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Abstract 

The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl 

hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules such as 

thioredoxin, glutathione, trypanothione and AhpF. Peroxiredoxins have been identified in prokaryotes as well as 

in eukaryotes. Peroxiredoxin 5 (PRDX5) is a novel type of mammalian thioredoxin peroxidase widely expressed 

in tissues and located cellularly to mitochondria, peroxisomes and cytosol. Functionally, PRDX5 has been 

implicated in antioxidant protective mechanisms as well as in signal transduction in cells. We report here the 1.5 

Ǻ resolution crystal structure of human PRDX5 in its reduced form. The crystal structure reveals that PRDX5 

presents a thioredoxin-like domain. Interestingly, the crystal structure shows also that PRDX5 does not form a 

dimer like other mammalian members of the peroxiredoxin family. In the reduced form of PRDX5, Cys47 and 

Cys151 are distant of 13.8 Ǻ although these two cysteine residues are thought to be involved in peroxide 

reductase activity by forming an intramolecular disulfide intermediate in the oxidized enzyme. These data 

suggest that the enzyme would necessitate a conformational change to form a disulfide bond between catalytic 

Cys47 and Cys151 upon oxidation according to proposed peroxide reduction mechanisms. Moreover, the 

presence of a benzoate ion, a hydroxyl radical scavenger, was noted close to the active-site pocket. The possible 

role of benzoate in the antioxidant activity of PRDX5 is discussed. 

Keywords: antioxidant enzyme; peroxiredoxin; thioredoxin fold; thioredoxin peroxidase; crystal structure 

Abbreviations used: PRDX, peroxiredoxin; ROS, reactive oxygen species; PrxV, peroxiredoxin V; AOEB166, 

antioxidant enzyme B166; PMP20, peroxisomal membrane protein 20; TNFα, tumor necrosis factor alpha; 

AhpC, alkyl hydroperoxide reductase subunit C; PCR, polymerase chain reaction; PBS, phosphate-buffered 

saline; MAD, multiwavelength anomalous dispersion; GC, gas chromatography; EI, electron impact; MS, mass 

spectrometry. 

 

INTRODUCTION 

Peroxiredoxins are a family of antioxidant enzymes evolutionarily conserved that so far include more than 40 

members identified in a variety of organisms from bacteria, yeasts and protozoa to plants and vertebrates.
1
 

Peroxiredoxins cooperate with other antioxidant enzymes and non-enzymatic antioxidants to regulate the levels 

of reactive oxygen species (ROS) in cells and tissues, and to protect them against oxidative attacks. Indeed, ROS 

and their toxic by-products may react with lipids, proteins and nucleic acids, leading to cell damage and necrotic 

or apoptotic cell death. On the other hand, recent studies have implicated ROS in normal physiological signalling 

by growth factors and cytokines suggesting that enzymes that regulate ROS levels in cells may also be involved 

in the control of signal transduction.
2,3

 

Peroxiredoxin 5 (PRDX5), also known as PrxV/ AOEB166/PMP20/ACR1, is a novel thioredoxin peroxidase 

widely expressed in mammalian tissues.
2,4-6

 PRDX5 may be addressed intracellu-larly to mitochondria, 

peroxisomes and the cytosol, suggesting that this peroxiredoxin may have an important role as antioxidant in 

organelles that are major sources of ROS, namely mitochondria and peroxisomes, and in the control of signal 

transduction due to its localization in the cytosol.
2,3,5,6 

Moreover, the physiological importance of PRDX5 has 

recently been emphasized by its ability to prevent p53-induced apoptosis and to inhibit intracellular hydrogen 

peroxide accumulation by TNFα.
2,3

 PRDX5 is able to reduce hydrogen peroxide and alkyl hydroperoxides.
2,6

 A 

peroxinitrite reductase activity of AhpC, the bacterial peroxire-doxin orthologue of human PRDX5, has recently 

been reported, suggesting a similar activity for its human counterpart.
7
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All peroxiredoxins contain a conserved Cys residue in the N-terminal portion of the protein, which is oxidized 

by peroxides to sulfenic acid (Cys-SOH). In PRDX1 to PRDX4, which represent the so-called 2-Cys mammalian 

subgroup, this sulfenic acid reacts with a conserved C-terminal Cys-SH of another subunit to form an 

intermolecular disulfide. This disulfide is then reduced by thioredoxin. In contrast, PRDX5 forms a reaction 

intermediate distinct from the 2-Cys subgroup. Indeed, the N-terminal sulfenic acid (Cys47) reacts with a C-

terminal Cys-SH (Cys151) of the same molecule and thereby forms an intramolecular disulfide intermediate that 

can be reduced by thioredoxin.
2
 For PRDX6, the only known mammalian member of the 1-Cys subgroup, the 

mechanism by which the sulfenic acid is reduced is still to be elucidated. 

The recent X-ray structure of PRDX1, PRDX2 and PRDX6 has shown that peroxiredoxins are novel members of 

the thioredoxin fold superfam-ily, which includes thioredoxins, glutaredoxins, glutathione-S-transferases, protein 

disulfide bond isomerases and glutathione peroxidases.
8-11

 Here, we describe the 1.5 Ǻ resolution crystal 

structure of Escherichia coli recombinant human PRDX5 in reduced form. Our structural data reveal that 

PRDX5 represents a prototype of a novel type of mammalian peroxiredoxin. Some particular features of its 

catalytic site revealed by X-ray crystallography suggest that PRDX5 could present a broader activity against 

ROS compared to other peroxiredoxins or antioxidant enzymes that are addressed to the same subcellular 

compartments. 

RESULTS 

Overall structure 

PRDX5 is characterized by a molecular mass of 17 kDa and exists as a single-domain monomelic protein of 

approximate dimensions 36 Ǻ × 37 Ǻ × 42 Ǻ. The crystal contains one molecule of PRDX5 per asymmetric unit 

and presents a relatively loose packing with a solvent content about 65 % (v/v) resulting in large channels of 

solvent surrounding the molecules. The crystal structure of PRDX5 is illustrated in Figure 1. It consists of 161 

residues that fold into six α-helices (α1-α6) and seven β-strands (β1-β7). No interpretable electron density is 

present for the N-terminal 6 × Histail and its short linker. The secondary structural elements comprise a typical 

thioredoxin fold, which is formed by a central four-stranded β-sheet (β3, β4, β6, β7) and three flanking α-helices 

(α2, α4, a6). In addition to the thioredoxin fold, PRDX5 presents at its N-terminal end an extra two-stranded β-

sheet (β1, β2) immediately followed by a short α-helix (α1). Another α-helix (α3) and a β-strand (β5) which 

forms a fifth strand in the thioredoxin fold β-sheet, running parallel with the β4 strand, are inserted into the 

sequence between β4 and α4. Finally, an additional α-helix (α5) is incorporated in the loop connecting α4 and 

β6. 

Scheme 1. 
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DISCUSSION 

Structural comparison with human PRDX6 (hORF6) and rat PRDX1 (HBP23) 

For a structural comparison with other known peroxiredoxins, we have selected hORF6
9
 and HBP23

10
 as 

representatives of the 1-Cys and 2-Cys peroxiredoxin subgroups, respectively.
2
 The best structural alignments 

between the C
α
 atoms of PRDX5 and of these two molecules was searched using the program LSQMAN

12
 and 

refined with lsq_imp in O.
13

 This allowed us to align 131 and 136 C
α
 atoms with a cut-off limit of 3.8 Ǻ and 

root-mean-square deviations of 1.73 Ǻ and 1.88 Ǻ for hORF6 and HBP23, respectively. The superposition of the 

C
α
 atoms presented in Figure 2 shows that in PRDX5, only the N-terminal domains of hORF6 and HBP23 are 

present, while the C-terminal domain is completely absent, in agreement with previous sequence alignments.
6
 In 

Scheme 1, the complete sequence of PRDX5 is structurally aligned with parts of the two other sequences. The 

secondary structural elements of PRDX5 are labelled and show that good structural comparisons occur for the 

elements taking part in the thioredoxin fold (β3, α2, β4, α4, β6, β7, α6). Most of the remaining secondary 

structures (β1, β2, α1, α3, β5) are also conserved in the three structures, with the exception of helix α5, which is 

present only in PRDX5. The N-terminal part of helix α2 is well superposed in PRDX5 and hORF6 with a good 

coincidence of the catalytic residues Cys47 (C
α
-C

α 
0.78 Ǻ), while in HBP23, this part of the helix is unwound 

and contains the corresponding catalytic residue Cys52. The kink of helix α2, which occurs in the two other 

peroxiredoxin structures, is observed in PRDX5 at the level of Ala59 and is stabilized by a water molecule 

making hydrogen bonds with 057 and N61. Figure 2 shows that, in addition to helix α5, the largest discrepancies 

occur in the loops between β1-β2, α3-β5 and β7-α6 in which it is worth noting the presence of Cys151, an    

additional non-conserved cysteine residue implicated in the proposed peroxide reduction mechanism.
2
 

Large differences are observed in the packing of PRDX5 in comparison with other peroxiredoxin structures. In 

hORF6 and HBP23, tightly associated dimers exist in the crystal by the formation of a hydrogen bonding 

network between two β-strands (β7 of each monomer) resulting in a ten-stranded β-sheet in the dimer. A similar 

situation is observed in TPx-B
11

 (PRDX2), a peroxiredoxin of the 2-Cys subgroup in which the β-sheets of two 

monomers combine to form a 14-stranded β-sheet and, in this case, five dimers are associated to form a toroid-

shaped decamer. The dimeric form of HBP23 is reinforced by the presence of a disulfide bond between Cys52 of 

one molecule and Cys173 of the other molecule. We do not observe this kind of dimer formation in PRDX5, 

where each molecule is surrounded by five other molecules without very tight association and with the formation 

of very large solvent channels. The side-chain of the additional cysteine residue, Cys151, is well exposed in 

these solvent channels. The exact reason why PRDX5 does not form dimers remains an open question. It might 

be related to the peroxide reduction mechanism, since it was shown
2
 that PRDX5 forms an intramolecular 

disulfide as a reaction intermediate while in PRDX1 to PRDX4 (the 2-Cys mammalian subgroup) an 

intermolecular disulfide occurs
10

 that is favoured by the formation of the dimer. During the purification of 

PRDX5, we did not detect the existence of dimers, while they were observed in hORF6
9
 at concentrations higher 

than 1 mg ml
-1

. This observation suggests that the absence of dimer in the crystal structure of PRDX5 is 

independent of the different conditions of crystallization, since ammonium sulfate used for PRDX5 was not used 

for other PRDX structures. Furthermore, we do not observe any ordered sulfate ion in the region of the β7 strand 

that could prevent the formation of a dimer. On the other hand, we have checked by model building the possible 

occurrence of steric factors that would prevent the formation of an interface between two monomers. The model 

of the dimer was built by superposing two PRDX5 molecules on the two molecules of the dimer of hORF6. At 

the C-terminal end of the β7 strand, we observe in PRDX5 a kind of bump formed by residues Pro144-Asp145, 

which does not exist in hORF6 and HBP23 (see Scheme 1 and Figure 2) and which could obstruct the formation 

of a β-sheet between two symmetry-related β7 strands, since we observe very close contacts (<1.0 Ǻ) between 

Pro144 of one molecule and Ala139 of the other one. 
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Figure 1. Overall view of the structure of PRDX5. (a) Topological diagram showing the arrangement of the 

secondary structural elements in PRDX5. The helices are represented as cylinders and the β-strands as arrows. 

The beginning and the end of the secondary structural elements are labelled. The three helices and the four β-

strands belonging to the thioredoxin fold are colored green and red, respectively, while the remaining elements 

are colored yellow, (b) and (c) Ribbon diagrams showing the overall organization of PRDX5, colored as in (a). 

The two orientations are nearly perpendicular, (c) being a top view of (b). The side-chains of the three Cys 

residues are represented as balls and sticks (Cys72 is hidden in (b)). Parts (b) and (c) were prepared using 

MOLSCRIPT
26

 and Raster3D.
27
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Figure 2. Structural comparisons with other peroxiredoxins. Stereoscopic view of a superposition between the 

C
α 

traces of PRDX5 (red) and (a) hORF6, (b) HBP23 (green). The orientation is the same as in Figure 1(b). The 

Figures were produced using O.
13

 

 

Active site 

Presented as a novel member of the mammalian peroxiredoxin family,
6
 PRDX5 possesses one cysteine residue, 

Cys47, which is highly conserved in all the other peroxiredoxins (PRDX1 to 4 and PRDX6)
14

 and which has 

been implicated directly in catalysis of peroxides. PRDX5 contains no cysteine residue corresponding to the 

second conserved cysteine residue of the 2-Cys subgroup but presents two additional cysteine residues, lacking 

in the 1-Cys subgroup. 

The conserved cysteine residue of PRDX5, Cys47, is located at the N-terminal part of the kinked helix α2, inside 

a small cavity. The environment of Cys47 is presented in Figure 3. In common with the 1-Cys peroxiredoxin 

hORF6,
9
 the active site consists of a positively charged pocket, largely exposed to solvent exterior. The 

catalytically active cysteine residues coincide in the two structures. 
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However, in the recently solved crystal structure of the 2-Cys peroxiredoxin HPB23,
10

 the corresponding 

cysteine residue (Cys52) appears to be completely buried in the cavity and is significantly displaced from Cys47 

of PRDX5 (C
α
-C

α
 = 6.8 Ǻ). The crystal structure of hORF6 reveals a positively charged environment for the 

catalytically conserved cysteine residue (Cys47) in its oxidized form, cysteine-sulfenic acid (Cys-SOH). Good 

contacts are observed with His39 (N
δ1

), Argl32 (N
ε1

) and a possible magnesium ion. The authors suggest that 

these close interactions with Cys47 may play a role in lowering the pKa of the thiol by stabilizing its ionized 

state, increasing the reactivity. His39 is completely conserved in the 1-Cys subgroup but is replaced by Tyr or 

Trp in the 2-Cys subgroup. PRDX5 has a valine residue (Val39) in that position (distance between Cys47-S
γ 
and 

Val39-C
β
 = 3.6 Ǻ). Nevertheless, Arg132 is highly conserved in the 1-Cys and 2-Cys subgroups, and 

corresponds to Arg128 in the structure of HPB23. This arginine residue is found in the structure of PRDX5, 

namely Arg127, with its N
ε1 

interacting with the sulfur atom of Cys47 at a distance of 3.3 Ǻ, and seems to be 

responsible for the positively charged active-site pocket (Figure 3(a)). In the crystal structure of hORF6, another 

arginine residue, Arg155, is found with its side-chain oriented in the direction of the active cysteine residue. In 

the structure comparison of hORF6-PRDX5, this residue is positioned not far from Cys151 in PRDX5 (C
α
-C

α
 5.1 

Ǻ). Cys151 corresponds to the additional non-conserved cysteine residue implicated in the proposed mechanism 

of action of PRDX5.
2
 It is located in the loop connecting β7 to α6, with its side-chain exposed to the solvent 

region. However, the sulfur atoms of Cys47 and Cys151 are positioned too far apart (S
γ
-S

γ 
13.8 Ǻ) to interact 

without large conformational changes. It is likely that such large conformational changes must occur in PRDX5 

upon oxidation, since we observe that crystals of PRDX5 are destroyed immediately when soaked in the 

presence of 10
-3

 M hydrogen peroxide, while crystals of the C47S mutant, in which the formation of the disulfide 

bond between residues 47 and 151 is no longer possible, survive many weeks under similar conditions. PRDX5 

contains a third cysteine residue, Cys72, at the end of a β-strand, β4. Interestingly, Cys72 is located at the bottom 

of the active-site pocket, not far from the active-site, Cys47 (S
γ
-S

γ
 7.4 Ǻ) though Seo et al.

2
 have shown that the 

mutation of Cys72 had no effect on activity. The corresponding residues in the crystal structures of hORF6 and 

HPB23 are Ala70 and Gly75, respectively. A threonine residue (Thr44) is present in the active-site cavity of 

PRDX5 with its oxygen atom O
γl
 clearly interacting with the sulfur atom of the catalytic cysteine residue 

(Cys47) at a distance of 3.0 Ǻ. Additional electron density looking like a benzoate ion, whose identity was 

confirmed by mass spectrometry, is found close to the active-site pocket and restricts the access to the cavity. 

Good contacts are observed between the oxygen atom O1 of the benzoate ion and the sulfur atom of Cys47, 

which are 3.4 Ǻ apart. Moreover, one side of the active-site pocket contains several hydrophobic residues, 

including Leull6, Ile119 and Phe120, whose side-chains are located in the neighbourhood of the benzoate 

aromatic ring. Interestingly, these three hydrophobic residues are located in helix α5, which is not observed in 

other peroxiredoxins. The hydrophobic surrounding of the aromatic part of this benzoate ion is completed by the 

side-chain of Phe79 belonging to a symmetry-related molecule. In the absence of the benzoate ion, these 

hydrophobic residues would be exposed to solvent. Benzoic acid is known to be a specific scavenger of hydroxyl 

radical.
15

 Its localization close to the catalytic site suggests that it could be involved in the scavenging of 

hydroxyl radicals produced as reaction intermediates in the process of peroxide reduction. Alternatively, the 

implication of PRDX5 as specific hydroxyl radical scavenger via its benzoate ion can be postulated. 
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Figure 3. View of the surrounding of the active-site pocket. (a) Molecular surface coloured according to the 

local electrostatic potential, ranging from blue (the most positive region) to red (the most negative). The 

positions of some residues discussed in the text are shown. (b) A diagram in which the side-chains of some 

important residues (see the text) are represented as balls and sticks, and labelled. The benzoate ion is also 

shown. The colors of the helices and β-strands are the same as in Figure 1. (c) Stereoscopic view oriented like 

(b) in which the electron density of a σ-A
28 

map has been contoured at a level of 2 σ around the side-chains and 

the benzoate ion. Part (a) was produced using GRASP,
29

 (b) using MOLSCRIPT
26

 and Raster3D,
27

 (c) using O.
13
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MATERIALS AND METHODS 

Bacterial expression of human PRDX5 and purification 

Human PRDX5 cDNA
6
 was PCR amplified using forward primer 5'-GCTGCAGGATCCGCCCCAAT-

CAAGGTGGGAG-3' (BamHI site underlined) and reverse primer 5'-GGCCCAAAGCTTCAGAGCTGTGA-

GATGATA-3' (HindIII site underlined). The PCR product was digested with BamHI and HindIII, and ligated 

into the pQE-30 expression vector (Qiagen). The insert was sequenced and the N-terminal fusion with the hexa-

histidine (6 × His) tag was confirmed. The resulting vector was used to transform E. coli strain M15 (pRep4). E. 

coli were grown at 37 °C in LB medium containing 1 mM IPTG. Pelleted cells were lysed in 10 mM imidazole, 

50 mM phosphate, 300 mM NaCl (pH 8) by soni-cation and clarified by centrifugation. The supernatant 

containing 6 × His-tagged PRDX5 was loaded onto a Ni
2+

-NTA column (Qiagen). The column was washed and 

the protein was eluted with 50 mM phosphate, 300 mM NaCl, 250 mM imidazole (pH 8). Eluted protein was 

then dialysed against PBS (pH 7.2) and stored at -20 °C before use for crystallization. 

Crystallization 

The crystals were grown by hanging drop vapour diffusion at 18 °C by mixing 2 µl of the protein solution (10 

mg ml
-1

) with 2 µl of the well solution (volume 500 µl) composed of 1.6 M ammonium sulfate, 0.1 M sodium 

citrate buffer (pH 5.3), 0.2 M potassium sodium tartrate, 10
-3

 M 1,4-dithio-dl-threitol, 0.02% (w/v) sodium azide. 

Crystals of octahedral shape appeared after four or five days with typical dimensions 0.2-0.3 mm. The crystals 

were very unstable and they disappeared spontaneously about one week later. 

Table 1. Data collection, phasing and refinement statistics 

Data set High-resolution Inflexion point Peak Remote 

Wavelength (Ǻ) 1.1 0.9175 0.9169 0.855 

Resolution range (Ǻ) 16-1.5 16-1.7 15-1.9 15-1.7 

Reflections     

   Total 384,543 239,367 168,023 287,845 

   Unique 45,181 31,215 22,522 31,228 

Completeness (%) 100.0 100.0 100.0 99.9 

Rmerge 0.051 0.067 0.090 0.081 

Cullis R (1.9 Ǻ) (acentric/centric/anomalous) 0.61/0.66/0.94 -/-/0.87 0.97/0.98/0.81 0.62/0.67/0.78 

Phasing power (1.9 Ǻ) (acentric/centric) 1.98/1.18  0.27/0.19 1.92/1.15 

FOM (mlphare/dm) (1.9 Ǻ/1.7 Ǻ) 0.67/0.85    

R-factor (Rfree) (1.5 Ǻ) 0.133 (0.165)    

RMS deviation from ideality     

   Bonds (Ǻ) 0.015    

   Angles (°) 2.2    

Average B-factors (Ǻ
2
)     

   Main-chain 13.5    

   Side-chain 22.8    

   Solvent 31.5    

   Bromide ions 24.4    

   Benzoate 20.1    
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Data collection, structure determination and refinement 

Since our aim was to determine the phases by the multiwavelength anomalous dispersion (MAD) method after 

derivatization by short cryo-soaking with halides,
16 

crystals were transferred to solutions containing the 

compounds of the crystallization buffer, 1.0 M sodium bromide and 20% (v/v) glycerol for about 30 seconds 

before flash-cooling at 100 K. During these cryogenic freezing experiments, it clearly appeared that this crystal 

form did not tolerate glycerol alone, in the absence of sodium bromide. All diffraction data (four wavelengths) 

were collected from the same crystal at 100 K using the synchrotron X31 beam line, at EMBL c/o DESY 

(Hamburg) and a MAR345 imaging plate detector. One wavelength (1.1 Ǻ) was chosen to achieve the highest 

resolution, while the three other wavelengths were selected according to the Br/K edge as determined by an X-

ray fluorescence scan: inflexion point, peak and remote on the high-energy side. All data were collected in a 

single pass using a rotation of 0.7° or 1°. Statistics of data collection and processing are given in Table 1. The 

crystals are tetragonal, space group P41212, with a = 66.61 Ǻ, c = 123.33 Ǻ and one protein molecule in the 

asymmetric unit. All the measurements were indexed and integrated using the program DENZO
17

 and merged 

with the program SCALEPACK:
17

 5% of the reflections were flagged for use in Rfree calculations.
18

 

The structure was determined by the MAD method using the anomalous signal of bromine atoms and 

considering as "native" the data collected at the inflexion point. The program SHELXS-97
19

 allowed us to 

identify the same two sites from the Patterson functions based on anomalous differences at the peak wavelength 

and on dispersive differences (λremote - λinflexion). Three additional sites were found from difference Fourier 

synthesis and were checked for consistency with the dispersive difference Patterson. Considering the contacts 

(<3.5 Ǻ) of the bromide ions, we observe that all of them are in hydrogen bond interaction with one or more 

solvent molecules. In addition, three of these anions are bound to the main-chain N atoms of Glu91, Asp113 and 

Leul49, the last one being in contact also with the side-chain atom N
ε2

 of Gln133 belonging to a symmetry-

related molecule. One of the bromide anions is bound to O
γ
 of Ser118 and to two N

δ
 atoms of Lys residues (63 

and 93) in a symmetry-related molecule. MLPHARE
20,21 

was used for refining the heavy-atom positions and for 

computing the initial phases at 1.9 Å resolution. These phases were then applied to the high-resolution data set 

and further improved by density modifications in DM
20,22

 using solvent flattening, histogram mapping and multi-

resolution modification, and extended to 1.7 A. The program ARP/wARP
23

 in mode warpNtrace and side_dock 

succeeded in building 158 of the 161 residues. Only a few manual adjustments were necessary using the 

molecular graphics program O.
13

 The N-terminal His tail and its short linker were never observed, suggesting a 

complete disorder of these residues. The refinement at 1.5 Ǻ was performed with SHELXL-97.
24

 Alternate 

conformations were observed for the side-chains of residues Asn21 and Lys63. Five bromide ions and 221 

ordered solvent molecules were incorporated and a bulk solvent correction was applied. A small molecule 

looking like a benzoate ion was observed at the entrance of the cleft containing the active site (Cys47) and 

introduced in the refinement. The presence of a benzoate ion in the protein solution before the addition of the 

crystallization buffer was confirmed by mass spectrometry (GC-electron impact (EI), mass spectrometry (MS) 

and MS-MS). Benzoate was not used in the production or purification steps. This model resulted in an R-value of 

0.192 (Rfree = 0.215) for all available data. A significant improvement was reached by applying restrained 

anisotropic temperature factors and yielded an R-value of 0.143 (Rfree = 0.178). After minor manual adjustments 

and the introduction of hydrogen atoms in riding positions, the R-value was 0.133 (Rfree = 0.165). During the 

very last refinement cycles, the Rfree flagged reflections were included and the final R-value for all available 

reflections is 0.133 (no cut-off). A Ramachandran plot computed with the program PROCHECK
25

 shows that 

87.8% of the residues are in the most-favoured regions and that there are no residues in disallowed regions. 

Protein Data Bank accession numbers 

Final coordinates and structure factors have been deposited with the Protein Data Bank under accession numbers 

1HD2 and R1HD2SF, respectively. 
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