
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/84 9 4 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Dau m,  S t effen,  Ch ekh u n,  Vasiliy F., Todor, Igo r  N., Lukia nova, N a t alia  Yu, S hve t s,

Yulia  V., S ellner, Leopold,  P u tzker, Kers tin,  Lewis, Joe, Zenz, Tho rs t e n ,  d e  Gr a af, Ing e

A. M.,  Groo t h uis,  Geny M.  M., Casini, Angela  , Zozulia,  Oleksii, H a m p el, F r a nk  a n d

Mokhir, Andriy 2 0 1 5.  Imp rove d  syn t h esis  of N-b e nzyla minofe r roc e n e-b a s e d  p ro d r u g s

a n d  evalu a tion  of t h ei r  toxicity a n d  a n tileuk e mic  a c tivi ty. Jou r n al  of M e dicinal

Ch e mis t ry 5 8  (4) , p p .  2 0 1 5-2 0 2 4.  1 0.10 2 1/jm5 0 1 9 5 4 8  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 2 1/jm 50 1 9 5 4 8  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 1 

Improved Synthesis of N-Benzylaminoferrocene-

Based Prodrugs and Evaluation of Their Toxicity 

and Antileukemic Activity 

Steffen Daum,
†
 Vasiliy F. Chekhun, ‡ Igor N. Todor,

‡
 Natalia Yu. Lukianova,

 ‡
 Yulia V. Shvets,

‡
 

Leopold Sellner,
 §

 Kerstin Putzker,
│
 Joe Lewis,

│
 Thorsten Zenz,

 §
 Inge A. M. de Graaf,

 #
 Geny 

M.M. Groothuis,
 # 

Angela Casini,
 #
 Olexii Zozulia,

 †
 Frank Hampel,

 †
 Andriy Mokhir

†
* 

†
 Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-

Nürnberg, Organic Chemistry II, Henkestr. 42, 91054 Erlangen, Germany 

‡
 R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology of the 

National Academy of Sciences of Ukraine, Vasilkivska 45, 03022 Kyiv, Ukraine 

§
 Department of Translational Oncology, National Center for Tumor Diseases (NCT) and 

German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 460, 69120 

Heidelberg, Germany and Department of Medicine V, University Hospital Heidelberg, Im 

Neuenheimer Feld 410, 69120 Heidelberg, Germany 

#
 Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of 

Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands 



 2 

│
 Chemical Biology Core Facility, European Molecular Biology Laboratory Heidelberg, 

Meyerhofstraße 1, 69117 Heidelberg, Germany 

 

KEYWORDS Aminoferrocene, Prodrug, Leukemia, TP53, Reactive Oxygen Species. 

 

ABSTRACT. We have previously demonstrated that N-benzylaminoferrocene-based prodrugs 

are activated in the presence of the cancer-specific levels of reactive oxygen species (ROS) and 

are toxic towards several cancer cell lines and primary cells, but non-toxic to representative 

normal cells (Marzenell, P. et al, J. Med. Chem., 2013, 56(17), 6935; Hagen, H. et al, J. Med. 

Chem., 2012, 526(2), 924). Herein we report on a substantially improved method of synthesis of 

these compounds with a yield of up to 90 %. We demonstrate its applicability by preparing nine 

new aminoferrocenes and scaling up successfully the synthesis of the most active prodrug 4 (4-

(N-ferrocenyl-N-benzylaminocarbonyloxymethyl)-phenylboronic acid pinacol ester) up to 2 g, 

which was required for further in vivo experiments reported in this paper. Next, we studied the 

effects of aminoferrocenes on the viability of selected cancer cell lines (JVM-2, RAJI, BL-2 and 

HL-60) and primary chronic lymphoid leukemia (CLL) cells having different p53 status (wild 

type, mutated or completely absent). The obtained data were in agreement with the hypothesis 

that the toxicity of aminoferrocenes is not dependent upon p53 status. Subsequently the toxicity 

of prodrug 4 was investigated ex vivo using rat precision cut liver slices (PCLS). Interestingly, 

prodrug 4 was found to exhibit substantial toxicity (IC50= 3.8 + 1.3 µM) in freshly prepared 

PCLS, which initially contained a low amount of glutathione (GSH). In contrast, it was found to 

be non-toxic up to the highest tested concentration (10 µM) in PCLS pre-incubated for 24 h, that 
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contained a normal GSH amount. Since this low amount of GSH is likely to correlate with a high 

intracellular oxidation state, these data are in agreement with the reported mode of activation of 

aminoferrocenes. In addition, we demonstrated that intraperitoneal administration of a single 

dose of up to 6 mg/kg of prodrug 4 does not affect the weight and the survival of hybrid male 

mice BDF1 (DBA/2,♀ x C57Bl/6, ♂) for at least 21 days after injection. Finally, in a preliminary 

in vivo experiment prodrug 4 was shown to extend the survival of hybrid male mice BDF1 

carrying L1210 leukemia from 13.7 + 0.6 days to 17.5 + 0.7 days when injected daily for 6 times 

at a dose of 26 µg/kg (cumulative dose: 0.156 mg/kg) starting from the second day after injection 

of L1210 cells. We confirmed that the antitumor activity of prodrug 4 correlates with the 

increase of the oxidative stress in L1210 cells isolated from treated animals, which is reflected in 

the higher intracellular ROS concentration and damage of the cellular membrane. All together 

our data indicate that aminoferrocene-based prodrugs can potentially be applied for the treatment 

of cancers, which express mutated or no p53 and are often poorly responsive to the conventional 

chemotherapy. 

 

INTRODUCTION 

The intracellular milieu of cancer cells differs substantially from that of normal ones. This 

difference can be utilized to design cancer specific, ROS-sensitive prodrugs.
1
 In particular, the 

concentration of reactive oxygen species (ROS= 
1
O2, O2

-
, H2O2, HO•) is higher in the majority 

of cancer cells.
2
 It has been suggested that this biochemical alteration is required to support the 

cancerous phenotype. Therefore, designing prodrugs that need activation by ROS can lead to 

anti-cancer drugs that are active against a broad range of cancers.
3
 Known prodrugs activated at 

elevated ROS concentrations include the naturally occurring cyclic glycopeptide bleomycin,
4
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hydroxyferrocifen and its analogues,
5
 organochalcogene-based pro-catalysts,

6
 H2O2-responsive 

pro-alkylation agents,
7
 SN-38 (a camptothecin derivative)

8
 and aminoferrocene-based prodrugs.

9
 

In particular, bleomycin coordinates intracellular iron ions (present in excess in cancer cells) 

resulting in the formation of a potent catalyst for cleavage of genomic DNA.
4
 

Hydroxyferrocifens and organochalcogenes are oxidized to glutathione (GSH) scavengers and 

ROS-generating catalysts, respectively; thus, inducing cell death via oxidative stress.
5,6

 

Furthermore, pro-alkylating agents, such as SN-38 and aminoferrocenes are activated by the 

cleavage of a C-B bond in the presence of cancer-specific H2O2 concentrations.
8,9

 In the case of 

aminoferrocenes two toxic products are obtained, one of them being a ROS-generating catalyst 

and the other a GSH scavenger. These products act synergistically on each other leading to a 

strong elevation of ROS concentration in cancer cells causing their death. The dual mode of 

action of aminoferrocenes is unique.
9
 The only other drug reported up to date, acting by a related 

mechanism, is [(6
-arene)Ru(azpy)I]

+
.
10

 In particular, this compound first oxidizes GSH to 

GSSG. Then, the reduced complex is oxidized by O2 to give the initial complex and H2O2. 

However, in contrast to aminoferrocenes this compound is not a prodrug. Therefore, it can 

potentially affect also normal cells. Moreover, the oxidized product (GSSG) can be recovered by 

intracellular reductases thereby diminishing the effect of the drug. In contrast, products released 

from aminoferrocenes irreversibly modify glutathione by alkylating it.
9
  

In previous work we have demonstrated that selected aminoferrocenes are active against 

primary chronic lymphoid leukemia (CLL) cells,
9b

 However, in this preliminary study the 

genetic status of CLL cells was not determined. Nevertheless, it is well documented that CLL is 

a genetically heterogeneous disease and some CLL-types exhibit poor prognosis.
11

 For example, 

TP53-mutated CLL is poorly responsive to standard therapy. The TP53 gene encodes tumor 



 5 

suppressor p53, a protein participating in cell cycle regulation. Therefore, search for new drugs 

for the treatment of TP53-mutated CLL and other hematological cancers is warranted. Since the 

mode of action of aminoferrocenes relies on ROS-induced chemical activation that is not directly 

related to TP53,
9
 it is probable that these prodrugs will be active against both wild type and TP53 

mutated/negative hematological cancers. Herein, we discuss a new series of data proving this 

hypothesis using three B-cell derived cancer cell lines with different TP53-status and primary 

CLL cells with defined TP53 status. Moreover, we report on studies of toxicity and antitumor 

activity of a selected aminoferrocene (compound 4, Scheme 1) using rat precision cut liver slices 

(ex vivo), and BDF1 (DBA/2,♀ x C57Bl/6,♂) mice carrying TP53-mutated L1210 leukemia (in 

vivo). For these biological experiments a large amount of prodrug 4 (up to 2 g) was required, 

which was obtained using a substantially improved method of synthesis of N-benzylated 

aminoferrocenes. We also demonstrated the general applicability of this method by preparing 

nine new N-substituted aminoferrocenes.    

           

RESULTS AND DISCUSSION 

Synthesis of N-alkylated aminoferrocene-based prodrugs   

The previously reported procedure for preparation of compound 4 yielded under optimized 

conditions only ~5 % of the product.
9
 It consisted of reductive amination of commercially 

available aminoferrocene 1 in the presence of benzaldehyde and Na[B(CN)H3] with formation of 

N-benzylaminoferrocene 2,  followed by coupling of compound 2 to 4-

(hydroxymethyl)phenylboronic acid pinacol ester in toluene in the presence of triphosgene at 120 

°C for 24 h (steps a, b in Scheme 1). Since the intermediate product 2 is unstable in air, these two 
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Scheme 1. Outline of tested pathways for optimization of synthesis of N-alkylated 

aminoferrocene-based prodrugs  

 

a: RR’C=O, NaB(CN)H3; b: 4-hydroxymethylphenylboronic acid pinacol ester, 

Cl3COC(O)OCCl3, 120 °C;
9
 c: same as b; d: benzyl chloride, Cs2CO3, tert-butylamonium iodide 

(TBAI); e: 1,2-di-(chloromethyl)benzol, Cs2CO3, TBAI; f: compound 3, Cs2CO3, TBAI. 

 

steps were conducted in a one pot reaction. We observed that changes of conditions including (1) 

optimization of the reductive amination combined with isolation of compound 2, (2) replacement 

of triphosgene either for N,N’-carbonyldiimidazole (CDI) or CDI/CH3I mixture or 4-

nitrophenyloxycarbonylchloride and (3) increasing nucleophilicity of the hydroxyl group of 4-

hydroxymethylphenylboronic acid pinacol ester by its deprotonation on the presence of NaH led 

to further reduction of the yield of the desired product. Moreover, application of substituted 

benzaldehydes in this reaction sequence with an attempt to prepare analogues of compound 4 

was hampered by even lower yields. The latter effect was especially pronounced for 

pyridinecarboxaldehydes and 2- and 4-substituted benzaldehydes carrying either electron 

donating substituents like OMe, NMe2 or CH3 or thermally and hydrolytically unstable  
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substituents like OAc or NHAc. Therefore, an alternative approach for synthesis of compound 4 

was developed. In particular, we used compound 3 as a starting material. In contrast to 2, 

compound 3 is highly stable and can be obtained from commercially available starting materials 

in large quantities with 74 % yield.
9a

 We attempted alkylation of compound 3 (1) under 

optimized Mitsunobu conditions for carbamates,
12

 using benzyl alkohol, Bu3P and 1,1’-

(azidodicarbonyl)dipiperidine (ADDP); (2) in the presence of Cs2CO3 using BnCl/(NBu4)I 

mixture as an electrophile under conditions of Salvatore et al
13

; and (3) in the presence of NaH 

using either benzyl chloride or bromide as electrophiles as described elsewhere for other starting 

materials.
14

 Though the first approach delivered only traces of the product, the other two reaction 

conditions led to clean conversion of compound 3 into 4. Isolated yields of analytically pure 

compound 4 varied in the range between 71 and 92 %, which is substantially improved with 

respect to the previously reported synthetic protocol (5 %). We confirmed that this method is 

suitable for scaling up the synthesis of compound 4 up to 2 g. We also used this protocol to 

prepare nine new analogues of 4, including compounds, containing differently substituted 

phenylmethyl and pyridylmethyl moieties. In particular, in the series of compounds 4, 5, 6 

electron deficiency of the Ph-rest is modulated by substituents in the 3
rd

 position: H, F, OMe. In 

compound 7 the para-hydroxy group is protected as an acetic acid ester. In cells it is expected to 

be deprotected via hydrolysis forming the highly electron rich 4-hydroxyphenylmethyl-

containing aminoferrocene, which will be partially deprotonated at pH 7 with formation of the 

phenolate ion (pKa ~ 9-10). In contrast, 2- and 3-pyridyl-residues in compounds 8 and 9 are 

strongly electron deficient. At pH 7 they are expected to remain neutral (pKa~ 5-6). Compound 

10 is derived from 4 by substitution of a benzyl for a diphenylmethyl residue. It is obtained by 

alkylation of intermediate 3 with diphenylmethylchloride with the relatively low yield of 6 %. 
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The latter result reflects the low reactivity of the corresponding electrophile due to its steric 

bulkiness. Compound 10 is the first example of the aminoferrocene-based prodrug where the 

carbon atom connected to the nitrogen atom of the aminoferrocene core carries two substituents 

(phenyl residues in this case). Synthesis of such derivatives using the initially applied protocol 

was not possible since the reductive amination product formed from aminoferrocene 1 and 

ketones in step a is not reactive in the following step b (Scheme 1). Since all steps in the new 

protocol were conducted at 22 °C, thermally unstable or reactive substrates could be applied. For 

example, compound 11, which carries 2-chlormethyl residue could be prepared from equimolar 

mixture of compound 3 and 1,2-di(chlormethyl)benzene. The product was isolated with the yield 

of 34%. X-ray single crystal diffraction analysis allowed to determine the structure of compound 

11 (Figure 1), which is the first crystallographically characterized aminoferrocene-based  

 

Figure 1. Molecular structure of compound 11 as determined by X-ray crystallography.  

 

prodrug. These data confirm the atom connectivity suggested based on the synthesis, 
1
H NMR 

spectroscopy and mass spectrometry of 11. The geometry of a ferrocene unit in compound 11 is 

similar to that in other known alkyloxycarbonylaminoferrocenes.
15

 Atoms of a carbamate group 
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(C2, N1, C3, O1, O2) are located in a plane, which is inclined by 24° to the plane of the 

cyclopentadienyl ligand containing atoms C42, C41 and C45 (Figure 1). These data are 

indicative of only weak conjugation between the ferrocene unit and the carbamate fragment. The 

fully planar conformation is not realized due to the expected clash between the bulky substituents 

at N1 atom with the hydrogen atoms attached to C42 and C45 atoms. It is evident that a fragment 

–H2C1-Cl1 is not hindered by other atoms in structure 11 (Figure 1). Therefore, we expected that 

it is accessible to nucleophilic reagents. In agreement with this expectation, we observed that 11 

reacts with excess 3 with formation of doubly substituted product 12. We are currently exploring 

11 for conjugation of the aminoferrocene core to other nucleophilic modifiers, e.g. those, which 

can either target these prodrugs to specific compartments in cells (e.g. nuclei or mitochondria) or 

direct them to cancer cells. Analogously to mono-aminoferrocene-based compound 3, 1,1’-bis-

aminoferrocene-based compound 13 can be efficiently alkylated at the optimized conditions 

producing doubly N-benzylated product 14 with the yield of 55 % (Scheme 2). In this case the 

yield is slightly lower than that observed in the alkylation of compound 3 – 71-92 %.  

Thus, the synthetic method described above expands our possibilities in the modification of the 

N-substituent in aminoferrocenes at the sites indicated with red arrows in Scheme 1, whereas the 

previously used protocol allowed only modifications at the sites indicated with blow arrows and 

was restricted to thermally stable substrates. Moreover, it allows scaling-up the synthesis of N-

substituted aminoferrocenes that enables their thorough structural, spectroscopic and biological 

studies. 
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Scheme 2. Synthesis of doubly-modified aminoferrocenes using the developed improved 

synthetic protocol and structures of controls.  

 

a: BnCl, Cs2CO3, TBAI. 

 

Effects of prepared prodrugs on the viability of B-cell-derived cancer cell lines having 

different TP53-status 

To explore the role of p53 in the mode of action of aminoferrocene-based prodrugs we studied 

their effects on the viability of three selected B-cell derived cancer cell lines with different TP53 

status. The human mantle cell lymphoma (MCL) was represented by the JVM-2 cell line. MCL 

accounts for ~7 % of all lymphoid malignancies and has relatively poor prognosis due to almost 

invariable relapse occurring after initial chemotherapy.
16

 The JVM-2 cell line contains wild type 

(wt) p53 and an additional t(11;14) translocation. The human Burkitt lymphoma was represented 

in our panel by RAJI and BL-2 cell lines. Notably, mutated p53 is expressed in RAJI, whereas wt 

p53  in BL-2 cells. Moreover, in RAJI a translocation t(8,14) as well as Epstein-Barr-Virus 

(EBV+) are detected, whereas in BL-2 a translocation t(8,22) is present. The latter cell line is 

EBV negative.
17

 The promyelocytic human leukemia cell line HL-60, which expresses no 
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detectable p53 protein and p53 mRNA and whose TP53 gene underwent major deletions,
18

 was 

also included for comparison (Table 1). 

First, we determined the relative amounts of intracellular reactive oxygen species in JVM-2, 

RAJI and BL-2 by using 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA)-based assay as 

described earlier.
9
 In particular, we observed that the relative mean fluorescence (F) of JVM-2 

(F= 0.71 + 0.01) or BL-2 cells (F= 0.77 + 0.03) measured after their incubation with DCFH-DA 

for 30 min was comparable to that of HL-60 cells (F=1.0). In contrast, in these conditions the 

relative mean fluorescence of RAJI cells was ~3 fold higher than that of HL-60 cells. These data 

indicate that ROS amounts in JVM-2 and BL-2 cells are similar to that in HL-60 cells, whereas 

in RAJI cells it is higher than that in HL-60 cells. Since the prodrugs are efficiently activated in 

HL-60 cells due to their reaction with ROS,
9
 these data indicate that an analogous activation 

should  also be possible in JVM-2, BL-2 and RAJI cells provided that the prodrugs are taken up 

into the cells.  

The physiological concentration of boron-containing compounds in cells is negligible. Since 

each molecule of the prodrug contains one boron atom, we could investigate the membrane 

permeability of these compounds by monitoring the boron content in the cells.
9
 Intracellular 

boron was determined for all four studied cell lines by the curcumin assay in combination with 

UV-visible spectrophotometry for the representative compound 4. In this assay the uptake 

correlates with the baseline corrected absorbance at 550 nm (A(550 nm) − A(780 nm)) 

characteristic for the curcumin-boron complex. In particular, untreated cells give rise to A(550 

nm) − A(780 nm) in the range of 0.34-0.38, whereas cells incubated with compound 4 give rise 

to A(550 nm) − A(780 nm) between 1.30 and 2.36. When the uptake of compound 4 in HL-60 

cells is taken as a reference (1.0), the permeability in RAJI cell line  
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Table 1. Effects of the aminoferrocene-based prodrugs on the viability of the selected cell lines 

(IC50 values) with different p53-status after 48 h incubation.
i 

Drug
ii
 IC50 (µM) 

HL-60 

no p53 

RAJI 

mut p53 

BL-2 

wt p53 

JVM-2 

wt p53 

3 >50 >50 >50 ~50 

4 11 + 1 35 + 6 25 + 1 29 + 6 

5 9 + 7 36 + 5 23 + 5 30 + 4 

6 17 + 4 36 + 2 23 + 7 30 + 4 

7 16 + 1 37 + 3 26 + 0 37 + 5 

8 ND >50 19 + 3 41 + 7 

9 ND >50 21 + 6 45 + 5 

10 15 + 2 21 + 4 16 + 1 24 + 6 

11 6 + 0 7 + 1 3.8 + 0.4 8 + 0 

12 ~50 >50 >50 >50 

13 8 + 8 ND ND ND 

14 10 + 0 >50 29 + 19 >50 

15 >50 >50 >50 >50 

16 >50 >50 >50 >50 

17 3 + 1 3 + 1 3 + 1 3 + 1 

i
 no p53 – wt p53 is not expressed; mut p53 – mutated p53; wt p53 – active (wild type) p53 is 

expressed. Data are given as mean of at least three independent experiments + SD. ND – not 

determined. 

ii
 Structure of prodrugs and their labeling scheme are given in Schemes 1 and 2.  
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can be determined to be equal to 1.8 + 0.5, that in JVM-2 cell line to be 1.5 + 0.1 and that in BL-

2 cell line 1.4 + 0.1. These data indicate that, within the experimental error, compound 4 

permeates equally well through the membranes of all studied cell lines.       

Furthermore, we studied the viability of three selected B-cell derived cancer cell lines and of HL-

60 cell line in the presence of known (3, 4, 13) and newly prepared aminoferrocene-based 

prodrugs by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay (Table 1). Among the new aminoferrocenes reported in this paper, only compound 11, 

which contains a 2-CH2Cl residue in the N-benzyl substituent, turned out to be substantially 

more toxic towards all cell lines tested than the parent compound 4 (p< 0.01). We can speculate 

that in this case the stronger cytotoxic effect could be caused by alkylation of endogenous 

nucleophilic moieties, e.g. thiol groups of GSH or proteins, by the 2-CH2Cl residue. At this point 

other possible mechanisms, e.g. enhanced uptake of this compound, cannot be excluded. Since 

the experiments with the CLL cells (as described below) were performed with medium 

containing human serum (HS), whereas the cell lines were incubated in medium with fetal calf 

serum (FCS), we investigated whether the replacement of FCS by HS in experiments with HL-60 

cells affects the toxicity of compound 11 as well as that of reference compound 4. We observed 

that while the effect of compound 4 was not dependent on the type of the serum used, the 

toxicity of 11 was fully inhibited in the HS-containing medium even at the highest concentration 

of the drug used (50 µM). Furthermore, in experiments with CLL cells compound 11 exhibited 

no toxicity at concentrations of up to 10 µM (data not shown). These data indicate that HS is able 

to scavenge in some way compound 11. Since the only structural difference between compounds 

4 and 11 is the presence of a strongly electrophilic CH2Cl group in the latter case, we can suggest 

that the scavenging occurs due to alkylation of nucleophilic centers of HS by compound 11. 
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Independent of the mechanism of the latter process, it may preclude the possible anticancer 

activity of compound 11 in vivo. Therefore, this prodrug was not selected for further biological 

tests.  

It is worth noting that neither the substitution of 3- and 4-H-atoms in the phenyl residue for 

either electron donating or accepting moieties (compounds 5, 6, 7) nor the replacement of the 

phenyl rest with 2- and 3-pyridyl moieties (compounds 8, 9) affected the activity of 

aminoferrocenes substantially. Furthermore, substitution of the N-benzyl residue for N-

diphenylmethyl (compound 10) only slightly enhanced the activity towards the cancer cell lines 

RAJI (IC50= 21 + 4 µM for 10 versus 35 + 6 µM for 4, p<0.05) and BL-2 (IC50= 16 + 1 µM for 

10 versus 25 + 1 µM for 4, p<0.01), whereas its effect on two other cell lines (HL-60 and JVM-

2) was found to be negligible (Table 1). Unfortunately, the N-benzylation of the carbamate group 

of a 1,1’-bis-aminoferrocene-derived prodrug did not exhibit the analogous favorable effect as 

the same derivatization of the mono-aminoferrocenes (compare 13, 14 and 3, 4, Table 1).  

We observed that the resistance of wt p53-expressing BL-2 and JVM-2 cell lines as well as mut 

p53-expressing RAJI cell line towards aminoferrocenes is similar for the majority of the 

prodrugs studied here, except that in a few cases (compounds 7, 8 and 9) the BL-2 cell line was 

found to be slightly more sensitive than RAJI and JVM-2 cell lines (Table 1). Overall, these data 

support the hypothesis that the anticancer activity of aminoferrocene-based prodrugs does not 

require p53 activity.  

Effect of aminoferrocenes on the viability of wild type and TP53-mutated/deleted chronic 

lymphocytic leukemia cells  

Subsequently, we investigated the effects of two representative aminoferrocene-based prodrugs 

3 and 4 on the viability of CLL cells isolated from 25 patients. In this group 8 patients had p53-
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mutated CLL cells and 17 patients had wild type p53 CLL cells.  The effect of compounds 3 and 

4, as well as of fludarabine on the viability of CLL cells was determined by using ATPlite™ 

Luminescence Assay System (PerkinElmer, Waltham, USA). Fludarabine is a purine analogue, 

which is currently used as a standard treatment of the CLL disease. The mode of action of this 

drug depends upon p53,
19

 making it more active against wt p53 cancer types. Therefore, 

treatment of CLL patients with fludarabine can cause a selective survival of p53-mutant CLL 

cells, which are more resistant and, therefore, less responsive to the therapy. We observed that 

after treatment of p53-mutated CLL cells (8 patients) with fludarabine (10 µM) for 48 h 48.7 + 

16.1 % viable cells remained in the suspension, whereas the same treatment of wild type p53 

CLL reduced the number of viable cells to 34.7 + 18.1 % (17 patients, Figure 2).  

 

Figure 2. Mutated p53 CLL cells (mut TP53, 8 patients) or wild type CLL cells (wt TP53, 17 

patients) were treated with prodrugs 3, 4 or fludarabine (each 10 µM) for 48 h and the % of 

viable cells in suspension was determined as described in the experimental section and plotted as 

the relative number of viable cells (the total number of control untreated cells was taken as 100 

%).   
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The response of the cells of the selected, small group of patients to fludarabine was strongly 

heterogeneous, which is reflected in large standard deviations of the number of viable cells in 

populations of treated CLL cells – 16.1 % for p53-mutated CLL and 18.1 % for wild type p53 

CLL. Therefore, the difference in activities of this drug towards mut p53 CLL and wt CLL cells 

observed is not significant within the observed experimental error (Student’s t-test).   

Aminoferrocenes 3 and 4 exhibited in general a higher toxicity towards CLL cells than 

fludarabine (p<0.001): 9.1-12.5 % viable cells left after their treatment with these prodrugs (10 

µM) for 48 h (compare with 39.2 % obtained after the treatment of CLL cells with fludarabine). 

Their toxicity turned out to be practically independent of the status of p53 in CLL cells (Figure 

2). These data are in agreement with our results obtained for B-cell-derived cell lines (see above) 

and support the hypothesis that the mode of action of aminoferrocenes is not dependent upon 

p53. This advantageous property can make these prodrugs potentially suitable for the treatment 

of p53-mutated CLL and other hematological cancers. 

 

Ex vivo and in vivo toxicity of aminoferrocene 4 

Based on the preliminary studies obtained so far, we selected compound 4 for further 

evaluation of its toxicity ex vivo and in vivo. We have previously shown that this prodrug is not 

toxic towards normal (non-cancer) cells including fibroblasts (< 100 µM) and primary 

mononuclear cells (MNC’s, < 10 µM).
9
 In order to validate these in vitro data in a more complex 

experimental model, we first investigated the toxicity of compound 4 ex vivo using rat precision-

cut liver slices (PCLS) according to established procedures.
20

 PCLS are viable explants of tissue 

with a reproducible and well-defined thickness, containing cells in their natural environment. 

Notably, this technique is an FDA-approved model for drug toxicity and metabolism studies, and 
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it has been applied already for the assessment of toxicity of cisplatin
21

 and experimental gold-

based compounds.
22

 In this assay liver cells remain in their natural environment and therefore, 

the obtained toxicity results are expected to be more relevant than those obtained earlier in 

experiments with cell cultures.  

Thus, rat liver slices were cut and pre-incubated either for 1 h or 24 h before exposure to the 

prodrug as detailed in the experimental section, to allow the cells to recover from the cold 

ischemia and the slicing procedure. After pre-incubation, slices were incubated in fresh WEGG 

medium containing 2.5 µM, 5 µM or 10 µM of compound 4 for a period of 24 h. Afterwards 

they were collected and the viability of the tissues was determined measuring the ATP content. 

The choice of the pre-incubation time appeared to be  crucial: A marked decrease in the viability 

of 1 h pre-incubated slices was already found at a concentration of 5 µM prodrug (Figure 3). In 

contrast, slices pre-incubated for 24 h remained practically fully viable (83 %) even at the 

highest tested concentration (10 µM, Figure 3).  Since aminoferrocenes are activated and as such 

expected to be more toxic under oxidative conditions
9
, we may speculate that after 1 hour pre-

incubation the slices are subject to oxidative stress due to the organ excision and slicing 

procedure increasing their sensitivity to compound 4. Indeed, others have reported that shortly 

after slice preparation the GSH concentration in the slices is low.
23

 In contrast, after 24 h pre-

incubation slices reach a more physiological equilibrium, which is reflected in normal 

intracellular GSH concentration.
23

 Preliminary experiments exploring the toxicity of cisplatin in 

liver slices have shown that no effect of pre-incubation exists for this compound (data not 

shown). This indicates that the effect of pre-incubation is probably related to the specific toxic 

mechanism of aminoferrocenes. Taken together these data confirm that in normal (non-

malignant) cells, which are characterized by low ROS concentration, aminoferrocenes remain 
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inactive.
9
 Furthermore, experiments were carried out with ferrocene 15 as a negative control and 

17 as a positive control (Scheme 2). Both compounds were added to slices pre-incubated for 24 

h, and incubation was continued for additional 24 h. As expected, ferrocene 15 showed no 

reduction in viability even at 40 µM, whereas compound 17 showed a high toxicity with an IC50 

of ca. 1 µM. 

Based on the promising in vitro
9
 and ex vivo data on the toxicity of prodrug 4, we decided to 

further study its effects on healthy hybrid male mice BDF1 (DBA/2,♀ x C57Bl/6, ♂) at variable  

 

Figure 3. Viability of precision cut liver slices (PCLS) after 24 h of incubation with the 

aminoferrocene-based prodrug 4 and positive control 17 following 1 h (1 h pre) or 24 h of pre-

incubation (24 h pre). 

doses between 10 and 6000 µg/kg as described in the experimental section. Each dose was 

introduced via an intraperitoneal injection. One group contained 6 animals, which were 

monitored for 21 days after the drug injection. Every third day animals were weighted. All 

animals survived this treatment. Their weight increased by 1.8-2.5 g during the time of the 

experiment. The same weight increase was observed in the control group, which received no 
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treatment. These data suggest that prodrug 4 exhibits no fulminant toxicity in vivo at 

concentrations of up to 6 mg/kg, although more subtle effects cannot be excluded.     

 

Antitumor activity of prodrug 4 in vivo  

Finally, antitumor activity of 4 was evaluated on hybrid male mice BDF1 (DBA/2,♀ x 

C57Bl/6, ♂), which carry L1210 leukemia, expressing mutant p53.
17

 In an exploratory 

experiment the treatment of mice (15 animals per group) was started on the second day after 

injection of L1210 cells. It included six daily intraperitoneal injections of compound 4 at a dose 

of 26 µg/kg in PBS solution (0.5 mL) containing 0.2 % (v/v) DMSO (total dose: 0.156 mg/kg). 

The control groups received the same volume of PBS solution. We observed that survival of the 

mice was extended from 13.7 + 0.6 days in the control group to 17.5 + 0.7 days in the treated 

group (p<0.05). This corresponds to 28 % lifetime extension that according to Sofina et al
24

 

indicates a significant antitumor effect thereby justifying further investigations of prodrug 4. It 

has been previously reported that 7 days after intraperitoneal injection of L1210 in BDF1 mice 

(DBA/2,♀ x C57Bl/6, ♂) ascites fluid of the animals contains over 93 % of L1210 cells with 

respect to the total cell number.
25

 In order to evaluate the drug-induced oxidative stress, we took 

probes of ascites fluid of treated and control groups and analyzed mitochondria integrity (JC-1 

assay) and the intracellular ROS amount (CM-H2DCF DA assay) in the L1210 cells that were 

present in this sample. In particular, the fluorescence of L1210 cells isolated from the drug-

treated animals and incubated with the JC-1 probe was found to be 97.0 + 4.3 arbitrary units 

(a.u.), whereas the control probe (cells isolated from untreated animals) exhibited significantly 

(p<0.05) lower fluorescence of 48.2 + 3.1 a.u. These data indicate the disturbance of the function 

of mitochondria in the cancer cells in the treated animals. Furthermore, we observed that L1210 
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cells from the treated animals, which were incubated with CM-H2DCF DA dye (230.0 + 18.5 

a.u.), were more fluorescent than those from the control group (163.3 + 20 a.u., p< 0.05). These 

data indicate that the treatment with compound 4 enhances the oxidative stress in cancer cells in 

vivo.         

 

CONCLUSIONS 

We developed a substantially improved method for synthesis of N-substituted aminoferrocene-

based prodrugs, which leads to yields of 72-91 %. In contrast, by using the previous method 

these compounds could be obtained with yields of under 5 %.
9
 In the key step, easily accessible 

starting material 4-(ferrocenylaminocarbonyloxymethyl)-phenylboronic acid pinacol ester was 

alkylated by variable benzyl chlorides or bromides at 22 °C, whereas in the previously used 

protocol prolonged heating at 120 °C was required.
9
 Therefore, heat sensitive building blocks 

could be introduced by the new approach, including for example an N-(4-

acetyloxyphenyl)methyl substituent. Overall, nine new N-substituted prodrugs were prepared by 

this protocol, which were obtained in high purity and amount and required limited purification. 

Thus, we were able to characterize the biological effects of the new series of compounds in vitro, 

ex vivo and in vivo. First, we observed that the prodrugs exhibit similar toxicity towards B-cell 

derived hematological cancer cell lines (JVM-2, RAJI and BL-2) having different p53 status. 

Subsequently, we confirmed that the toxicity of aminoferrocenes is practically independent from 

the p53 status in primary CLL cells. In preparation to the in vivo studies of the antitumor activity 

of the prodrugs, we confirmed that compound 4 exhibits practically no toxicity up to 10 µM in 

precision cut liver slices pre-incubated for 24 h up (ex vivo), and up to 6 mg/kg in hybrid male 

mice BDF1 (DBA/2,♀ x C57Bl/6, ♂) (in vivo). Finally, the antitumor activity of the most active 
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prodrug 4 was studied in hybrid male mice BDF1 (DBA/2,♀ x C57Bl/6, ♂), which carry L1210 

leukemia. We observed that compound 4 administered in 6 daily doses of 26 µg/kg extends the 

survival of the mice from 13.7 + 0.6 days to 17.5 + 0.7 days. The prolonged survival was 

accompanied by increased oxidative stress of and membrane damage in L1210 cells isolated 

from the ascites fluid of treated animals. It is worth mentioning that the dose used in the in vivo 

antitumor experiment is much lower than the maximum texted dose of the in vivo toxicity 

studies, where no weight loss of the animals has been observed. Although further studies are 

necessary to validate the mechanisms of action of this new class of compounds, as well as more 

advanced toxicity studies, our findings indicate that these aminoferrocene prodrugs can 

potentially be applied for the treatment of cancers, which express mutated or no p53 and are 

often poorly responsive to the conventional chemotherapy. 

 

EXPERIMENTAL SECTION 

General Information 

Commercially available chemicals of the best quality from Aldrich/Sigma/Fluka (Germany) were 

obtained and used without purification. Starting materials 1-3 (Scheme 1), 13 (Scheme 2) and 

control compounds 16 and 17 (Scheme 2) were prepared as described previously.
9
 NMR spectra 

were acquired on a Bruker Avance 400 or Bruker Avance III 600 spectrometer. ESI mass spectra 

were recorded on a Bruker ESI MicroTOF II. C, H, and N analysis was performed in the 

microanalytical laboratory of the chemical institute of the Fiedrich-Alexander-University of 

Erlangen-Nürnberg. UV-vis spectra were measured on a Lambda Bio+ UV/Vis 

spectrophotometer (Perkin Elmer) by using quartz glass cuvettes (Hellma GmbH, Germany) with 

a sample volume of 1 mL or micro-cuvettes with a sample volume of 100 µL (BRAND GmbH, 



 22 

Germany). The fluorescence of live cells was quantified using a Guava easyCyte
TM

 6-2L Flow 

cytometer from Merck Millipore. The data were processed using the inCyte
TM

 software package 

from Merck Millipore and the ModFIT LT
TM

 software from Verity Software House.  The purity 

of the prodrugs used in the biological tests was determined by C, H, and N analysis. According 

to these data, the purity of the prodrugs and controls was greater than 95%. Crystal structure data 

for prodrug 11 (Figure 1) were submitted to the Cambridge Structural Database (CSD). This 

structure was assigned the deposition number CCDC 1011896. 

 

Synthesis 

Compound 4, protocol 1. Compound 3 (0.5 g, 1.08 mmol) was dissolved in anhydrous DMF (20 

mL) under nitrogen atmosphere. Then Cs2CO3 (1.06 g, 3.25 mmol) and tetra-butylammonium 

iodide (TBAI, 1.20 g, 3.25 mmol) were added to the solution. After stirring for 30 minutes at 22 

°C, benzyl chloride (412 mg, 374 µL, 3.25 mmol) was added. The mixture was stirred for 18 h at 

22 °C. Then, the solvent was removed in vacuum (0.01 mbar) and the product was purified by 

column chromatography on silica gel using petroleum ether/acetone (10/1, v/v) as eluent yielding 

an orange oil. Triturating of this material with hexane gave the product as an orange solid. Yield: 

427 mg, 0.77 mmol (71%). TLC (SiO2, eluent petroleum ether/acetone, 4:1, v/v) Rf = 0.5; 
1
H-

NMR (aceton-d6, 300 MHz) δ (ppm) 7.73 (d, 2 H), 7.39-7.27 (m, 7 H), 5.25 (s, 2 H), 5.02 (s, 2 

H), 4.46 (s,2 H), 4.12 (s, 5 H), 3.97 (s, 2 H), 1.34 (s, 12 H). The spectra are in agreement with 

those reported for this compound.
9 

Compound 4, protocol 2. Compound 3 (50.0 mg, 108 µmol) was dissolved in anhydrous DMF (2 

mL) under a nitrogen atmosphere. The solution was treated with NaH (5.20 mg, 130 µmol, 60 % 

mineral oil suspended) and stirred 30 min at 22 °C. Benzyl bromide (27.8 mg, 19.3 µL 163 
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µmol) was added and the reaction was stirred for 2 h at 22 °C. Then, the solvent was removed in 

vacuum (0.01 mbar) and the product was purified by column chromatography on silica gel using 

petroleum ether/acetone (4/1, v/v) as eluent. Yield: 55 mg, 100 µmol (92%).  

Compound 5 was prepared analogously to compound 4 using protocol 1.  The product was 

obtained as orange solid. Yield: 253 mg, 444 µmol (68%). TLC (SiO2, eluent petroleum 

ether/acetone, 4/1, v/v) Rf = 0.5; 
1
H-NMR (300 MHz, aceton-d6): δ (ppm) 7.75 (d, 2H), 7.41 (m, 

3H), 7.19-7.03 (m, 3H), 5.27 (s, 2H), 5.05 (s, 2H), 4.47 (s, 2H), 4.15 (s, 5H), 4.00 (s, 2H), 1.35 

(s, 12H); 
13

C-NMR (101 MHz, aceton-d6): δ (ppm) 164.65, 162.23, 142.57, 140.30, 135.11, 

130.78, 127.47, 122.65, 114.02, 113.81, 113.65, 113.43, 84.08, 69.28, 67.49, 64.68, 62.81, 62.75, 

24.71; HR-MS (ESI +), m/z: calculated for C31H33BFFeNO4 [M-e
-
]

+
 569.1836, found 569.1826; 

C, H, N analysis: calculated for C31H33BFFeNO4 (%) – C 65.41, H 5.84, N 2.46; found – C 

65.39, H 5.96, N 2.56. 

Compound 6 was prepared analogously to compound 4 using protocol 1.  The product was 

obtained as orange oil. Yield: 274 mg, 471 µmol (73%). TLC (SiO2, eluent petroleum 

ether/acetone, 4/1, v/v) Rf = 0.51; 
1
H-NMR (400 MHz, aceton-d6): δ (ppm) 7.75 (d, 2H), 7.4-

7.27 (m, 3H), 6.92-6.84 (m, 3H), 5.27 (s, 2H), 5.00 (s, 2H), 4.47 (s, 2H), 4.14 (s, 5H), 3.99 (s, 

2H), 1.35 (s, 12H); 
13

C-NMR (101 MHz, aceton-d6): δ (ppm) 160.49, 155.01, 141.03, 140.41, 

135.14, 129.92, 127.50, 118.84, 112.55, 112.46, 101.79, 84.09, 69.28, 68.86, 67.37, 64.59, 62.82, 

54.98, 53.71, 24.76; HR-MS (ESI+), m/z: calculated for C32H36BFeNO5 [M-e
-
]

+
 518.2036, found 

581.2030; C, H, N analysis: calculated for C32H36BFeNO5 (%) – C 66.12, H 6.24, N 2.41; found 

– C 65.69, H 6.25, N 2.43. 
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Compound 7 was prepared analogously to compound 4 using protocol 1.  The product was 

obtained as orange oil. Yield: 36 mg, 59 µmol (9%). TLC (SiO2, eluent petroleum ether/acetone, 

6/1, v/v)  Rf = 0.29; 
1
H-NMR (300 MHz, aceton-d6): δ (ppm) 7.77 (d, 2 H), 7.37 (m, 4 H), 7.12 

(d, 2 H), 5.27 (s, 2 H),  5.02 (s, 2 H),  4.48 (s, 2 H), 4.14 (s, 5 H),  3.99 (s, 2 H),  2.27 (s, 3 H),  

1.35 (s, 5 H); 
13

C-NMR (75 MHz, aceton-d6): δ (ppm) 168.30, 156.22, 149.51, 139.47, 135.85, 

134.27, 126.99, 126.76, 121.47, 121.19, 83.20, 69.31, 68.71, 68.44, 68.35, 68.06, 63.73, 23.84, 

19.62; HR-MS (ESI+), m/z: calculated for C33H36BFeNO6 [M-e
-
]

+
 609.1986, found 609.1984; C, 

H, N analysis: calculated for C33H36BFeNO6 (%) – C 65.05, H 5.96, N 2.30; found – C 63.31, H 

6.04, N 2.26. 

Compound 8 was prepared analogously to compound 4 using protocol 1. TLC (SiO2, eluent 

petroleum ether/acetone, 4/1, v/v) Rf = 0.36; 
1
H-NMR (300 MHz, aceton-d6): δ (ppm) 8.57 (d, 

2H), 7.78-7.70 (m, 3 H), 7.3-7.27 (m, 4 H), 5.22 (s, 2 H), 5.07 (s, 2 H), 4.48 (s, 2 H), 4.11 (s, 5 

H), 3.98 (s, 2 H), 1.33 (s, 12 H); HR-MS (ESI+), m/z: calculated for C30H33BFeN2O4 552.1883, 

found 552.1891. 

Compound 9 was prepared analogously to compound 4 using protocol 1. .  The product was 

obtained as orange oil. Yield: 84 mg, 152 µmol (23%). TLC (SiO2, eluent petroleum 

ether/acetone, 4/1, v/v) Rf = 0.35; 
1
H-NMR (300 MHz, aceton-d6): δ (ppm) 8.60 (d, 2H), 8.48 

(dd, 2H) 7.75-7.68 (m, 3 H), 7.38-7.32 (m, 3 H), 5.25 (s, 2 H), 5.05 (s, 2 H), 4.46 (s, 2 H), 4.12 

(s, 5 H), 4.00 (s, 2 H), 1.33 (s, 12 H); 
13

C-NMR (75 MHz, aceton-d6): δ (ppm) 155.28, 149.36, 

149.26, 140.72, 135.61, 135.23, 134.85, 128.00 (two overlapping peaks), 124.20, 102.15, 84.57, 

69.77, 68.03, 65.23, 63.25, 52.07, 25.20; HR-MS (ESI+), m/z: calculated for C30H33BFeN2O4 

[M-e
-
]

+ 
552.18827, found 552.18783; C, H, N analysis: calculated for C30H33BFeN2O4 (%) – C 

65.25, H 6.02, N 5.07; found – C 65.28, H 5.97, N 5.08. 
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Compound 10. Compound 3 (1.0 g, 2.17 mmol) was dissolved in anhydrous DMF (12 mL) under 

a nitrogen atmosphere. Then Cs2CO3 (4.24 g, 13.01 mmol) and TBAI (4.79, 13.01 mmol) were 

added to the solution. After stirring for 30 minutes at ambient temperature, diphenylmethyl 

chloride (2.31 mL, 2.64 g, 13.01 mmol) was added. The mixture was stirred for 7 days at 22 °C. 

Then, the solvent was removed in vacuum (0.01 mbar) and the product was purified by column 

chromatography on silica gel using DCM - DCM/ethylacetate (4/1, v/v) followed by a second 

column using petroleum ether/acetone (6/1, v/v). The product was isolated as orange solid. 

Yield: 78 mg, 124 µmol (6%). TLC (SiO2, eluent petroleum ether/acetone, 4/1, v/v) Rf = 0.5; 
1
H-

NMR (400 MHz, aceton-d6): δ (ppm) 7.70 (d, 2 H), 7.39- 7.30 (m, 2 H), 7.23 (d, 2 H), 6.76 (s, 1 

H), 5.11 (s, 2 H), 4.33 (s, 2 H), 4.10 (s, 5 H), 3.99 (s, 2 H), 1.35 (s, 12 H); 
13

C-NMR (101 MHz, 

aceton-d6): δ (ppm) 154.87, 140.64, 140.24, 135.03, 128.95, 128.46, 127.48, 127.44, 126.87, 

102.65, 84.08, 69.46, 69.35, 67.22, 64.73, 64.56, 24.77; HR-MS (ESI+), m/z: calculated for 

C37H38BFeNO4 [M-e
-
]

+
 627.22448, found 627.22496; C, H, N analysis: calculated for 

C37H38BFeNO4 (%) – C 70.84, H 6.11, N 2.23; found – C 70.41, H 6.04, N 2.07. 

Compound 11. Compound 3 (500 mg, 1.08 mmol) was dissolved in anhydrous DMF (25 mL) 

under a nitrogen atmosphere. Then Cs2CO3 (4.24 g, 13.01 mmol) and TBAI (4.79, 13.01 mmol) 

were added to the solution. After stirring for 30 minutes at 22 °C, 1,2-bis(chloromethyl)benzene 

(569 mg, 3.25 mmol) was added. The mixture was stirred for 18 hours at 22 °C. Then, the 

solvent was removed in vacuum (0.01 mbar) and the product was purified by column 

chromatography on silica gel using petroleum ether/acetone (6/1, v/v) as eluent. Further 

purification of the crude orange solid was carried out by recrystallization from aceton. Yield: 222 

mg, 370 µmol (34%). TLC (SiO2, eluent petroleum ether/acetone, 6/1, v/v) Rf = 0.34; 
1
H-NMR 

(400 MHz, aceton-d6): δ (ppm) 7.72 (d, 2 H), 7.50 (d, 1 H), 7.35 (m, 4 H), 7.20 (d, 1 H), 5.28 (s, 
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2 H), 5.25 (s, 2 H), 4.91 (s, 2 H), 4.47 (s, 2 H), 4.19 (s, 5 H), 4.01 (s, 2 H), 1.35 (s, 12 H); 
13

C-

NMR (101 MHz, CDCl3): δ (ppm) 154.24, 138.70, 136.50, 134.80, 134.46, 134.18, 133.25, 

129.99, 128.96, 126.68, 125.01, 83.41, 69.76, 68.76, 67.21, 63.94, 62.14, 50.51, 43.82, 24.43; 

HR-MS (ESI+), m/z: calculated for C32H35BClFeNO4 [M-e
-
]

+
 599.16979, found 599.17064: C, 

H, N analysis: calculated for C32H35BClFeNO4 (%) – C 64.09, H 5.88, N 2.34; found – C 64.19, 

H 5.51, N 2.28. 

Compound 12. Compound 3 (500 mg, 1.08 mmol) was dissolved in anhydrous DMF (5 mL) 

under a nitrogen atmosphere. Then Cs2CO3 (883 mg, 2.71 mmol) and TBAI (799 mg, 

2.17 mmol) were added to the solution. After stirring for 30 minutes at 22 °C, 

1,2-bis(chloromethyl)benzene (114 mg, 651 µmol) was added. The mixture was stirred for 18 

hours at 22 °C. Then, the solvent was removed in vacuum (0.01 mbar) and the product was 

purified by column chromatography on silica gel using petroleum ether/acetone (6/1, v/v) as 

eluent. Yield: 198 mg, 193 µmol (30%). TLC (SiO2, eluent petroleum ether/acetone, 4/1, v/v) Rf 

= 0.32; 
1
H-NMR (400 MHz, aceton-d6): δ (ppm) 7.74 (d, 4 H), 7.29 (m, 8 H), 5.24 (s, 4 H), 5.10 

(s, 4 H), 4.45 (s, 4 H), 4.16 (s, 10 H), 4.00 (s, 4 H), 1.35 (s, 24 H); 
13

C-NMR (101 MHz, CDCl3): 

δ (ppm) 154.68, 140.35, 135.41, 135.16, 127.29, 127.18, 125.66, 102.05, 84.10, 69.33, 67.42, 

64.68, 62.91, 51.38, 24.76; HR-MS (ESI+), m/z: calculated for C56H62B2Fe2N2O8 [M-e
-
]

+ 

1024.34051, found 1024.33976; C, H, N analysis: calculated for C56H62B2Fe2N2O8 (%) – C 

65.66, H 6.10, N 2.73; found – C 65.78, H 6.42, N 2.70. 

Compound 14. Compound 13
9
 was dissolved in anhydrous DMF (20 mL) under a nitrogen 

atmosphere. Then Cs2CO3 (1.10 g, 3.40 mmol) and TBAI (1.25 g, 3.40 mmol) were added to the 

solution. After stirring for 30 minutes at 22 °C, benzyl chloride (429 mg, 391 µL, 3.40 mmol) 

was added. The mixture was stirred for 18 hours at 22 °C. Then, the solvent was removed in 
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vacuum (0.01 mbar) and the product was purified by column chromatography on silica gel using 

petroleum ether/acetone (4/1, v/v) as eluent. Yield: 345 mg, 376 µmol (55%). TLC (SiO2, eluent 

petroleum ether/acetone, 4/1, v/v) Rf = 0.46; 
1
H-NMR (300 MHz, aceton-d6): δ (ppm) 7.74 (d, 4 

H), 7.24-7.35 (m, 14 H), 5.27 (s, 4 H), 4.98 (s, 4 H), 4.50 (s, 4 H), 3.95 (s, 4 H), 1.35 (s, 24 H); 

13
C-NMR (101 MHz, aceton-d6): δ (ppm) = 140.35, 139.16, 135.16, 128.82, 128.46, 127.53, 

127.24, 126.87, 126.70, 102.22, 84.08, 67.40, 65.72, 63.49, 53.04, 24.75; HR-MS (ESI+), m/z: 

calculated for C52H58B2FeN2O8 [M-e
-
]
+ 

 916.3740, found 916.3743; C, H, N analysis: calculated 

for C52H58B2FeN2O8 (%) – C 68.15, H 6.38, N 3.06; found – C 68.09, H 6.45, N 3.11. 

Cellular Assays 

Cells and Cell Culture. The human promyelocytic leukemia cell line HL-60 was obtained from 

Sigma-Aldrich (Germany). Burkitt lymphoma cell lines RAJI, BL2 and human mantle cell 

lymphoma cell line JVM-2 were obtained from DSZM (Germany). Cells were cultured 

according to recommendations of DSMZ. In particular, RAJI and JVM-2 cells were grown in 

RPMI 1640 medium supplemented with 10% FBS, 1% L-glutamine, and 1% 

penicillin/streptomycin. BL-2 cells were grown in RPMI 1640 medium supplemented with 20% 

FBS, 1% L-glutamine, and 1% penicillin/streptomycin. All cells studied here are non-adherent. 

Stock suspensions of the cells were grown up to 0.5-1.5 x 10
6
 cells/mL and diluted as required.  

Estimation of oxidative stress in cell cultures. An aliquot of cells was taken from the cultivation 

medium. The medium was replaced with PBS buffer to obtain a cell suspension containing 10
6
 

cells/mL. A solution of 2’,7’-dichlorodihydrofluorescin diacetate (DCFH-DA, 1 μL, 5 mM in 

DMSO) was added to the cell suspension (1 mL) and incubated in the dark for 30 min at room 

temperature.  Afterwards, the fluorescence of the samples (λex = 488 nm, λem = 530 nm) was 

determined by using the flow cytometer.  
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Assay for Determination of Cell Permeability of the Prodrugs 

Cells grown in RPMI 1640 medium supplemented with 10% FBS (20% for BL-2), 1% 

glutamine, and 1% penicillin/streptomycin were centrifuged, and the medium was replaced with 

RPMI 1640 medium (5% FCS, 1% L-glutamine, 1% penicillin/streptomycin) to obtain 

suspensions containing 10
6
 cells/mL. Solutions of prodrugs (10 μL, solvent DMSO) were added 

to the suspensions (1 mL) and incubated for 1 h. The final concentration of the prodrugs in the 

suspensions was 50 μM. Afterwards, cells were washed three times with PBS buffer (3 × 500 

μL) and treated with concentrated H2O2 solution (200 μL, 1 M) for 30 min, and all volatiles were 

removed by lyophilization. Dry, lysed cells were washed with water (200 μL), and aqueous 

solution obtained was acidified with HCl (400 μL, 0.1 M). Then this solution was extracted with 

2-ethyl-1,3-hexanediol (100 μL, 10% in CHCl3, v/v), and a portion of the organic phase obtained 

(70 μL) was mixed with H2SO4/CH3CO2H (400 μL, 1/1, v/v). Curcumin solution in methyl 

isobutyl ketone (250 μL, 2 mg in 1 mL of the solvent) was added and allowed to react for 2 h. 

The reaction was quenched by addition of water (1 mL). The light absorbance at 550 and 780 nm 

of the organic phase was measured. The former value corresponds to absorbance of curcumin-

boron complex, whereas the second one is taken as a baseline. The baseline corrected absorbance 

at 550 nm (A(550 nm) − A(780 nm)) was proportional to the concentration of boron in the 

mixture.  

Effect of the compounds on the viability of cell lines  

The cells were centrifuged, the medium was removed, and the cells were washed two times with 

PBS buffer and re-suspended in the RPMI 1640 medium containing 5% FBS, 1% L-glutamine, 

and 1% penicillin/streptomycin. This suspension was spread in the wells of a 96-well microtiter 

plate (50 000 cells per well per 100 μL). Stock solutions of prodrugs of different concentrations 
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(1 μL, solvent DMSO, final concentrations in wells were 1, 5, 10, 20, 50 µM) were added to the 

wells and incubated for 48 h at 37 °C under 5% CO2. Four experiments were conducted for each 

concentration of the prodrug. Finally, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT; 20 μL of the solution prepared by dissolving MTT (5 mg) in PBS buffer (1 mL)) 

was added to each well, incubated for 3 h, treated with sodium dodecyl sulfate (SDS) solution 

(90 μL, 10% solution in 0.01 M aqueous HCl), and incubated overnight. Afterwards, the 

intensity of the absorbance at 590 nm was measured. MTT is converted in live cells to blue dye 

with the absorbance maximum λmax at 590 nm. The absorbance at 690 nm was taken as a 

baseline value.  The baseline corrected absorbance at 590 nm (A(590 nm)-A(690 nm)) was 

applied to calculate the relative number of viable cells. IC50 values were determined by fitting the 

experimental data expressing the number of viable cells (%, OY-axis) versus drug concentration 

(OX-axis) with a sigmoidal curve using a curve fitting system for Windows: CurveExpert 1.4.  

Experiments with primary CLL cells were conducted as described elsewhere.
9
 The viability of 

CLL cells was determined by ATPlite™ Luminescence Assay System (PerkinElmer, Waltham, 

USA). The cells were incubated in medium containing human serum (HS). TP53 mutation status 

in CLL cells was determined as described elsewhere.
26,27

  

Preparation of rat Precision-Cut Liver Slices (PCLS) and toxicity studies ex vivo. Male Wistar 

rats (Charles River, Sulzfeld, Germany) of 250-450 g were housed under a 12 h dark/light cycle 

at constant humidity and temperature. Animals were permitted free access to tap water and 

standard lab chow. All experiments were approved by the committee for care and use of 

laboratory animals of the University of Groningen and were performed according to strict 

governmental and international guidelines. 
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PCLS were made as described by de Graaf et al.
20

 Cores of tissue (5 mm) were prepared from 

the liver using a coring tool. The slices were prepared with a Krumdieck tissue slicer (Alabama 

R&D, Munford, AL, USA) in ice-cold Krebs-Henseleit buffer saturated with carbogen (95% O2 

and 5% CO2). Liver slices (250 µm thick and 4 mg wet weight) were stored in ice-cold Krebs-

Henseleit buffer until incubation. PCLS were incubated in 12-well plates (Greiner bio-one 

GmbH, Frickenhausen, Austria) at 37°C individually in 1.3 ml Williams’ medium E (WME, 

Gibco by Life Technologies, Paisley, UK) with glutamax-1, supplemented with 25 mM D-

glucose (Gibco) and antibiotics (50 µg/ml gentamicin, Gibco) at pH 7.4 with shaking (90 

times/min) in the atmosphere of carbogen. After 1 h or 24 h of pre-incubation the medium was 

replaced by medium containing the compounds under study. Stock solutions of compounds 4, 15 

and 17 were prepared in dimethyl sulfoxide at a concentration of 10 mM (DMSO, VWR) and 

stored at 4°C. The final concentration of DMSO during the PCLS incubation was always below 

1% to exclude DMSO toxicity. Concentration dependent toxicities of compounds were evaluated 

by incubating the rat PCLS for 24 h with different concentrations of compounds between 0 and 

10 µM. Afterward, the slices were collected for ATP and protein determination, by snap freezing 

them in 1 ml of 70% ethanol/2 mM EDTA. The viability of PCLS was determined by measuring 

the ATP content using the ATP Bioluminescence Assay kit CLS II (Roche, Mannheim, 

Germany) as described previously. The ATP content was corrected by the protein amount of 

each slice and expressed as pmol/µg protein. The protein content of the PCLS was determined by 

the Bio-Rad DC Protein Assay (Munich, Germany), using bovine serum albumin (BSA, Sigma-

Aldrich) for the calibration curve. The ATP data were expressed as the relative value to the 24 h 

control tissue. Obtained values are mean ± SE of at least three independent experiments. 
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In vivo experiments. All experiments were conducted on male mice BDF1 (DBA/2,♀ x C57Bl/6, 

♂) weighing 20-22 g, which were obtained from the vivarium of R. E. Kavetsky Institute of 

Experimental Pathology, Oncology, and Radiobiology of the National Academy of Sciences of 

Ukraine, in agreement with recommendations of the Committee on Bioethics at the Presidium of 

National Academy of Sciences of Ukraine. The prodrug 4 was dissolved in DMSO at 37 °C to 

obtain a 1 mM solution. For obtaining solutions of the required concentration this stock solution 

was diluted with PBS. For determination of the acute toxicity the diluted solutions were 

introduced once via intraperitoneal injections (solution volume 0.5 mL) at doses 10, 50, 100, 

150, 200, 300, 400, 500, 700, 1000, 1500, 3000 and 6000 µg/kg. Each group contained 6 animals 

and was monitored for 3 weeks. Every third day animals were weighted. The weight of animals 

increased by 1.8-2.5 g in both control and treated groups during the time of the experiment. The 

control group received 0.5 mL of the physiological solution (PBS).    

For determination of the antitumor activity the prodrug was introduced intraperitoneally 

everyday (for 6 days) starting from the second day after injection of L1210 cells. The latter cells 

(10
6
 cells/animal) were introduced intraperitoneally. The animals were divided in two groups, 

each containing 15 animals. The first group served as control and received 0.5 mL of the 

physiological solution (PBS). Animals in the other group were treated during 6 days with 

prodrug 4 at a dose of 26 µg/kg per day. 24 h after the last injection of the prodrug solution 

ascites fluid was taken out of animals. In this experimental model ascites fluid contained over 93 

% of L1210 cells with respect to the total cell number.
25

 The integrity of mitochondria (JC-1 

assay, Life Technologies) and the concentration of ROS (CM-H2DCF DA assay, Life 

Technologies) were determined by using flow cytometry (Beckman Coulter, USA, excitation 

laser 488 nm, emission channels: FL1 – 525 nm, FL2 – 575 nm).   
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Measurements of intracellular ROS in L1210 cells: 2.5 × 10
5
 L1210 cells from ascites fluid were 

centrifugated at 1500 rpm for 5 minutes, re-suspended in PBS and incubated for 30 minutes at 37 

°C with CM-H2DCFDA (10 mM). The mean fluorescence of the cells was determined using FL1 

emission channel of the flow cytometer. The acquisition was performed on 10,000 gated events. 

Analysis of mitochondrial transmembrane potential in L1210 cells: JC-1 forms J-aggregates in 

mitochondria of viable cells, which can be detected using FL2 channel. In apoptotic cells green 

monomeric JC-1 remains in the cytosol and can be detected using a FL1 channel. We used the 

ratio of J-aggregates to monomers (FL2 to FL1) as an indicator of the cellular mitochondrial 

transmembrane potential. In particular, L1210 cells (2.5*10
5 

/ mL) were stained with JC-1 (7.5 

mM in PBS) for 10 minutes at 37
0
C. The mean fluorescence of the cells (FL2 and FL1) was then 

determined using a flow cytometer on the basis of the quadrant plot to distinguish monomers 

from J-aggregates. To set the quadrants, in a control experiment the cells were treated with H2O2 

(20 mM, 37 
0
C, 30 minutes) to obtain cells with depolarized mitochondrial membrane potential. 
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ADDP, 1,1’-(azidodicarbonyl)dipiperidine; Bipy, 2,2-bipyridine; BnCl, benzyl chloride; BSO, 

buthionine sulfoximine; CH2Cl2, dichloromethane; CLL, chronic lymphocytic leukemia; CM-

H2DCF-DA, 5(6)-chloromethyl-2,7-dichlorodihydrofluorescein diacetate; DCDFH, 2’,7’-
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dichlorodihydrofluorescein; DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate; DMF, N,N-

dimethylformamide; DMSO, dimethylsulfoxide; EBV, Epstein-Barr-Virus; EDTA, N,N,N’,N’-

ethylenediaminetetraacetic acid; Fc, ferrocene; FCS, fetal calf serum; GSH, reduced glutathione; 

GSSG, oxidized glutathione; HL-60, human promyelocytic leukemia cells; 8-HQ, 8-

hydroxyquinoline; HS, human serum; MCL, human mantle cell lymphoma; MNC, mononuclear 

cells; MOPS, 3-(N-morpholino)propanesulfonic acid; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; NOASA, nitric oxide-donating aspirin; PCLS, rat precision cut 

liver slice; QM, quinone methide; ROS, reactive oxygen species; RPMI, Roswell Park Memorial 

Institute; TBAI, tert-butylamonium iodide; TLC, thin layer chromatography; wt, wild type; mut, 

mutated. 
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