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In search for the most informative data for feedback generation: 

Learning Analytics in a data-rich context 

Abstract. Learning analytics seek to enhance the learning processes through systematic measurements 

of learning related data and to provide informative feedback to learners and educators. Track data from 

Learning Management Systems (LMS) constitute a main data source for learning analytics. This 

empirical contribution provides an application of Buckingham Shum and Deakin Crick’s theoretical 

framework of dispositional learning analytics: an infrastructure that combines learning dispositions 

data with data extracted from computer-assisted, formative assessments and LMSs. In a large 

introductory quantitative methods module, 922 students were enrolled in a module based on principles 

of blended learning, combining face-to-face Problem-Based Learning sessions with e-tutorials. We 

investigated the predictive power of learning dispositions, outcomes of continuous formative 

assessments and other system generated data in modelling student performance and their potential to 

generate informative feedback. Using a dynamic, longitudinal perspective, computer-assisted formative 

assessments seem to be the best predictor for detecting underperforming students and academic 

performance, while basic LMS data did not substantially predict learning. If timely feedback is crucial, 

both use-intensity related track data from e-tutorial systems, and learning dispositions, are valuable 

sources for feedback generation. 

 

Keywords: blended learning; dispositional learning analytics; e-tutorials; formative assessment; learning 

dispositions 

 

 

1. Introduction 

Learning analytics provide institutions with opportunities to support student progression and to enable 

personalised, rich learning (Bienkowski, Feng, & Means, 2012; Oblinger, 2012; Siemens, Dawson, & Lynch, 

2013; Tobarra, Robles-Gómez, Ros, Hernández, & Caminero, 2014). With the increased availability of large 

datasets, powerful analytics engines (Tobarra et al., 2014), and skilfully designed visualisations of analytics 

results (González-Torres, García-Peñalvo, & Therón, 2013), institutions may be able to use the experience of the 

past to create supportive, insightful models of primary (and perhaps real-time) learning processes (Author B, 

Submitted; Baker, 2010; Stiles, 2012). According to Bienkowski et al. (2012, p. 5), “education is getting very 

close to a time when personalisation will become commonplace in learning”, although several researchers 

(García-Peñalvo, Conde, Alier, & Casany, 2011; Greller & Drachsler, 2012; Stiles, 2012) indicate that most 

institutions may not be ready to exploit the variety of available datasets for learning and teaching. 

Many learning analytics applications use data generated from learner activities, such as the number of 

clicks (Siemens, 2013; Wolff, Zdrahal, Nikolov, & Pantucek, 2013), learner participation in discussion forums 

(Agudo-Peregrina, Iglesias-Pradas, Conde-González, & Hernández-García, 2014; Macfadyen & Dawson, 2010), 

or (continuous) computer-assisted formative assessments (Author A, 2012a, 2012b; Wolff et al., 2013). User 

behaviour data are frequently supplemented with background data retrieved from learning management systems 
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(LMS) (Macfadyen & Dawson, 2010) and other student admission systems, such as accounts of prior education 

(Arbaugh, 2014; Author A, 2012a; Richardson, 2012). For example, in one of the first learning analytics studies 

focused on 118 biology students, Macfadyen and Dawson (2010) found that some (# of discussion messages 

posted, # assessments finished, # mail messages sent) LMS variables but not all (e.g., time spent in the LMS) 

were useful predictors of student retention and academic performance.  

Buckingham Shum and Deakin Crick (2012) propose a dispositional learning analytics infrastructure 

that combines learning activity generated data with learning dispositions, values and attitudes measured through 

self-report surveys, which are fed back to students and teachers through visual analytics. For example, 

longitudinal studies in motivation research (Author B, 2012a; Järvelä, Hurme, & Järvenoja, 2011) and students’ 

learning approaches (Nijhuis, Segers, & Gijselaers, 2008) indicate strong variability in how students learn over 

time in face-to-face settings (e.g., becoming more focussed on deep learning rather than surface learning), 

depending on the learning design, teacher support, tasks, and learning dispositions of students. Indeed, in a study 

amongst 730 students Author A (2012a) found that positive learning emotions contributed positively to 

becoming an intensive online learner, while negative learning emotions, like boredom, contributed negatively to 

learning behaviour. Similarly, in an online community of practice of 133 instructors supporting EdD students, 

Nistor et al. (2014) found that self-efficacy (and expertise) of instructors predicted online contributions. 

However, a combination of LMS data with intentionally collected data, such as self-report data 

stemming from student responses to surveys, is an exception rather than the rule in learning analytics (Author A, 

2013a; Buckingham Shum & Ferguson, 2012; Greller & Drachsler, 2012; Macfadyen & Dawson, 2010). In our 

empirical contribution focusing on a large scale module in introductory mathematics and statistics, we aim to 

provide a practical application of such an infrastructure based on combining longitudinal learning and learner 

data. In collecting learner data, we opted to use three validated self-report surveys firmly rooted in current 

educational research, including learning styles (Vermunt, 1996), learning motivation and engagement (Martin, 

2007), and learning emotions (Pekrun, Goetz, Frenzel, Barchfeld, & Perry, 2011). This operationalisation of 

learning dispositions closely resembles the specification of cognitive, metacognitive and motivational learning 

factors relevant for the internal loop of informative tutoring feedback (e.g., Narciss, 2008; Narciss & Huth, 

2006). For learning data, data sources are used from more common learning analytics applications, and 

constitute both data extracted from an institutional LMS (González-Torres et al., 2013; Macfadyen & Dawson, 

2010) and system track data extracted from the e-tutorials used for practicing and formative assessments (e.g., 

Author A, 2012b; Author A, 2013a; Wolff et al., 2013). The prime aim of the analysis is predictive modelling 
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(Baker, 2010; Sao Pedro, Baker, Gobert, Montalvo, & Nakama, 2013), with a focus on the roles of (each of) 

100+ predictor variables from the several data sources can play in generating timely, informative feedback for 

students.  

 

2 Literature review 

2.1 Learning Analytics 

A broad goal of learning analytics is to apply the outcomes of analysing data gathered by monitoring 

and measuring the learning process (Buckingham Shum & Ferguson, 2012; Siemens, 2013). A vast body of 

research on student retention (Credé & Niehorster, 2012; Marks, Sibley, & Arbaugh, 2005; Richardson, 2012) 

indicates that academic performance can be reasonably well predicted by a range of demographic, academic 

integration, social integration, psycho-emotional and social factors, although most predictive models can explain 

only up to 30% of variance. Recent studies in learning analytics (Agudo-Peregrina et al., 2014; Author A, 

2013a; Macfadyen & Dawson, 2010; Wolff et al., 2013) seem to indicate that adding LMS user behaviour to 

these models can substantially improve the explained variance of academic performance. However, according to 

Agudo-Peregrina et al. (2014) there is no consensus in the learning analytics community on which user 

behaviour and interactions data are appropriate to measure, understand and model learning processes and 

academic performance. 

 Clow (2013, p. 692) argues that “as a field, learning analytics is data-driven and is often atheoretical, or 

more precisely, is not explicit about its theoretical basis”. Although several researchers have worked to link 

learning analytics to pedagogical theory (Clow, 2013; Dawson, 2008; Macfadyen & Dawson, 2010; Suthers, 

Vatrapu, Medina, Joseph, & Dwyer, 2008), this is still the exception, rather than the rule. However, Macfadyen 

and Dawson (2010, p. 597) note that “knowledge of actual course design and instructor intentions is critical in 

determining which variables can meaningfully represent student effort or activity, and which should be 

excluded”. For example, Author A (2013a) found empirical evidence for the role of a broad range of learning 

dispositions in learning analytics applications in a study amongst 1832 students. Demographic characteristics, 

cultural differences, learning styles, learning motivation and engagement, and learning emotions, all proved to 

be facets of learning dispositions having a substantial impact on learning mathematics and statistics. This study 

extends the analysis of predictive modelling for generating learning feedback by looking at the role of any data 

source in a multivariate context, so in the presence of several alternative data sources. 
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In Verbert, Manouselis, Drachsler, and Duval (2012), six objectives are distinguished in using learning 

analytics: predicting learner performance and modelling learners, suggesting relevant learning resources, 

increasing reflection and awareness, enhancing social learning environments, detecting undesirable learner 

behaviours, and detecting affects of learners. Although the combination of self-report learner data with learning 

data extracted from e-tutorial systems (see below) allows us to contribute to at least five of these objectives of 

applying learning analytics(as described in Narciss & Huth, 2006)(as described in Narciss & Huth, 2006), we 

will focus in this contribution on the first objective: predictive modelling of performance and learning behaviour 

(Baker, 2010; Sao Pedro et al., 2013). The ultimate goal of this predictive modelling endeavour is to find out 

which components from a rich set of data sources best serve the role of generating timely, informative feedback 

and signalling risk of underperformance.  

 

2.2 Formative Testing and feedback 

A classic function of testing is that of taking an aptitude test. After completion of the learning process, 

we expect students to demonstrate mastery of the subject. According to test tradition, feedback resulting from 

such “classical” tests are typically limited to a grade (Boud & Falchikov, 2006; Whitelock, Richardson, Field, 

Van Labeke, & Pulman, 2014). Another limitation of classical summative testing is that feedback becomes 

available only after finishing all learning activities (Segers, Dochy, & Cascallar, 2003). An alternative form of 

assessment, formative assessment, has an entirely different function: that of informing student and teacher 

(Segers et al., 2003). This information should help to better shape teaching and learning and is especially useful 

when it becomes available prior to or during the learning process. Feedback plays a crucial part to assist 

regulating learning processes (Boud & Falchikov, 2006; Hattie, 2009; Lehmann, Hähnlein, & Ifenthaler, 2014; 

Whitelock et al., 2014). Several alternative operationalisations to support feedback are possible. For example, 

using two experimental studies with different degrees of generic and directed prompts, Lehmann et al. (2014) 

found that directed prereflected prompts encourage positive activities in online environments. In a meta-study of 

800+ meta-studies, Hattie (2009) found that the way students receive feedback was one of the most powerful 

factors in enhancing learning experiences. Diagnostic testing is an example of this, just as is a test-directed 

learning approach that constitutes the basic educational principle of many e-tutorial systems (Author A, 2009).  

Because feedback from tests constitutes a main function for learning, it is crucial that this information 

is readily available, preferably even instantly. At this point digital testing comes on the scene: it is unthinkable 

to get feedback from formative assessments in time without using computers. Previous research by Wolff et al. 
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(2013) found that a combination of LMS data with data from continuous assessments were the best predictor for 

performance drops amongst 7701 students. In particular, the number of clicks in an LMS just before the next 

assessment significantly predicted continuation of studies (Wolff et al., 2013). Similarly, in a study of six online 

and two blended courses, Agudo-Peregrina et al. (2014) found that interactions with assessment tools, followed 

by interactions with peers and teachers, and active participation significantly predicted academic performance in 

the six online courses. However, no clear paths of learning analytics data were found for the two blended 

courses. In contrast, Author A (2013a) did find that both dispositional data and data extracted from formative 

testing had a substantial impact on student performance in a blended course of 1832 students. 

 

2.3 Case Study: Mathematics and Statistics 

Our empirical contribution focuses on freshmen students in quantitative methods (mathematics and 

statistics) of the business & economics school at Maastricht University. This education is directed at a large and 

diverse group of students, which benefits the research design. As a basic LMS system, Blackboard is used to 

share basic course information to students. Given the restricted functionality of this LMS in terms of 

personalised, adaptive learning content with rich varieties of feedback and support provision (for a detailed 

critique on the limitations of LMS, see Conde, García, Rodríguez-Conde, Alier, & García-Holgado, 2014; 

García-Peñalvo et al., 2011), two external e-tutorials were utilised: MyStatLab (MSL) and MyMathLab (MML). 

These e-tutorials are generic LMSs for learning statistics and mathematics developed by the publisher Pearson.  

Although MyLabs can be used as a learning environment in the broad sense of the word (it contains, 

among others, a digital version of the textbook), it is primarily an environment for test-directed learning and 

practicing. Each step in the learning process is initiated by a question, and students are encouraged to (try to) 

answer each question. If a student does not master a question (completely), she/he can either ask for help to 

solve the problem step-by-step (Help Me Solve This), or ask for a fully worked example (View an Example), as 

demonstrated in Figure 1. These two functionalities are examples of Knowledge of Result/response (KR) and 

Knowledge of the Correct Response (KCR) types of feedback; see Narciss (2008; 2006).  After receiving this 

type of feedback, a new version of the problem loads (parameter based) to allow the student to demonstrate 

his/her newly acquired mastery. When a student provides an answer and opts for ‘Check Answer’, Multiple-Try 

Feedback (MTF, Narciss, 2008) is provided, whereby the number of times feedback is provided for the same 

task depends on the format of the task (only two for a multiple choice type of task as in Figure 1, more for open 

type tasks requiring numerical answers). 
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 Insert Figure 1 about here  

3. Research methods 
 

3.1 Research questions 

While an increasing body of research is becoming available how students’ usage and behaviour in LMS 

influences academic performance (e.g., Arbaugh, 2014; Macfadyen & Dawson, 2010; Marks et al., 2005; Wolff 

et al., 2013), how the use of e-tutorials or other formats of blended learning effects performance (e.g., Lajoie & 

Azevedo, 2006), and how feedback based on learning dispositions stimulates learning (Buckingham Shum and 

Deakin Crick (2012), to the best of our knowledge no study has looked at how all these factors can be combined 

into one research context, and what the relative contributions of LMSs, formative testing, e-tutorials, and 

applying dispositional learning analytics to student performance are. In our empirical contribution focusing on a 

large scale module in introductory mathematics and statistics followed by 922 students, we aim to provide a 

practical application of such an infrastructure based on combining longitudinal learning data from our LMS, the 

two e-tutorials, and (self-reported) learner data. The prime aim of the analysis is predictive modelling (Baker, 

2010; Sao Pedro et al., 2013; Wolff et al., 2013), with a focus on the role each of these data sources can play in 

generating timely, informative feedback for students.  

 

Q1 To what extent do (self-reported) learning dispositions of students, LMSs and e-tutorial data (formative 

assessments) predict academic performance over time? 

Q2 To what extent do predictions based on these alternative data sources refer to unique facets of performance, 

and to what extent do these predictions overlap?  

Q3 Which source(s) of data (learning dispositions, LMS data, e-tutorials formative tests) provide the most 

potential to provide timely feedback for students?  

  

3.2 Methodology 

3.2.1 Context of study 

The educational system in which students learn mathematics and statistics is best described as a 

‘blended’ or ‘hybrid’ system. The main component is face-to-face: problem-based learning (PBL), in small 

groups (14 students), coached by a content expert tutor (Author A, 2009; Author B, 2009; Schmidt, Van Der 

Molen, Te Winkel, & Wijnen, 2009). Participation in these tutorial groups is required, as for all courses based 
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on the Maastricht PBL system. Optional is the online component of the blend: the use of the two e-tutorials 

(Author A, 2013a). This optional component fits the Maastricht educational model, which is student-centred and 

places the responsibility for making educational choices primarily on the student (Author A, 2013a; Schmidt et 

al., 2009). At the same time, due to strong diversity in prior knowledge in mathematics and statistics, not all 

students, in particular those at the high end, will benefit equally from using these environments. However, the 

use of e-tutorials and achieving good scores in the practicing modes of the MyLab environments is stimulated 

by making bonus points available for good performance in the quizzes. Quizzes are taken every two weeks and 

consist of items that are drawn from the same item pools applied in the practicing mode. We chose for this 

particular constellation as it stimulates students with limited prior knowledge to make intensive use of the 

MyLab platforms. Students with limited prior knowledge may realise that they fall behind other students, and 

therefore need to achieve a good bonus score both to compensate, and to support their learning. The most direct 

way to do so is to frequently practice in the MML and MSL environments. The bonus is maximised to 20% of 

what one can score in the exam. 

The student-centred characteristic of the instructional model requires, first and foremost, adequate 

informative feedback to students so that they are able to monitor their study progress and their topic mastery in 

absolute and relative sense. The provision of relevant feedback starts on the first day of the course when 

students take two diagnostic entry tests for mathematics and statistics (Author A, 2013a). Feedback from these 

entry tests provides a first signal of the importance for using the MyLab platforms. Next, the MML and MSL-

environments take over the monitoring function: at any time students can see their progress in preparing the next 

quiz, get feedback on the performance in completed quizzes, and on their performance in the practice sessions. 

The same (individual and aggregated) information is also available for the tutors in the form of visual 

dashboards (Clow, 2013; González-Torres et al., 2013; Verbert et al., 2012). Although the primary 

responsibility for directing the learning process is with the student, the tutor acts complementary to that self-

steering, especially in situations where the tutor considers that a more intense use of e-tutorials is desirable, 

given the position of the student concerned. In this way, the application of learning analytics shapes the 

instructional support. 

 

3.2.2 Participants 

The most recent cohort of freshmen (2013/2014) containing 922 students were included, who in some way 

participated in learning activities (i.e., have been active in BlackBoard). A large diversity in the student 
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population is present: only 24% were educated in the Dutch high school system. The largest group, 46% of the 

freshmen, were educated according to the German Abitur system. High school systems in Europe differ 

strongly, most particularly in the teaching of mathematics and statistics. Therefore, it is crucial that the first 

module offered to these students is flexible and allows for individual learning paths (Author A, 2009, 2012a, 

2013a). In the investigated course, students work an average 38.2 hours in MML and 24.4 hours in MSL, 30% 

to 50% of the available time of 80 hours for learning in both topics.  

 

3.3 Instruments and procedure 

As illustrated in Figure 2, we will investigate the relationships between a range of of datasources, leading to in 

total 102 different variables. In the subsections that follow, the several data sources are described that provide 

the predictor variables for our predictive modelling.  

 Insert Figure 2 about here 

 

3.3.1 Registration systems capturing demographic data 

In line with academic retention or academic analytics literature (Marks et al., 2005; Richardson, 2012), 

several demographic factors are known to influence performance. A main advantage of this type of data is that 

institutions can relatively easily extract this information from student admission, and are therefore logical 

factors to include in learning analytics models. Demographic data were extracted from concern systems: 

nationality, gender, age and prior education. Since, by law, introductory modules like ours need to be based on 

the coverage of Dutch high school programs, we converted nationality data into an indicator for having been 

educated in the Dutch high school system. 24% of students are educated in the Dutch higher education system, 

76% of students in international systems, mostly of continental European countries. About 39% of students are 

female, with 61% males. Age demonstrates very little variation (nearly all students are below 20), and no 

relationship with any performance, and is excluded.  The main demographic variable is the type of mathematics 

track in high school: advanced, preparing for sciences or technical studies in higher education, or basic, and 

preparing for social sciences (the third level, mathematics for arts and humanities, does not provide access to our 

program). Exactly two third of the students has a basic mathematics level, one third has an advanced level. (See 

Author A, 2009, 2012a; 2013a for detailed description).. 

 

3.3.2 Diagnostic entry tests 



 9 

At the very start of the course, so shaping part of Week0 data, are entry tests for mathematics and statistics all 

students were required to do. Both entry tests are based on national projects directed at signalling deficiencies in 

the area of mathematics and statistics encountered in the transition from high school to university (See Author 

A, 2012b for an elaboration) for an elaboration). Topics included in the entry tests refer to foundational topics, 

often covered in junior high school programs, such as basic algebraic skills or statistical literacy. 

 
3.3.3 Learning dispositions data 

Learning dispositions of three different types were included: learning styles, learning motivation and 

engagement, and learning emotions. The first two facets were measured at the start of the module, and from the 

longitudinal perspective are assigned to Week0 data. Learning style data are based on the learning style model 

of Vermunt (1996, 1998). Vermunt’s model distinguishes learning strategies (deep, step-wise, and concrete 

ways of processing learning topics), and regulation strategies (self, external, and lack of regulation of learning). 

Recent Anglo-Saxon literature on academic achievement and dropout assigns an increasingly dominant role to 

the theoretical model of Andrew Martin (2007): the 'Motivation and Engagement Wheel’. This model includes 

both behaviours and thoughts, or cognitions, that play a role in learning. Both are subdivided into adaptive and 

mal-adaptive (or obstructive) forms. Adaptive thoughts consist of Self-belief, Value of school and Learning 

focus, whereas adaptive behaviours consist of Planning, Study management and Perseverance. Maladaptive 

thoughts include Anxiety, Failure Avoidance, and Uncertain Control, and lastly, maladaptive behaviours include 

Self-Handicapping and Disengagement. As a result, the four quadrants are: adaptive behaviour and adaptive 

thoughts (the ‘boosters’), mal-adaptive behaviour (the ‘guzzlers’) and obstructive thoughts (the ‘mufflers’).  

The third component, learning emotions, is more than a disposition: it is also an outcome of the 

learning process. Therefore, the timing of the measurement of learning emotions is Week4, halfway into the 

module, so that students have sufficient involvement and experience in the module to form specific learning 

emotions, but still timely enough to make it a potential source of feedback. Learning emotions were measured 

through four scales of the Achievement Emotions Questionnaire (AEQ) developed by Pekrun et al. (2011): 

Enjoyment, Anxiety, Boredom and Hopelessness. All learning dispositions are administered through self-report 

surveys scored on a 7-point Likert scale. 

 
3.3.4 Learning management system  

User track data of LMS are often at the heart of learning analytics applications. Also in our context 

intensive use of our LMS, BlackBoard (BB), has been made. In line with Agudo-Peregrina et al. (2014), we 
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captured tracking data from six learning activities. First, the diagnostic entry tests were administered in BB, and 

through the MyGrades function, students could access feedback on their test attempts. Second, surveys for 

learning dispositions were administered in BB. Third,  two lectures per week were provided, overview lectures 

at the start of the week, and recap lectures at the end of the week, which were all videotaped and made available 

as webcasts through BB. Fourth, several exercises for doing applied statistical analyses, including a student 

project, were distributed through BB, with a requirement to upload solutions files again in BB. Finally, 

communication from the module staff, various course materials and a series of old exams (to practice the final 

exam) were made available in BB. For all individual BB items, Statistics Tracking was set on to create use 

intensity data on BB function and item level. 

 
 

3.3.5 E-tutorials MyMathLab and MyStatLab 

Students worked in the MyMathLab and MyStatLab e-tutorials for all seven weeks, practicing homework 

exercises selected by the module coordinator. The MyLab systems track three scores achieved in each task, 

mastery score (MMLMastery), time on task (MMLHours), and number of attempts required to get to the 

mastery level achieved (MMLAttempts). Those data were aggregated over the on average 25 weekly tasks for 

mathematics, and about 20 tasks for statistics, to produce six predictors, three for each topic, for each of the 

seven weeks. Less aggregated data sets have been investigated, but due to high collinearity in data of individual 

tasks, these produced less stable prediction models.  

The three (bonus) quizzes took place in the weeks 3, 5 and 7. Quizzes were administrated in the MyLab 

tools, and consisted of selections of practice tasks from the two previous weeks.  

 

3.3.6 Academic performance 

Six measures of academic performance in the Quantitative Methods module were included for predictive 

modelling: score in both topic components of the final, written exam (MathExam and StatsExam), aggregated 

scores for the three quizzes in both topics, MathQuiz and StatsQuiz, overall score in the module, QMTotal 

(weighting the final exam with weight 5, and the bonus score from quizzes and homework with weight 1), and 

module passing rate: QMPass. 

 
3.4 Data analysis 
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Complete information was obtained for 873 out of 922 students (95%) on the various instruments. Prediction 

models applied in this study are all of linear, hierarchic regression type. More complex models have been 

investigated, in particular interaction models. However, none of these more advanced model types passed the 

model selection criterion that prediction models should be stable over all seven weekly intervals. Collinearity 

existing in track data in a similar way forced us to aggregate that type of data into weekly units; models based 

on less aggregated data such as individual task data gave rise to collinearity issues. 

 

4. Results 

The aim of this study being predictive modelling in a rich data context, we will focus the reporting on the 

coefficient of multiple correlation, R, of the several prediction models. Although the ultimate aim of prediction 

modelling is often the comparison of explained variation, which is based on the square of the multiple 

correlation, we opted for using R itself, to allow for more detailed comparisons between alternative models. 

Values for R are documented in Table 1 for prediction models based on alternative data sets. For data sets that 

are longitudinal in nature and allow for incremental weekly data sets, the growth in predictive power is 

illustrated in time graphs for BB track data, MyLabs track data and test performance data.  To ease comparison, 

all graphs share the same vertical scale. 

 Insert Table 1 about here 

 

4.1 Predicting Performance by demographic data 

For the mathematics related performance measures, and for measures relating to completion of the module, there 

is only one significant predictor variable: mathematics track in high school. Its impact is substantial: its beta 

weight in predicting, for example, MathExam is 0.43, explaining in itself 20% of variation. However, 

performance in statistics is different: there exists a substantial impact of the internationalisation dummy, 

favouring students educated in the Dutch high school system. That impact finds its explanation in the 

extraordinary role of statistics in the Dutch high school system, in comparison to other continental European 

countries. Lastly, gender is significant in predicting StatsExam, favouring male students. However, more 

predictors do not imply better prediction: mathematics performance is much better predicted than statistics 

performance, with overall performance in an intermediate position, due to lack of coverage in so many high 

school programs. In other words, in line with previous research (Author A, 2013a; Marks et al., 2005; 

Richardson, 2012) prior education seems to be a useful factor to include in learning analytics modelling.  
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4.2 Predicting Performance by EntryTest data 

Entry test data have substantial predictive power for both performance in mathematics (for MathExam, R=.43, 

for MathQuiz, R=.45) and overall performance (QMscore, R=.41). These correlations are very similar in value 

to those of the prior mathematics education variables, indicating that the entry tests provide a good summary of 

what students have learned in high school. Predictive power for statistics related performance is at a lower level 

(for StatsExam, R=.30, for StatsQuiz, R=.22), due to the circumstance that many of the students have not been 

educated before in statistics, so that the entry test cannot be very informative of  later performance in the course. 

 

4.3 Predicting Performance by Learning Dispositions data 

In terms of predictive power, learning dispositions sit in between BB track data, and the three data sources 

containing data of more cognitive nature, as is clear from Table 1. Different from MyLab, EntryTest, and 

demographics predictors, the impact of learning dispositions is of a rather constant level, irrespective of the type 

of performance measure. For learning styles, R ranges from .21 for passing rate, to .25 for overall score, 

whereas for the motivation and engagement data the range is from .27 to .34. Learning emotions achieve even 

higher levels of prediction power, but as noticed before these variables are measured in the midst of the module, 

so are themselves best viewed as a mixture of disposition and the outcome of the learning process.  

The prediction relationships take different shapes, depending on the performance measure. For 

instance, amongst the learning styles variables, critical processing of learning material, the processing strategy 

most indicative of deep learning, acts as the most powerful predictor for exam performance, both for 

mathematics and statistics. In contrast, the regulation strategy self-regulation of learning content is the strongest 

predictor of quiz performance (with a negative beta, indicating that students who follow their own learning 

agenda underperform relative to students who adopt the agenda built into the Mylabs).  

 

4.4 Predicting Performance by learning management system data 

Given the wealth of BB data, preliminary analysis was applied to find out which indicators of learning intensity 

performed well in each of the consecutive weeks. BB data is highly collinear, implying different choices of 

predictor variables in models for each of the seven weeks.  The single variable playing a consistent role in all of 

the weekly models is overall activity in BB: the total number of clicks, per week. Figure 3 demonstrates the 
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predictive power in terms of the multiple correlation coefficients of longitudinal models developed on overall 

user activity.  

 Insert Figure 3 about here 

 

The figure signals two important features. First, there is little progress in predictive power over time: 

the earliest predictions are about as good as later predictions. It is indeed the case that Week0 BB usage, that is 

the use of BB in the week before the module starts, has the highest predictive power for the several performance 

variables of all individual weeks. In line with previous findings (Agudo-Peregrina et al., 2014; Macfadyen & 

Dawson, 2010), the second observation is that predictive power of our LMS remains low: the multiple 

correlations of all six performance indicators converges to a value of about 0.2, indicating that no more than 

about 4% in performance variation can be explained by BB track data. Although there is strong variation in 

LMS data, this variation is not consistently related with variation in performance. There is one exception to this 

general result: the number of downloads of old exams for practicing purposes is a reasonable predictor (beta 

equal to 0.25). However, nearly all of these downloads took place in Week8, the same week as the exam taking 

place, because of which it is not very useful for a prediction model for providing early feedback to students. 

 

4.5 Predicting Performance by MyMathLab and MyStatLab e-tutorial data 

After aggregation to weekly data, three use intensity data remain: mastery level, time on task, and 

average number of attempts per task, both for MML as for MSL. All of these variables are highly positively 

correlated: for mathematics e.g., the correlation between mastery level and time for the whole module is .49, the 

correlation between mastery level and number of attempts is .63, and between time and attempts .47. However, 

if we include all three predictor variables into one equation, the outcome becomes (for mathematics, estimated 

over all weeks): 

 

𝑀𝑎𝑡ℎ𝐸𝑥𝑎𝑚 = 0.671 ×𝑀𝑀𝐿𝑀𝑎𝑠𝑡𝑒𝑟𝑦 − 0.161 × 𝑀𝑀𝐿𝑇𝑖𝑚𝑒 − 0.317 ×𝑀𝑀𝐿𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 
 
𝑀𝑎𝑡ℎ𝑄𝑢𝑖𝑧 = 0.801 ×𝑀𝑀𝐿𝑀𝑎𝑠𝑡𝑒𝑟𝑦 − 0.149 × 𝑀𝑀𝐿𝑇𝑖𝑚𝑒 − 0.153 ×𝑀𝑀𝐿𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 

 

with values of R being .51 and .66, respectively. A remarkable and very consistent feature of all prediction 

equations using mastery, time, and attempts data is that the beta of mastery is always positive, and the beta of 

time on task and number of attempts are always negative, although all bivariate correlations between time on 
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task and performance measures are positive. There is, however, a simple explanation for this sign reversal: 

mastery time on task and attempt variables are strongly collinear. Practising longer in the two MyLab systems 

increases expected performance, since students who practise more, achieve higher mastery levels. Similarly: 

redoing a task for a second or third time will generally increase mastery level
i
. 

Now that the potential of building prediction models for performance based on data from the two 

MyLab systems has been established, the next step was to design these prediction models using incremental data 

sets of track data. Starting with the Week1 data set, we extend the data set in weekly steps, arriving after seven 

weeks at the final set of predictor variables, containing mastery, time on task and number of attempts system 

data of seven consecutive weeks for MML and MSL systems. Figure 4 describes the development of the 

multiple correlation coefficients R in time, that is, over subsequent weekly data sets.  

 Insert Figure 4 about here 

 

Since the predictor data sets are incremental, the values of multiple correlations increase over weeks. 

Those for performance in the mathematics exam, and the overall score, start at values around 0.4 in Week0, and 

increase to values between 0.5 and 0.6 in the last week. In other words, being pro-active in the e-tutorials seems 

to be a good candidate to be included in learning analytics modelling. 

 

4.6 Predicting Performance by Quiz data 

That the best predictor for performance, is performance itself, will not surprise many teachers and researchers. 

Although quizzes in our context are more of formative, than summative type (bringing only a bonus score, to a 

maximum amount of 20% of what one can score), they constitute the most reliable predictor of all six 

performance measures. Focusing on performance in the exam (since predicting quiz scores, or total scores, from 

the quizzes themselves brings about endogeneity issues), multiple correlation values develop from R=.64 to 

R=.73 for mathematics, and from R=.54 to R=.62 for statistics, over the three quizzes. Figure 5 demonstrates 

this development in predictive power, where as the starting point of the time trajectories, the EntryTests are 

used. In line with Wolff et al. (2013), quizzes seem to be a good indicator for learning in prediction modelling. 

  Insert Figure 5 about here 

 

4.7 Predicting Performance by all Weekly Data 
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The very last step in assessing the quality of prediction models entails the combination of different data sources 

in each of the longitudinal models. Figure 6 provides an insight in the development of predictive power in time, 

when combining all available data. 

 Insert Figure 6 about here 

 

As indicated before, the predictive power toward the Quiz performance components are an artefact of 

using predictor variables that more and more coincide with the predicted performance component. The main 

criterion is the prediction of both exam components of performance. In Week3, multiple correlations R for 

predicting MathExam and StatsExam are a substantial .72 and .62. Given the importance of Week3 data with 

regard to potential interventions for students at risk (ie., failing the course and/or dropping out),, Figure 7 

provides scatterplots of the prediction equations for the two exam performance components in the first row, and 

the two quiz performance components in the second row, with mathematics in the first panel, and statistics in 

the second. Scatterplots produced for later weeks demonstrate higher predictive power, but less time to 

intervene: with still five full weeks to catch up, Week3 feedback appears to be the best compromise between 

timely feedback and sufficient high predictive power (the ribbon pattern in the first two panel are a consequence 

of exam scores expressed as integer numbers). 
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Fig 7: Scatterplots of prediction equations for exam (first row) and quiz (second row) performance, for 

mathematics (left) and statistics (right) 

When we compare predictive power of all data combined, with that of prediction models based on a 

single data source, there is evidence of considerable overlap in the information content of various data sources. 

Especially MyLab track data, EntryTest data, Quiz data and prior education data share variation. From that 

perspective of providing unique information, the learning dispositions data set is most complementary. For 

example, in the Week0 data set, demographic variables predict MathExam with R=.43, StatsExam with R=.29. 

Adding learning dispositions to demographic variables increases R to .53 and .42, respectively, with entry 

testing and BB data having the limited effect of further increasing R to .59 and .45. 

Part of the complementary nature of disposition data is in the specific position it takes in predicting the 

passing rate. Of all performance variables, the passing rate is by far the most difficult to predict, since the 

required score to pass the test is about at the top of the score distribution. So relatively small differences in test 

scores make the difference between failing and passing, making it a more difficult phenomenon to predict than 

the final score itself. From that perspective, disposition data do a relatively good job in pass/fail predictions, 
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providing support to the notions by Buckingham Shum and Deakin Crick (2012) that learning analytics should 

combine LMS data with learner data.   

 

5. Discussion 

In this empirical study into predictive modelling of student performance, we investigated several different data 

sources to explore the potential of generating informative feedback for students and teachers using learning 

analytics: data from registration systems, entry test data,  students’ learning dispositions, BlackBoard tracking 

data, tracking data from two e-tutorial systems, and data from systems for formative, computer assisted 

assessments. In line with recommendations by Agudo-Peregrina et al. (2014), we collected both dynamic, 

longitudinal user data and semi-static data, such as prior education. It appears that the role of BlackBoard track 

data in predicting student performance is dominated by the predictive power of any of the other data 

components, implying that in applications with such rich data available, BlackBoard data have no added value 

in predicting performance and signalling underperforming students. This seems to confirm initial findings by 

Macfadyen and Dawson (2010), who found that simple clicking behaviour in a LMS is at best a poor proxy for 

actual user-behaviour of students. 

Data extracted from the testing mode of the MyLab systems, the quiz data, dominate in a similar 

respect all other data, including data generated by the practicing mode of MyLabs, indicating the predictive 

power of "true" assessment data (even if it comes from assessments that are more of formative, than summative 

type). However, assessment data is typically delayed data (Boud & Falchikov, 2006; Whitelock et al., 2014; 

Wolff et al., 2013), not available before midterm, or as in our case, the third week of the course. Up to the 

moment this richest data component becomes available, entry test data and the combination of mastery data and 

use intensity data generated by the e-tutorial systems are a second best alternative for true assessment data. This 

links well with Wolff et al. (2013), who found that performance on initial assessments during the first parts of 

online modules were substantial predictors for final exam performance. 

A similar conclusion can be made with regards to the learning disposition data: up to the moment that 

assessment data become available, they serve a unique role in predicting student performance and signalling 

underperformance beyond system track data of the e-tutorials. From the moment that computer assisted, 

formative assessment data become available, their predictive power is dominated by that of performance in 

those formative assessments. Dispositions data are not as easily collected as system tracking data from LMSs or 

e-tutorial systems (Buckingham Shum & Deakin Crick, 2012). The answer to the question if the effort to collect 
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dispositional data is worthwhile (or not), is therefore strongly dependent on when richer (assessment) data 

becomes available, and the need for timely signalling of underperformance. If timely feedback is required, the 

combination of data extracted from e-tutorials, both in practicing and test modes, and learning disposition data 

suggests being the best mix to serve learning analytics applications. In contrast to Agudo-Peregrina et al. (2014), 

who found no consistent patterns in two blended courses using learning analytics, we did find that our mix of 

various LMS data allowed us to accurately predict academic performance, both from a static and dynamic 

perspective. The inclusion of extensive usage of computer-assisted tests might explain part of this difference, as 

well as more fine-grained learning disposition data allowed us to model the learning patterns from the start of 

the module.  

Even in the case dispositions would more strongly overlap other predictor variables, like e.g. prior 

education, dispositions have a unique position with regard to the final aim of feedback. Feedback is informative 

if two conditions are satisfied: it is predictive, and allows for intervention. Feedback based on prior education 

may be strongly predictive, but is certainly incapable of designing interventions as to eliminate the foreseen 

cause of underperformance (Boud & Falchikov, 2006; Whitelock et al., 2014). Feedback related to learning 

dispositions, such as signalling suboptimal learning strategies, or inappropriate learning regulation, is generally 

open to interventions to improve the learning process (Lehmann et al., 2014; Pekrun et al., 2011). So, to the 

extent learning dispositions share predictive power with alternative aspects of learning, feedback in terms of 

these dispositions will generally be preferred over feedback framed in any of the other aspects of learning. 

These findings strongly support the integrative approach to learning analytics as advocated by 

Buckingham Shum and Deakin Crick (2012). As ‘[t]here is substantial and growing evidence within 

educational research that learners’ orientation towards learning -their learning dispositions- significantly 

influence the nature of their engagement with new learning opportunities…’ (Buckingham Shum & Deakin 

Crick, 2012; p. 2), the combination of ‘first generation’ technology-driven learning analytics with insights from 

educational research provides the step toward ‘second generation’ learning analytics. In other words, a 

development of learning analytics that empowers students to become independent professionals, who can shape 

their own learning. Future developments should further investigate how to best present feedback based on 

learning disposition data in combination with technology-generated data to students.  

A crucial limitation of our study is that we focussed our analyses based only on formal learning 

interactions, as measured by the three LMS data. Although we added self-reported data from a range of learning 

disposition instruments to get a more fine-grained, nuanced understanding of the data, several studies indicate 
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that students increasingly use informal networks (Agudo-Peregrina et al., 2014; Hommes et al., 2012) and 

learning tools (e.g., Facebook, twitter, texts) to share knowledge and learn together.  For example, Hommes et 

al. (2012) found that informal social learning links primarily predicted academic performance amongst 300 

medical students. Using dynamic social network analyses, Author B (2014) found that 30-80% of learning 

occurred outside formally assigned groups. Agudo-Peregrina et al. (2014) argue that learning analytics should 

take into consideration data from Personal Learning Environments (PLE), although several ethical issues 

(Author B, Submitted) need to be addressed in terms of informed consent if institutions are using PLE data, such 

as Facebook.  

 

6. Conclusion 

The generation of timely feedback based on early performance predictions and early signalling of 

underperformance are crucial objectives in many learning analytics applications. The added value of data 

sources for such applications will therefore depend on the predictive power of the data, the timely availability of 

the data, and the uniqueness of information in the data. In this study, we integrated data from many different 

sources and found evidence for strong predictive power of data from formative testing. However, not all 

modules will contain aspects of formative testing, and even if so, data from formative testing might not be 

timely enough. In that case, data from e-tutorial systems as the MyLabs, both in terms of mastery level and time 

on task and attempt data constitute a good second best information source, as will do entry test data or prior 

education data. Learning data from these various sources share a cognitive nature, and thus share important 

overlap in predictive power. Learner data in the form of learning dispositions have a unique role in such learning 

analytics applications since its contribution in performance prediction is indeed orthogonal to that of other data 

sources. In a rich data context as investigated here, the role of BB track data appeared to be minimal. 
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i
 In follow-up multiple regression modeling, time and number of attempts have a negative impact: for a given 

mastery level, students who need more time to reach that level, or students who need more trials to reach that 

level, have lower expected performance, which is quite intuitive. Amongst students with complete mastery 

(mastery level > 95%), the negative correction for time on task is stronger than for students with incomplete 

mastery. The opposite is true for the correction for number of attempts: amongst students with high mastery, the 

negative correction for redoing a task is less than for students with low mastery. Although these interaction 

effects appeared to be stable patterns for both topic areas, we choose not to include them in the development of 

longitudinal models: the impact of predictive power is small, and it introduces more collinearity, and less 

parsimony. 


