA (Rud et al., 2000), highly expressed on 151 

some cancer cells and neurons (Zhang et al., 2013). ALA is then metabolised to the red-fluorescent 152 

photosensitiser protoporphyrin IX (PpIX, absorption 635 nm) and finally to non-fluorescent heme 153 

(Ajioka et al., 2006, Allison and Moghissi 2013a). This final step relies on ferrochelatase to add 154 

Fe2+ to PpIX and this rate-limiting enzyme is often deficient in cancer cells (Kemmner et al., 2008). 155 

Thus, in the presence of excess ALA, cancer cells that combine high ALA uptake with low PpIX 156 

destruction will accumulate PpIX photosensitiser (Collaud et al., 2004). Clinical advantages of 157 

ALA treatment include rapid clearance of PpIX from the tissue within 12 hours, resulting in short-158 

lived cutaneous photosensitivity. In human patients ALA has been used for the treatment of T cell 159 

lymphoma (Coors et al., 2004), basal cell carcinoma (Kim et al., 2012) squamous cell carcinoma 160 

(SCC) and other head and neck cancers (Grant, et al., 1993, Morton et al., 1996). In veterinary 161 

medicine, ALA has been used to treat SCC in a cow (Hage et al., 2007) and in cats (Bexfield et al., 162 

2008), sarcoids in horses (Gustafson et al., 2004, Golding et al., 2017) and transitional cell 163 

carcinoma in dogs (Lucroy et al., 2003a,b). See Tables 1 and 2. 164 

 165 



The hydrophilic nature of ALA limits its ability to deeply penetrate intact skin and thereby 166 

restricts the use of topically applied ALA-PDT to the treatment of superficial diseases, where the 167 

tissue structure is disorganised. To overcome this limitation, ALA esters that are less hydrophilic 168 

than the parental compound have been developed. The methyl ester of ALA, methyl-169 

aminolevulinate (MAL, Metvix, or Metvixia), was approved by the US Food and Drug 170 

Administration for PDT treatment of actinic keratosis in 2004 and has shown good results in 171 

treatment of equine sarcoids (Kemp-Symonds 2012, Golding et al., 2017). Hexaminolevulinate, the 172 

n-hexyl ester of ALA, (HAL, Hexvix, Cysview) which is converted to PpIX 50–100 times more 173 

efficiently than ALA, was licensed in US in 2010 for the detection of human bladder cancer (Furre 174 

et al., 2005). Hexaminolevulinate has also been used intra-operatively in a PDT model in dogs with 175 

prostate carcinoma (L’Eplattenier et al., 2008). 176 

 177 

 Several other second-generation photosensitisers have been, or are in the process of being 178 

developed, each with slightly different origins and characteristics. These include m-179 

tetrahydroxophenyl chlorine (m-THPC, Foscan); 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-180 

a (HPPH, Photochlor); palladium bacteriopheophorbide (Padoporfin, TOOKAD) and its more 181 

water-soluble monolysotaurine derivative (Padeliporfin, TOOKAD-Soluble); motexafin lutetium 182 

(Lu-Tex, Lutrin); and Verteporfin (Visudyne). The advantages and indications for these newer 183 

agents are summarised in Table 1. 184 

 185 

Photosensitisers for diagnosis 186 

Photodynamic diagnosis (PDD) uses the fluorescence of photosensitisers to identify tumour 187 

tissue in situ. PDD fits within the broader category of Fluorescence Guided Surgery (Allison 2016). 188 

The distinction being that, by increasing the illumination intensity or duration, PDD can become 189 

PDT. However, whilst the generation of singlet oxygen by photosensitisers is essential for PDT, 190 

these same reactive species can damage the photosensitiser and render it non-fluorescent.  191 



ALA has been trialled for PDD in eleven different human tumour types (Nokes, 2013), and is 192 

licensed in humans for intraoperative margin assessment in glioma (Hefti et al., 2010, Stummer et 193 

al., 2006) and the n-hexyl derivative for bladder cancer (Kausch et al., 2010, Mowatt et al., 2011). 194 

Each of the major surgical microscopy and endoscopy manufacturers (Leica, Olympus, Storz, and 195 

Zeiss) have specialized imaging equipment for intraoperative PDD for human surgery. Research 196 

versions are available for animal models (e.g. Solaris system, Perkin Elmer). However, relatively 197 

little work has been done on translating human PDD to veterinary surgery. Veterinary examples 198 

include intraoperative cancer imaging and staging in dogs (Knapp et al., 2007, Cabon et al., 2016, 199 

Osaki 2016), and image-giuded surgery in cats (Wenk et al., 2013). The next generation of agents 200 

for photodiagnosis are generally based on near infra-red dyes, which allow deeper views into 201 

tissues, sometimes complexed with tumour-targeting peptides or antibodies (Luo et al., 2011, Wenk 202 

et al., 2013). 203 

  204 

Light sources and delivery systems 205 

 The primary requirement when treating lesions with PDT is to ensure that sufficient, 206 

homogenous light is delivered to the target tissue. Each PS has an optimal wavelength and intensity 207 

(fluence) of light for activation (Sibata et al., 2001). Choice of light source should therefore be 208 

based on PS absorption (fluorescence excitation and action spectra), location, size and accessibility 209 

of lesions, and tissue characteristics. The clinical efficacy of PDT is dependent on complex 210 

dosimetry: total light dose, light exposure time, and light delivery mode (single vs. fractionated or 211 

even metronomic). The fluence rate also affects PDT response (Henderson et al., 2006) and as 212 

demonstrated in tumour bearing cats by Hahn et al. (1998). 213 

 214 

 The wavelength of light used for PDT is typically in the range between 600–800 nm, the 215 

‘therapeutic window’ (Wilson and Patterson, 1990). In this wavelength range, the energy of each 216 



photon is sufficient (1.5 eV) to excite the photosensitizer and yet is low enough to allow the light to 217 

penetrate up to 2 cm into the tissue (Zhu and Finlay, 2008). 218 

 219 

The development of light sources and delivery devices with the appropriate dosimetric 220 

parameters are key components for the clinical application of PDT. Accurate delivery of the light to 221 

the tumour tissue can be accomplished by a variety of light sources and fibre optic delivery devices. 222 

Lasers have been one of the main light sources used in PDT. Modern diode lasers are portable and 223 

do not require specialized electrical supply or water cooling, providing excellent stability of output 224 

power over long periods of time (Mang, 2004). Diode lasers have been approved for use with 225 

Photofrin in oesophageal and lung malignancies at 630 nm and at 652 nm for Foscan (Yoon et al., 226 

2013). 227 

 228 

Alternatives to laser technology are non-coherent light sources (Reeds et al., 2004) and light 229 

emitting diodes (LEDs), the latter where light is produced by a solid-state process called 230 

electroluminescence. LEDs are compact, lightweight and require significantly less energy than 231 

lasers. LED systems are capable of output powers up to 150 mW/cm2 over a 3 cm x 3 cm area. 232 

LEDs have been manufactured with various light output wavelengths, such as 630, 670, and 690 233 

nm, which can be used in PDT procedures for flat surface illumination (Mang, 2004 and 2009). 234 

Light delivery for treatment of large surface areas, such as treatment of skin diseases, may also be 235 

effectively accomplished using broad-spectrum fluorescent lamps (Marcus and McIntyre, 2002). 236 

However, LEDs have been shown to be more effective than fluorescent lamps for PDT treatment of 237 

squamous cell carcinoma (Novak et al., 2016). One obvious source of light for PDT is the sun, and 238 

several recent studies have demonstrated the effectiveness of daylight PDT (reviewed by See et al., 239 

2016). Daylight PDT has obvious potential for veterinary skin cancers, provided the tumour is 240 

located where it will be in constant daylight. 241 

 242 



 In addition to the light source, delivery devices may be required to provide penetration of 243 

light into the target tissue (Star et al., 1992). Fibre-optic devices have been developed for PDT light 244 

delivery and dosimetry (Sterenborg et al., 2014). The most widely used fibre-optic device in PDT is 245 

a cylindrical diffusing fibre tip available in lengths of 1 - 9 cm depending on the specific 246 

application. Two light delivery methods have been developed: intraluminal irradiation using light 247 

diffusers for the lung and oesophagus, and interstitial illumination methods to deliver adequate light 248 

doses to the target tumour volume in head and neck cancers (Yoon et al., , 2013). Fibre optic 249 

delivery of PDT has been used in dogs to treat intramedullary bone tumours (Burch et al., 2009). 250 

 251 

Photodynamic therapy and diagnosis: clinical uses in humans and animals 252 

 In contrast, to its increasing use in human medicine, the use of PDT in veterinary medicine 253 

has been relatively limited, and although results from small veterinary clinical studies have been 254 

published and despite the fact that the dog and cat have been used as a preclinical model in several 255 

studies (Lucroy et al., 1999, 2003b, Griffin et al., 2001, Panjehpour et al., 2002, Tanabe et al., 256 

2004), PDT is not well established as a treatment option for tumour bearing animals to date. The 257 

main indication currently is in treatment of in situ carcinoma/SCC in cats. Other possible 258 

indications are urinary tract neoplasia and glioma in dogs and SCC and sarcoids in horses 259 

(Buchholz and Walt, 2013). The following is a comparative review of the clinical experience of 260 

application of PDT in human and veterinary medicine to provide a basis for future development and 261 

application of the technique in veterinary medicine. 262 

 263 

Cutaneous tumours 264 

Carcinoma in situ / Squamous cell carcinoma (SCC) 265 

ALA-PDT is mainly used to treat dermatological cancers in humans and several reviews of 266 

current guidelines have been published (Morton et al., 2008, 2013; Wan and Lin, 2014). The results 267 

of ALA-PDT in the treatment of human Bowen’s disease (squamous cell carcinoma in situ) have 268 



been promising; randomized, controlled trials comparing ALA-PDT or MAL-PDT to cryotherapy 269 

(Morton et al., 1996) or 5-fluorouracil (5-FU) cream (Salim et al., 2003) reveal complete response 270 

rates of 82-100% for PDT vs 67-100% for cryotherapy or 79-94% for 5-FU at 12-24 months. The 271 

efficacy of topical ALA-PDT in the management of primary cutaneous invasive SCC is variable, 272 

with response rates of 54 – 100% reported for superficial lesions and recurrence rates ranging from 273 

0 – 69%, but with reduced efficacy in more nodular lesions (Wolf et al., 1993; Morton et al 2002). 274 

Current evidence supports the potential of topical ALA-PDT for superficial, micro-invasive SCC 275 

but in view of its metastatic potential topical PDT cannot be recommended for invasive SCC 276 

(Morton et al., 2008, 2013). 277 

 278 

Cutaneous in situ-carcinoma/SCC in the cat represents the main application for PDT in 279 

veterinary medicine to date (Fig. 2). A number of studies have reported response rates from 60 – 280 

80+% and disease-free intervals of over 68 weeks, for topical and systemic PDT in cats using a 281 

variety of photosensitisers (as detailed in Table 2). As is the case in human patients, the smaller and 282 

less invasive tumours respond best to PDT (Magne et al., 1997). PDT has also been used to treat 283 

SCC in dogs (McCaw et al., 2000), horses (Giuliano 2008), a cow (Hage et al., 2007), snakes 284 

(Roberts WG et al.,1991) and a Great Hornbill (Suedmeyer et al., 2001).  285 

  286 

Basal cell Carcinoma  287 

PDT has been successfully employed for treatment of basal cell carcinoma (BCC) in human 288 

patients as a sole agent or in neoadjuvant setting (Berroeta et al., 2007, Rhodes et al., 2007). A 92% 289 

complete response rate was reported with topical ALA-PDT in 330 patients with superficial BCC, 290 

but the response rate dropped to 71% in patients with nodular BCC (Zeitouni et al., 2001) , and 291 

when topical PDT (with ALA or MAL) is compared to surgery for BCC, PDT consistently shows 292 

an increased recurrence rate for both superficial and nodular BCC (Basset-Seguin et al., 2008). This 293 

may be due to insufficient penetration of the photosensitizer to deeply located tumour cells when 294 



the PS is applied topically. To overcome this problem, the PS may be injected intralesionally. 295 

Twenty patients with nodular BCC were treated with ALA in 1% saline solution at estimated dose 296 

of 1 mL/cm2 injected into the base of tumour. PDT resulted in tumour necrosis, followed by 297 

complete re-epithelization after 4-6 weeks with good cosmetic results, no histological evidence of 298 

BCC after 3 months and no recurrence during follow-up of 19.5 months (Rodríguez-Prieto et al., 299 

2012). 300 

 301 

  Experience of intralesional injection of PS is very limited in animals. One study reported 302 

PDT in a cow with ocular SCC using intratumoural injection of ALA. A complete response was 303 

observed after 3 months and no relapse 12 months after the treatment (Hage et al., 2007). PDT has 304 

also been used for treatment of periocular SCC in horses. A pilot study was conducted using 305 

surgical resection plus PDT for periocular SCC in horses by infiltrating wound beds with HPPH 306 

prior to illumination. This combination yielded disease-free intervals of 25–68 months. The overall 307 

recurrence rate was 22% (2 of 9 horses) and for those horses where local PDT was the first and only 308 

treatment modality used, the recurrence rate was 0% (Giuliano et al., 2008). 309 

 310 

Equine sarcoids 311 

 Although of fibroblastic rather than of basal cell origin, equine occult and nodular sarcoids 312 

form dermal nodules or plaques and as such bear some physical resemblance to the human nodular 313 

BCC. Currently there is no ‘gold standard’ treatment for equine sarcoids, however, PDT has shown 314 

promise in the treatment of these common and frustrating lesions. Several small studies have 315 

reported encouraging response rates using topical or locally injected ALA or MAL in equine occult 316 

and nodular sarcoids. For instance, Gustafson et al., (2004) found a 72% treatment response using 317 

ALA-PDT, with recurrence in 39% of lesions after 2 years (n=18). Due to their fibroblastic and 318 

bulky nature, cytoreductive surgery may significantly improve response for larger lesions. In one 319 

study, CO2 laser excision with adjunctive MAL-PDT was reported to achieve a 93% one-year 320 



disease-free rate (Kemp-Symonds 2012). Most recently, a single application of topical ALA-PDT 321 

followed by glycolysis inhibition has been shown to successfully treat equine sarcoids up to 5 mm 322 

thick with a 93% response rate (n=27) after 1 month, compared with a 14% response rate using 323 

ALA-PDT only (n=7). Treated sarcoids became scabby with desquamation for 2-4 weeks before 324 

healing (Golding et al., 2017) (Fig. 3). 325 

  326 

Prostate cancer 327 

 In humans definitive management of early stage prostate cancer with either surgery or 328 

ionizing radiation therapy is associated with significant associated morbidities due to the proximity 329 

of normal structures such as nerves, bladder and rectum. By contrast, PDT has the potential to 330 

selectively treat the prostate while sparing the surrounding normal tissues because light can be 331 

delivered to the entire prostate gland using interstitial cylindrically diffusing optical fibres. Prostate 332 

cancer is therefore an attractive target for PDT (Agostinis et al., 2011, Ahmed et al, 2012). 333 

 334 

 Vascular-targeted PDT using Padeliporfin mediated PDT and a short drug-to-light interval 335 

was shown to carry minimal toxicity in a phase I trial, of prostatic carcinoma patients (n = 24) with 336 

local failure following radiotherapy (Weersink et al., 2005; Trachtenberg et al., 2007). In a follow-337 

up phase II study, patients were treated with increasing light doses. At 6 months all patients where 338 

>60% of the prostate was determined to be avascular by post-PDT magnetic resonance imaging, 339 

had negative biopsies, however, 2 patients (of 28) developed urethrorectal fisulae (Trachtenberg et 340 

al., 2008). Following refinement of the technique, a recent phase III randomised controlled study of 341 

padeliporfin vascular-targeted PDT (versus active surveillance) has shown this to be a safe and 342 

effective treatment for low risk localized prostate cancer (Azzouzi et al., 2017). 343 

 344 

  The normal canine prostate has served as a useful preclinical model for evaluating responses 345 

to PDT in vivo, since its size and general anatomical structure are similar to those of the human 346 



prostate (Waters and Bostwick, 1997). An experimental study was conducted assessing padeliporfin 347 

PDT on canine prostate pre-treated with ionizing radiation. All dogs presented normal spontaneous 348 

urination upon recovery from the procedure, with no signs of incontinence or significant 349 

macroscopic hematuria (Huang et al., 2004).Vascular-targeted photodynamic therapy with WST11 350 

(TOOKAD Soluble) has been investigated in a dog model of benign prostatic hyperplasia and was 351 

uneventful in all except one dog, which experienced urinary retention. Prostatic urethral width 352 

increased as early as 6 weeks after treatment, while prostatic volume decreased, reaching 25% by 353 

18 to 26 weeks, this response lasted up to 1 year (Chevalier et al., 2013). Unfortunately canine 354 

prostatic carcinoma is not usually detected until symptomatic at which point the disease is in late 355 

stage, often with metastatic disease, so it is unlikely that PDT would be beneficial in such patients. 356 

 357 

Bladder cancer 358 

 Photodiagnosis is used in management of human bladder cancers (Mowatt et al, 2011), and 359 

bladder cancer is also a potential target for PDT. Human bladder cancers are often superficial and 360 

multifocal and can be assessed and debulked endoscopically. Furthermore, the geometry of the 361 

bladder allows for homogeneous light delivery via diffusing fibres. In general, early response rates 362 

(2 to 3 months) to PDT have been about 50% to 80% of patients with longer-term (1 to 2 years) 363 

durable responses in 20% to 60% of patients. It should be noted that many of the patients treated in 364 

these studies had recurrent disease that developed after standard therapies such as Bacillus 365 

Calmette-Guerin (BCG) (Agostinis et al., 2011). Treatment of superficial bladder cancer with PDT 366 

is generally well tolerated, with dysuria, hematuria, and skin photosensitivity being the most 367 

common acute toxicities. Bladder wall fibrosis/diminished bladder capacity can be a problem in 368 

some patients (Prout et al., 1987; Uchibayashi et al., 1995). Studies of locally applied (intravesical) 369 

ALA demonstrate that comparable complete response rates of 52-60% at 2-3 years can be achieved 370 

for patients with treatment refractory bladder carcinoma in situ without the prolonged skin 371 

photosensitivity experienced using systemic Photofrin (Berger et al., 2003; Waidelich et al., 2003). 372 



Despite these promising results, PDT for bladder cancer remains largely investigational with limited 373 

use (Agostinis et al., 2011). 374 

 375 

 Canine transitional cell carcinoma (TCC) is most commonly located in the trigone region of 376 

the bladder precluding complete surgical resection and palliative medical management is often the 377 

only treatment available (Fulkerson and Knapp, 2015). PDT could represent a promising option for 378 

dogs with TCC. However, canine TCC is often diagnosed late and is more invasive than human 379 

bladder cancers, making comparisons with human studies difficult (Fulkerson and Knapp, 2015). In 380 

vitro-studies have shown, that ALA-PDT destroys canine TCC cells (Ridgway and Lucroy, 2003). 381 

When studied in vivo, 70% of dogs vomited after oral administration of ALA, but this did not 382 

appear to have a negative impact on pharmacokinetics and the active metabolite (PpIX) was shown 383 

to accumulate in the bladder mucosa, compared to the muscularis and serosa. Five dogs with TCC 384 

of the urinary bladder treated with ALA-PDT and a laser fibre delivery system, showed transient 385 

improvement of clinical symptoms with tumour progression free intervals ranging from 4 to 34 386 

weeks (Lucroy et al., 2003a,b). The application of PDT for canine TCC clearly warrants further 387 

investigation. 388 

 389 

Brain tumours / glioma 390 

 Experimental and clinical studies have demonstrated that PDT can complement current 391 

standard therapies (surgical resection, radiation therapy and chemotherapy) in the treatment of brain 392 

tumours (Muller and Wilson, 1995, 1996). PDT may be particularly useful as an adjunct to surgery 393 

as it can non-invasively target tumour cells infiltrating normal brain. Initial trials provided 394 

encouraging results using various formulations of hematoporphyrin derivatives (HPD, Photofrin), 395 

ALA as well as mTHPC with light sources including lamps, dye lasers and diode lasers (Agostinis 396 

et al., 2011). One of the main indications for ALA in management of glioma is in fluorescence 397 

guided surgery (FGS). ALA based FGS has been shown to provide longer survival times than 398 



conventional surgery in patients with suspected malignant gliomas (n=322), 16.7 versus 11.8 399 

months respectively (Stummer et al., 2006). 400 

 401 

 In a canine glioma model, dogs were given 0.75 mg/kg Photofrin-II intravenously, followed 402 

24 h later by PDT, delivered using a fiberoptic catheter directly to the tumour via a burr hole in the 403 

skull (Whelan et al., 1993). This destroyed the tumour without significant brain-stem injury. 404 

 405 

The new classes of PSs, the better understanding of dosimetry and further improvements in 406 

technology may significantly change the currently achieved clinical outcome for glioma and other 407 

brain tumours both in human and veterinary patients. Pre-clinical data indicating that protracted 408 

light delivery may increase the therapeutic index of PDT in the brain combined with newer 409 

technologies such as implantable, LED-based light delivery systems could lead to significant 410 

improvements in treatment outcomes (Kostron, 2010).  411 

 412 

Future perspectives 413 

 Photodynamic therapy offers great potential due to its selective targeting of tumour cells and 414 

minimal normal tissue toxicity. Several innovative strategies have been used to improve PS 415 

penetration into tumour cells, including: using an electric current to draw PS deeper into the skin 416 

(Lopez et al., 2003), intratumoural PS injection (Hage et al., 2007; Rodríguez-Prieto et al., 2012) 417 

and pretreatment with chemical penetration enhancers (Malik et al., 1995; De Rosa et al., 2000; 418 

Golding et al., 2017), liposomal formulations and nanoemulsions (Buchholz et al., 2005, 2007).  419 

The efficacy of PDT may also be improved by overcoming the antioxidant defences of cancer cells.  420 

Antioxidant defences that remove excess ROS are upregulated in many cancers (Tracootham et al. 421 

2009), undermining the full potential of PDT. Combination of glycolysis inhibitors with PDT has 422 

been shown to deplete cellular antioxidants and significantly improve PDT cytotoxicity against 423 

human cancer cells in vitro (Golding et al., 2013) and this combination has proved effective in 424 



treatment of equine sarcoids (Golding et al 2017). Other ways in which efficacy of PDT may be 425 

improved clinically include: Metronomic PDT (mPDT) to delivery both the drug and light at very 426 

low dose rates over an extended period (hours-days) (Lilge et al., 2000), and through use of 427 

nanoparticles for PS delivery (Bechet et al., 2008). If the potential for use of PDT in veterinary 428 

medicine could be realized this could make a significant contribution to the overall development of 429 

the technique. 430 

 431 

Conclusions 432 

PDT is a safe and effective therapy for many cancers and pre-cancers that can be accessed 433 

externally or endoscopically. Small, localised lesions can achieve long-term clearance with 434 

negligible scarring or damage to adjacent structures.  435 

The science of PDT has seen enormous progress within the past 30 years. For instance: the 436 

development of improved photosensitisers, light sources (including endoscopic delivery and 437 

daylight PDT), improved understanding of how PDT works, and an expansion of the uses of 438 

photosensitisers to allow intraoperative detection of tumour margins. Although PDT has hitherto 439 

been used as a monotherapy, the future of the technique undoubtedly lies in combining it with other 440 

drugs and approaches as part of a synergistic multimodal treatment. 441 

Despite the scientific advances, the clinical practice of PDT is still limited to a small number of 442 

individual practitioners or centres of excellence; partly due to a vicious cycle of high photosensitiser 443 

costs due to limited demand. With pun intended, veterinary PDT needs to come out of the shadows 444 

and into the light. This will only happen if PDT becomes a standard part of the training syllabus and 445 

existing PDT practitioners provide internships for the next generation of veterinary surgeons. The 446 

referral system for PDT is also in need of improvement.  447 
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Table 1. 1081 
Summary of characteristics and application of selected second generation photosensitizers. 1082 

Agent (synonyms)/ 
manufacturer 

Activation 
wavelength 
(nm) 

Advantages Reported 
tumour 
applications 
(human unless 
stated) 

References 

Foscan  
(m-tetrahydroxophenyl 
chlorine (mTHPC), 
temoporphin)/ Biolitec 
Pharma. 

525 - 660 -Short duration of 
skin photosensitivity 
(15 days) 
-High quantum yield 
for singlet oxygen 
-Depth of tumour 
necrosis (10 mm) 

Pleural 
mesothelioma 
 
Head and neck 
cancers 
 
 
Oesophagus 
 
 
 
Prostate 
 
 
 
Pancreas 
 
 
Skin tumours 
 
 
Skin tumours 
(cats) 

Friedberg et 
al., 2003. 
 
Rauschning et 
al., 2004; Biel 
et al., 2006. 
 
Lovat et al., 
2005; Etienne 
et al. 2004. 
 
Nathan et al., 
2002; Moore 
et al., 2006. 
 
Pereira et al., 
2007. 
 
Triesscheijn et 
al., 2006. 
 
Buchholz et 
al., 2007. 

Photochlor (2-(1-
hexyloxyethyl)-2-devinyl 
pyropheophorbide 
(HPPH))/ AdooQ 
Bioscience. 

665 - 680 Extremely 
hydrophobic, 
increasing 
penetration into 
tissue 

Obstructive 
oesophageal 
cancer 
 
oral squamous 
cell carcinomas 
(dogs) 
 
facial squamous 
cell carcinoma 
(cats) 
 
squamous cell 
carcinoma 
(horses) 
 

Dougherty et 
al., 2000. 
 
 
McCaw et al., 
2000. 
 
 
Magne et al., 
1997. 
 
 
Giuliano et 
al., 2008. 

TOOKAD (WST-09, 
padoporfin, palladium 
bacteriopheophorbide)/ 
Steba Biotech. 
 
 

760 New generation 
photosensitiser with 
greater stability and 
short half-life 

Prostate (dogs) Nomura and 
Mimata, 2012. 
Huang et al., 
2005. 

Padeliporfin (TOOKAD 
Soluble, WST-11, 
palladium 
bacteriopheophorbide 

760 Vascular-targeted 
PDT 

Prostate  
 
 
 
Prostate (dogs) 

Azzouzi et al., 
2017. 
 
Chevalier et 
al., 2013. 



monolysotaurine)/ Steba 
Biotech. 
Lu-Tex (Motexafin 
lutetium, lutetium 
texaphyrin/ Pharmacyclics 
Inc. 

730 Water soluble. 
Selectively retained 
in tumour. 
Only 24 – 48 h skin 
photosensitivity 

Prostate 
 
 
Rectal (dogs) 
 

Patel et al., 
2008. 
 
Ross et al., 
2006. 
 

Talaporfin sodium 
(aspartyl chlorin, 
Laserphyrin, Aptocine)/ 
Meiji Seika Pharma. 

664 - 667 Retained in tumour 
for 50 h 

Lung. 
 
Esophageal. 
 
 
Intranasal 
(dogs) 

Usuda et al., 
2007. 
Yano et al., 
2017. 
 
Ishigaki et al., 
2017. 

ALA (5-aminolevulinic 
acid)/ various. 
Methyl-ALA (MAL, 
Metvix)/ Galderma. 
Hexyl-ALA (HAL 
Hexvix)/ Ipsen. 

Pro-drugs. Each 
metabolized to 
protoporphyrin 
IX (414, 635) 

Short loading 3 h; 
short skin 
photosensitivity 12 h 
Epithelial 
penetration improves 
in sequence 
ALA>MAL>HAL 

ALA: at least 
11 different 
human 
tumours. 
 
Equine sarcoids 
 
 
MAL: basal 
cell carcinoma. 
 
Equine 
sarcoids. 
 
 
 
HAL: prostate 
photodynamic 
detection. 
 
Prostate (dogs) 

Nokes et al., 
2013. 
 
 
Golding et al., 
2017. 
 
Morton et al., 
2008, 2013. 
 
 
Kemp-
Symonds, 
2012, Golding 
et al., 2017. 
 
Furre et al., 
2005. 
 
 
L’Eplattenier 
et al., 2008. 

Verteporfin (Visudyne)/ 
Novartis 

689 - 693 Binds low density 
lipoprotein receptors 
on abnormal blood 
vessels and tumours 

Wet macular 
degeneration 
 
Esophagus 
(dogs) 
 
Squamous cell 
carcinoma 
(horses) 

Scott and 
Goa, 2000. 
 
Panjehpour 
et al., 2002. 
 
Giuliano et 
al., 2014. 
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Table 2. 1084 
Clinical Reports of photodynamic therapy (PDT) for superficial squamous cell carcinoma (SCC) or 1085 
SCC in situ in cats 1086 

Cases / tumour 
location 

PDT agent PDT method Response rate / 
outcome / side 
effects 

Reference 

51 cats 
Cutaneous SCC 
facial skin 

HPPH-23 
Pyropheophorbid-
alpha-hexyl-ether 
 

Intravenous 
administration 
Argon-pumped dye 
laser 

Overall 61% 
response rate at 1 
year. 
100% T1a 
tumours, 56% 
T1b and18% T2b. 
No toxicity, but 
some morbidity. 

Magne et al., 
1997 

4 dogs and 4 cats 
Superficial 
carcinoma 

HPPH Intravenous 
administration 
LED (100 J/cm2, 33 
min) 
 

8/9 CR 
>50% PFS > 68 
weeks. No 
cutaneous 
photosensitivity 

Reeds et al., 2004 

13 lesions / cats 
10 nasal planum, 
2 pinna 
1 eyelid 

ALA (Cream) Topical application 
LED 635 nm 
12 J/cm2 

85% CR rate 
But with 64% 
local recurrence, 
median 21 weeks. 
Cats attempt to 
scratch lesion 
after treatment. 
Local analgesia 
required. 

Stell et al., 2001 

18 cats with 20 
cutaneous SCC 

Liposomal 
formulation of 
Foscan  
(m-THPC) 

Intravenous 
administration 
625 nm diode laser 

100% CR rate 
Overall 1 year 
control rate 75% 
20% recurrence, 
172 days. Mild 
erythema/ edema 
in 15% of cats. 

Buchholz et al, 
2007 

55 cats 
Superficial SCC 
nasal planum 

ALA (Cream) Topical application 
LED 635 nm 
12 J/cm2 

85% CR rate, 
11% PR rate 
But with 51% 
recurrence; 
median 157 days. 
Transient, mild, 
local adverse 
effects.  

Bexfield et al., 
2008 

12 cats 
Cutaneous SCC 
(7 pinna, 2 nasal 
planum) 

Haematoporphyrin 
derivative 
(Photogem) 

Intravenous 
administration 
LEDs (300 J/cm2 30 
min) 

No response in 
invasive tumours 
or pinna. 
Small non-
infiltrative lesions 
of nasal planum 
(n=3) showed 
CR/PR. 
One cat 
developed nasal 
oedema and died. 

Ferreira et al., 
2009 

Abbreviations: LED (light-emitting diode), CR (complete response), PR (partial response), PFS 1087 
(progression-free survival).  1088 



Figure legends 1089 
 1090 
Figure 1. Fundamentals of photodynamic therapy.  1091 

A) Visible and near infra-red light spectrum showing the wavelengths (in nanometres) of maximum 1092 

tissue penetration by light (above) and absorbance maxima of selected photosensitisers (below). B-1093 

D) Chemical structures of selected photosensitisers. E) Schematic of photosensitiser mechanism of 1094 

action. Photosensitiser (PS) becomes activated (PS*) by light (hυ). PS* can undergo two types of 1095 

reaction. In Type I reactions, biological material (BM) interacts directly with PS* forming ion 1096 

radicals of both species (PS-. and BM+.). BM radical interacts with oxygen and becomes oxidised. 1097 

PS radical is either destroyed or reacts with oxygen to regenerate PS and make a superoxide anion 1098 

(O2
-.) that can react with BM to oxidise it. In Type II reactions, PS* interacts with oxygen to 1099 

regenerate PS and make singlet oxygen (1O2), which reacts with BM to oxidise it.  1100 

 1101 
Figure 2. Feline nasal squamous cell carcinoma (SCC) 1102 

A) An early SCC on the right nasal planum in a Domestic Short-haired cat. B) Application of 1103 

photodynamic therapy (PDT) using a high intensity light-emitting diode (LED). C) Complete 1104 

resolution of the lesion at 6 weeks, with minimal scar formation. 1105 

 1106 
Figure 3. Treatment of equine sarcoids.  1107 

A) Painting 5-aminolevulinic acid (ALA) onto sarcoid. B) Application of photodynamic therapy 1108 

(PDT). C) Appearance of sarcoid at time of PDT treatment. D) Appearance of sarcoid 1 month after 1109 

PDT. 1110 


