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Abstract—This paper presents a technique for motion detection the basic principle of background subtraction, which can be
that incorporates several innovative mechanisms. For exapie, formulated as a technique that builds a model of a background
our proposed technique stores, for each pixel, a set of valeg¢aken and compares this model with the current frame in order

in the past at the same location or in the neighborhood. It tha to detect h iqnifi t diff Th
compares this set to the current pixel value in order to detemine 0 detect zones where a significant difrerence occurs. e

whether that pixel belongs to the background, and adapts the Purpose of a background subtraction algorithm is therefore
model by choosing randomly which values to substitute fromhe to distinguish moving objects (hereafter referred to as the

background model. This approach differs from those based on foreground from static, or slow moving, parts of the scene
the classical belief that the oldest values should be repled first. (called backgroundl. Note that when a static object starts

Finally, when the pixel is found to be part of the background,its ) . . .
value is propagated into the background model of a neighborig M0ViNg, & background subtraction algorithm detects theacibj

pixel. in motion as well as a hole left behind in the background
We describe our method in full details (including pseudo- (referred to as ghos). Clearly a ghost is irrelevant for motion

code and the parameter values used) and compare it to other jnterpretation and has to be discarded. An alternative idefin

background subtraction techniques. Efficiency figures showthat 4, ine background is that it corresponds to a referencedram

?nugthgfsth?: tg?r:%erg;rrgzthreggrr:]tpdatggor? r(;\éirédst:;z-o;-é?:éggn with values visible most of the time, that is with the highest

rate. We also analyze the performance of a downscaled versio appearance probability, but this kind of framework is not
of our algorithm to the absolute minimum of one comparison straightforward to use in practice.

and one byte of memory per pixel. It appears that even such
a simplified version of our algorithm performs better than
mainstream technigues. An implementation of ViBe is availble
at http://www.motiondetection.org.

While a static background model might be appropriate for
analyzing short video sequences in a constrained indoas env
ronment, the model is ineffective for most practical siiag;

; . Lo O . a more sophisticated model is therefore required. Morgover
nal processing, learning (artificial intelligence), imagesegmenta- . . . . .
tion, vision and scene understanding, computer vision, inge ("€ detection of motion is often only a first step in the
motion analysis, pixel classification, real-time systems. process of understanding the scene. For example, zones wher
motion is detected might be filtered and characterized fer th
detection of unattended bags, gait recognition, face tetec
people counting, traffic surveillance, etc. The diversitgaene

According to its new policy, IEEE accept the online postingcxqrounds and applications explains why countless paper
of accepted papers. Please read the following copyrighteotyis s issues related to background subtraction.
carefully.

©2011 IEEE. Personal use of this material is permitted. |, this paper, we present a universal method for background
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new collective works, for resale or redistribution to sesver presents the major frameworks developed for background
lists, or reuse of any copyrighted component of this work ightraction and highlights their respective advantageshive
other works. , , _implemented some of these algorithms in order to compare
Abstract and full text available on the IEEE site: followsthi ihem with our method. Section 11l describes our techniqu an
link http//dxd0|0rg/101109/TIP20102101613 (DO|) details our major innovations: the background model, the in
tialization process, and the update mechanism. SectionstV d
. INTRODUCTION cusses experimental results including comparisons whilerot
HE number of cameras available worldwide has increassthte-of-the-art algorithms and computational perforoeakive
dramatically over the last decade. But this growth hadso present a simplified version of our algorithm which
resulted in a huge augmentation of data, meaning that tlegjuires only one comparison and one byte of memory per
data are impossible either to store or to handle manualpixel; this is the absolute minimum in terms of comparisons
In order to detect, segment, and track objects automaticadind memory for any background subtraction technique. We
in videos, several approaches are possible. Simple mot&mow that, even in its simplified form, our algorithm perferm
detection algorithms compare a static background framle witetter than more sophisticated techniques. Section V adesl
the current frame of a video scene, pixel by pixel. This ighe paper.

Index Terms—Background subtraction, surveillance, video sig-
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Il. REVIEW OF BACKGROUND SUBTRACTION ALGORITHMS (ICA) of serialized images from a training sequence, is de-
scribed in [13] in the training of an ICA model. The resulting
The problem tackled by background subtraction techniqugg-mixing vector is then computed and compared to that of a
involves the comparison of an observed image with an &saw image in order to separate the foreground from a referenc
timated image that does not contain any object of intere%téckground image. The method is said to be highly robust to
this is referred to as the background model (or backgrouffyoor illumination changes.
image) [3]. This comparison process, calfedeground detec- A two-level mechanism based on a classifier is introduced
tion, divides the observed image into two complementary S§fs[14]. A classifier first determines whether an image block
of pixels that cover the entire image: (1) the foreground thﬁelongs to the background. Appropriate blockwise updates o
contains the objects of interest, and (2) the backgrousd, fhe packground image are then carried out in the second, stage
complementary set. As stated in [4], it is difficult to spgcif gepending on the results of the classification. Classiticati
a gold-standard definition of what a background subtracti%ﬂgorithms are also the basis of other algorithms, as in the
technique should detect as a foreground region, as the defije provided in [15], where the background model learns its
tion of foreground objects relates to the application level motion patterns by self organization through artificial rasu
Many background subtraction techniques have been pyetworks.
posed with as many models and segmentation strategies, anfligorithms based on the framework of compressive sensing
several surveys are devoted to this topic (see for exampie [perform background subtraction by learning and adapting
[9]). Some algorithms focus on specific requirements that @njow dimensional compressed representation of the back-
ideal background subtraction technique could or shouliiliful ground [16]. The major advantage of this approach lies in
According to [7], a background subtraction technique mugie fact that compressive sensing estimates object sittesue
adapt to gradual or fast illumination changes (changing th without any auxiliary image reconstruction. On the otherdha
day, clouds, etc), motion changes (camera oscillatiorigh h gbjects in the foreground need to occupy only a small portion
frequency background objects (e.g. tree leave or branchegf)the camera view in order to be detected correctly.
and changes in the background geometry (e.g. parked carsBackground subtraction is considered to be a sparse error
Some applications require background subtraction alymst recovery problem in [17]. These authors assumed that each
to be embedded in the camera, so that the computational Igafior channel in the video can be independently modeledeas th
becomes the major concern. For the surveillance of outdapiear combination of the same color channel from otheraide
scenes, robustness against noise and adaptivity to ilatioim frames. Consequently, the method they proposed is able to
changes are also essential. accurately compensate for global changes in the illunonati
Most techniques described in the literature operate on eagfurces without altering the general structure of the frame
pixel independently. These techniques relegate entioghpst- composition by finding appropriate scalings for each color
processing algorithms the task of adding some form of spatighannel separately.
consistency to their results. Since perturbations oftdacaf  Background estimation is formulated in [18] as an optimal
individual pixels, this results in local misclassificatsorBy labeling problem in which each pixel of the background image
contrast, the method described by Seikil. in [10] is based is labeled with a frame number, indicating which color from
on the assumption that neighboring blocks of backgroumide past must be copied. The author’s proposed algorithm pro
pixels should follow similar variations over time. Whileish duces a background image, which is constructed by copying
assumption holds most of the time, especially for pixelsreas from the input frames. Impressive results are shown fo
belonging to the same background object, it becomes preblesmtic backgrounds but the method is not designed to cope wit
atic for neighboring pixels located at the border of muétiplobjects moving slowly in the background, as its outcome is a
background objects. Despite this inconvenience, pixets a&ingle static background frame.
aggregated into blocks and eadhx N block is processed as  The authors of [19] were inspired by the biological mech-
an N2-component vector. A few samples are then collecteghism of motion-based perceptual grouping. They propose a
over time and used to train a Principal Component Analysipatio-temporal saliency algorithm applicable to scenis w
(PCA) model for each block. A block of a new video frame ifiighly dynamic backgrounds, which can be used to perform
classified as background if its observed image pattern secldackground subtraction. Comparisons of their algorithrinwi
to its reconstructions using PCA projection coefficient8of other state-of-the-art techniques show that their algorit
neighboring blocks. Such a technique is also describedli [Lreduces the average error rate, but at a cost of a prohibitive
but it lacks an update mechanism to adapt the block modgl®cessing time (several seconds per frame), which makes it
over time. In [12], the authors focus on the PCA reconstancti unsuitable for real-time applications.
error. While the PCA model is also trained with time samples, Pixel-based background subtraction techniques compensat
the resulting model accounts for the whole image. Individugor the lack of spatial consistency by a constant updating
pixels are classified as background or foreground usingleimpf their model parameters. The simplest techniques in this
image difference thresholding between the current image agategory are the use of a static background frame (which
the backprojection in the image space of its PCA coefficientsas recently been used in [20]), the (weighted) running-aver
As for other PCA-based methods, the initialization proees$ age [21], first-order low-pass filtering [22], temporal mali
the update mechanism are not described. filtering [23], [24], and the modeling of each pixel with a
A similar approach, the Independent Component Analysigussian [25]-[27].
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Probabilistic methods predict the short-term evolutioraof than the foreground and that its variance is significantly
background frame with a Wiener [28] or a Kalman [29] filterlower. None of this is valid for every time window. Fur-
In [28], a frame-level component is added to the pixel-levéhermore, if high- and low-frequency changes are present in
operations. Its purpose is to detect sudden and global elsantile background, its sensitivity cannot be accurately tuared
in the image and to adapt the background frame accordinglye model may adapt to the targets themselves or miss the
Median and gaussian models can be combined to allow inlietstection of some high speed targets, as detailed in [53].
(with respect to the median) to have more weight than ostliefAlso, the estimation of the parameters of the model (espgcia
during the gaussian modeling, as in [30] or [31]. A methothe variance) can become problematic in real-world noisy
for properly initializing a gaussian background model fromnvironments. This often leaves one with no other choice tha
a video sequence in which moving objects are presenttsuse a fixed variance in a hardware implementation. Finally
proposed in [32]. it should be noted that the statistical relevance of a ganssi

The W* model presented in [33] is a rather simple bumnodel is debatable as some authors claim that natural images
nevertheless effective method. It uses three values tesept exhibit non-gaussian statistics [54].
each pixel in the background image: the minimum and max-To avoid the difficult question of finding an appropriate
imum intensity values, and the maximum intensity diffeenchape for the probability density function, some authors
between consecutive images of the training sequence. THave turned their attention to non-parametric methods to
authors of [34] bring a small improvement to thé* model model background distributions. One of the strengths of non
together with the incorporation of a technique for shadoparametric kernel density estimation methods [53], [559H
detection and removal. is their ability to circumvent a part of the delicate parasnet

Methods based o — A (sigma-delta) motion detectionestimation step due to the fact that they rely on pixel values
filters [35]-[37] are popular for embedded processing [38pbserved in the past. For each pixel, these methods build a
[39]. As in the case of analog-to-digital converters.a- A histogram of background values by accumulating a set of
motion detection filter consists of a simple non-linear rese real values sampled from the pixel's recent history. These
approximation of the background image, which is based anmethods then estimate the probability density functiorhwit
comparison and on an elementary increment/decrement (usus histogram to determine whether or not a pixel value of
ally —1, 0, and1 are the only possible updating values). Théhe current frame belongs to the background. Non-paraeetri
Y — A motion detection filter is therefore well suited to mankernel density estimation methods can provide fast regsons
embedded systems that lack a floating point unit. to high-frequency events in the background by directlytdel

All these unimodal techniques can lead to satisfactory rié}g newly observed values in the pixel model. However, the
sults in controlled environments while remaining fast,yelms ability of these methods to successfully handle concorhitan
implement, and simple. However, more sophisticated methoglents evolving at various speeds is questionable singe the
are necessary when dealing with videos captured in complgpdate their pixel models in a first-in first-out manner. This
environments where moving background, camera egomotidvas led some authors to represent background values with
and high sensor noise are encountered [5]. two series of values or models: a short term model and a

Over the years, increasingly complex pixel-level algorigh long term model [53], [60]. While this can be a convenient
have been proposed. Among these, by far the most popuatution for some situations, it leaves open the question of
is the Gaussian Mixture Model (GMM) [40], [41]. First pre-how to determine the proper time interval. In practical term
sented in [40], this model consists of modeling the distidou  handling two models increases the difficulty of fine-tunihg t
of the values observed over time at each pixel by a weightedlues of the underlying parameters. Our method incorperat
mixture of gaussians. This background pixel model is able & smoother lifespan policy for the sampled values, and as
cope with the multimodal nature of many practical situagiorexplained in Section 1V, it improves the overall detection
and leads to good results when repetitive background matioquality significantly.
such as tree leaves or branches, are encountered. Since it the codebook algorithm [61], [62], each pixel is rep-
introduction, the model has gained vastly in popularity amo resented by a codebook, which is a compressed form of
the computer vision community [4], [7], [11], [42]-[44],diit background model for a long image sequence. Each codebook
is still raising a lot of interest as authors continue to s#the is composed of codewords comprising colors transformed by
method and propose enhanced algorithms [45]—[50]. In [SHn innovative color distortion metric. An improved codekoo
a particle swarm optimization method is proposed to autematcorporating the spatial and temporal context of eachlpixe
ically determine the parameters of the GMM algorithm. Thieas been proposed in [63]. Codebooks are believed to be
authors of [52] combine a GMM model with a region-basedble to capture background motion over a long period of
algorithm based on color histograms and texture informatictime with a limited amount of memory. Therefore, codebooks
In their experiments, the authors’ method outperform thare learned from a typically long training sequence and a
original GMM algorithm. However, the authors’ techniqueodebook update mechanism is described in [62] allowing
has a considerable computational cost as they only mandlge algorithm to evolve with the lighting conditions once th
to process seven frames @0 x 480 pixels per second with training phase is over. However, one should note that the
an Intel Xeon 5150 processor. proposed codebook update mechanism does not allow the

The downside of the GMM algorithm resides in its strongreation of new codewords, and this can be problematic if
assumptions that the background is more frequently visigermanent structural changes occur in the background (for
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example, in the case of newly freed parking spots in urbastimated by a temporal average. Therefore, the adjustment
outdoor scenes). speed is dependent on the acquisition framerate and on the

Instead of choosing a particular form of background densitwimber of background pixels. This is inappropriate in some
model, the authors of [64], [65] use the notion of “consehsuscases, as in the case of remote |IP cameras whose framerate is
They keep a cache of a given number of last observddtermined by the available bandwidth.
background values for each pixel and classify a new valueWe detail below a background subtraction technique, called
as background if it matches most of the values stored ‘IiBe” (for “VIsual Background Extractor”). For conveniee,
the pixel's model. One might expect that such an approaele present a complete version of our algorithm in a C-like
would avoid the issues related to deviations from an aiigra code in Appendix A.
assumed density model, but since values of pixel models are
replaced according to a first-in first-out update policyythee
also prone to the problems discussed previously, for exam
the problem of slow and fast motions in the background, To some extent, there is no way around the determination,
unless a large number of pixel samples are stored. The autHor a given color space, of a probability density functiodffp
state that a cache of 20 samples is the minimum required for every background pixel or at least the determination of
the method to be useful, but they also noticed no significastgtistical parameters, such as the mean or the variante. No
further improvement for caches with more than 60 sampldbat with a gaussian model, there is no distinction to be made
Consequently, the training period for their algorithm musts the knowledge of the mean and variance is sufficient to
comprise at least 20 frames. Finally, to cope with lightingetermine the pdf. While the classical approaches to back-
changes and objects appearing or fading in the backgrougtund subtraction and most mainstream techniques rely on
two additional mechanisms (one at the pixel level, a secondralfs or statistical parameters, the question of their stedil
the blob level) are added to the consensus algorithm to banslignificance is rarely discussed, if not simply ignored. In
entire objects. fact, there is no imperative to compute the pdf as long as

The method proposed in this paper operates differently the goal of reaching a relevant background segmentation is
handling new or fading objects in the background, witho@chieved. An alternative is to consider that one should ectha
the need to take account of them explicitly. In addition tgtatistical significance over time, and one way to procegd is
being faster, our method exhibits an interesting asymmefpyild a model with real observed pixel values. The undegyin
in that a ghost (a region of the background discovered onagsumption is that this makes more sense from a stochastic
a static object starts moving) is added to the backgroup@int of view, as already observed values should have a highe
model more quickly than an object that stops moving. Anothgrobability of being observed again than would values not ye
major contribution of this paper resides in the proposedatgd encountered.
policy. The underlying idea is to gather samples from the pas Like the authors of [65], we do not opt for a particular
and to update the sample values by ignoring when they wdgsm for the pdf, as deviations from the assumed pdf model
added to the models. This policy ensures a smooth expohengige ubiquitous. Furthermore, the evaluation of the pdf is a
decaying lifespan for the sample values of the pixel moduwds aglobal process and the shape of a pdf is sensitive to outliers
allows our technique to deal with concomitant events ewgjvi In addition, the estimation of the pdf raises the non-obsiou
at various speeds with a unique model of a reasonable sizedoestion regarding the number of samples to be considered;
each pixel. the problem of selecting a representative number of samples
is intrinsic to all the estimation processes.

If we see the problem of background subtraction as a
classification problem, we want to classify a new pixel value
with respect to its immediate neighborhood in the chosen

Background subtraction techniques have to deal with ablor space, so as to avoid the effect of any outliers. This
least three considerations in order to be successful in reabtivates us to model each background pixel with a set of
applications: (1) what is the model and how does it behavesamples instead of with an explicit pixel model. Conseqgyent
(2) how is the model initialized?, and (3) how is the modeio estimation of the pdf of the background pixel is performed
updated over time? Answers to these questions are giveraimd so the current value of the pixel is compared to its
the three subsections of this section. Most papers desttrébe closest samples within the collection of samples. This is an
intrinsic model and the updating mechanism. Only a minorifynportant difference in comparison with existing algomit,
of papers discuss initialization, which is critical whenastf in particular with those of consensus-based techniquegvA n
response is expected, as in the case inside a digital cameraalue is compared to background samples and should be close
addition, there is often a lack of coherence between the motte some of the sample values instead of the majority of all
and the update mechanism. For example, some techniquakies. The underlying idea is that it is more reliable to
compare the current value of a pixglto that of a model estimate the statistical distribution of a background pixi¢h
b with a given tolerancd’. They consider that there is a gooch small number of close values than with a large number of
match if the absolute difference betwegnand b is lower samples. This is somewhat similar to ignoring the extregiti
thanT. To be adaptive over timd] is adjusted with respect of the pdf, or to considering only the central part of the
to the statistical variance qf. But the statistical variance isunderlying pdf by thresholding it. On the other hand, if one

Fﬁ\. Pixel model and classification process

IIl. DESCRIPTION OF A UNIVERSAL BACKGROUND
SUBTRACTION TECHNIQUE VIBE
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within the image. Note that since the number of samp¥es

C, ° T Sr(v(@) andfimin are chosen to be fixed and since they impact on the
01 same decision, the sensitivity of the model can be adjusted
» using the following ratio
® | Fn, ©)
! v() i N
‘bz but in all our comparative tests we kept these values un-
° e changed.
vs So far we have detailed the nature of the model. In the
® - coming sections, we explain how to initialize the model from
o a single frame and how to update it over time.
>
Ci

Fig. 1. Comparison of a pixel value with a set of samples in a twB- Background model initialization from a single frame

dimensional Euclidean color spa¢€’,, C2). To classify v(z), we count ; : : ;
the number of samples 0¥ (x) intersecting the sphere of raditis centered Many popular teChmqueS described in the literature, such

onv(z). as [53], [62], and [65], need a sequence of several dozens
of frames to initialize their models. Such an approach makes
sense from a statistical point of view as it seems imperative
trusts the values of the model, it is crucial to select baskgd to gather a significant amount of data in order to estimate
pixel samples carefully. The classification of pixels in théhe temporal distribution of the background pixels. But one
background therefore needs to be conservative, in the senggy wish to segment the foreground of a sequence that is
that only background pixels should populate the backgrouaden shorter than the typical initialization sequence iregiby
models. some background subtraction algorithms. Furthermore yman

Formally, let us denote bw(xz) the value in a given applications require the ability to provide aminterrupted
Euclidean color space taken by the pixel located: ah the foreground detection, even in the presence of sudden light
image, and byv; a background sample value with an indexhanges, which cannot be handled properly by the regular
i. Each background pixet is modeled by a collection oV update mechanism of the algorithm. A possible solution to
background sample values both these issues is to provide a specific model update goces

that tunes the pixel models to new lighting conditions. Bt t
M(z) = {v1, v, on} () useofsucha (?edicated update proc?ass ig at best delicate, si
taken in previous frames. For now, we ignore the notion af sudden illumination may completely alter the chromatic
time; this is discussed later. properties of the background.

To classify a pixel value (z) according to its corresponding A more convenient solution is to provide a technique that
model M (z), we compare it to thelosestvalues within the will initialize the background model from a single frame.
set of samples by defining a sphe$g(v(z)) of radiusR Given such a technique, the response to sudden illumination
centered orv(z). The pixel valuev(x) is then classified as changes is straightforward: the existing background model
background if the cardinality, denotédof the set intersection is discarded and a new model is initialized instantaneously
of this sphere and the collection of model samplelgz) is Furthermore, being able to provide a reliable foreground
larger than or equal to a given threshdlg,. More formally, segmentation as early on as the second frame of a sequence
we compareimin to has obvious benefits for short sequences in video-sumedla

or for devices that embed a motion detection algorithm.
HSr(v(x) N{vr, v2,.. un} @ gince there is no temporal information in a single frame,

According to equation 2, the classification of a pixel valugre use the same assumption as the authors of [66], which is
v(z) involves the computation oV distances between(z) that neighboring pixels share a similar temporal distidout
and model samples, and &f comparison with a thresholdedThis justifies the fact that we populate the pixel models with
Euclidean distancé. This process is illustrated in Figure 1.values found in the spatial neighborhood of each pixel. More
Note that, as we are only interested in finding a few matchgsgcisely, we fill them with values randomly taken in their
the segmentation process of a pixel can be stopped Hree neighborhood in the first frame. The size of the neighborhood
matches have been found. needs to be chosen so that it is large enough to comprise

As can easily be seen, the accuracy of our model dssufficient number of different samples, while keeping in
determined by two parameters only: the radiusf the sphere mind that the statistical correlation between values desht
and the minimal cardinalit§min. Experiments have shown thatlocations decreases as the size of the neighborhood irsreas
a unique radius R of 20 (for monochromatic images) arfelom our experiments, selecting samples randomly in the
a cardinality of 2 are appropriate (see Section IV-A for 8-connected neighborhood of each pixel has proved to be
thorough discussion on parameter values). There is no negdisfactory for images di40 x 480 pixels.
to adapt these parameters during the background subtractioFormally, we assume that= 0 indexes the first frame and
nor do we need to change them for different pixel locationhat N¢(z) is a spatial neighborhood of a pixel location
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therefore It actually guarantees a sharp detection of the moving tdjec
MO(z) = {°(y |y € Na(x))} (4) given that they do not share similar colors with the back-

where locations are chosen randomly according to a unifornground. Unfortunately, it also leads to deadlock situatiand
¥ y g verlasting ghosts: a background sample incorrectly ifleds

Cevera e (for exampie 1 ne e of e neighbormoot 5 OTeGIONd prevents s background pixel model fomgein
smaller than the cardinality of°(z)) or to not be selected updated. This can keep indefinitely the background pixel

. i . model from being updated and could cause a permanent mis-

at all. However, this is not an issue if one acknowledges the}t e : .

values in the neiahborhood are excellent sample candidatec assification. Unfortunately, many practical scenareed| to
9 P Such situations. For example, the location freed by a pusijo

Th'.s strategy has proved to be s_ucce;sful._ The o_nly dra arked car cannot be included in the background model with a
back is that the presence of a moving object in the first frame

- : : urely conservative update scheme, unless a dedicatedeupda
will introduce an artifact commonly calledghost According &echyanism handles spuch situations P

to [24], a ghost is "a set of connected points, detected as "NBlind updateis not sensitive to deadlocks: samples are

motion but not corresponding to any real moving object”. lgldded to the background model whether they have been

this particular case, the ghost is caused by the unfortun%}gssiﬁed as background or not. The principal drawbackisf th

initialization of pixel models with samples coming from the : . . )
. . . Mmethod is a poor detection of slow moving targets, which are
moving object. In subsequent frames, the object moves an . . . .
. . rogressively included in the background model. A possible
uncovers the real background, which will be learned progres , °.. . . : . .
. . olution consists of using pixel models of a large size, Whic
sively through the regular model update process, making the

host fade over time. Fortunatelv. as shown in Section V- over long time windows. But this comes at the price of both
9 ) Y . ah increased memory usage and a higher computational cost.
our update process ensures both a fast model recovery in

: : . u?thermore, with a first-in first-out model update policglsu
presence of a ghost and a slow incorporation of real movi
objects into the background model.

W those employed in [53] or [65], 300 samples cover a time
window of only 10 seconds (at 30 frames per second). A pixel
covered by a slowly moving object for more than 10 seconds
C. Updating the background model over time would still be included in the background model.

In this Section, we describe how to continuously update theStrictly speaking, temporal information is not available
background model with each new frame. This a crucial steghen the background is masked. But background subtraction
if we want to achieve accurate results over time: the updasea spatio-temporal process. In order to improve the teghi
process must be able to adapt to lighting changes and todnarwdé could assume, as we proposed in Section IlI-B, that
new objects that appear in a scene. neighboring pixels are expected to have a similar temporal

1) General discussions on an update mechanishite distribution. According to this hypothesis, the best sggtis
classification step of our algorithm compares the curretiterefore to adopt a conservative update scheme and toiexplo
pixel value vf(x) directly to the samples contained in thespatial information in order to inject information regardi
background model of the previous fram&{’~!(z) at time the background evolution into the background pixel models
t — 1. Consequently, the question regardimpich samples masked locally by the foreground. This process is common in
have to be memorized by the model and fusw longis inpainting, where objects are removed and values are taken
essential. One can see the model as a background memorinothe neighborhood to fill holes [67]. In Section I1I-C4,
background history, as it is often referred to in the literat we provide a simple but effective method for exploiting
The classical approach to the updating of the backgrouspatial information, which enables us to counter most of the
history is to discard and replace old values after a numberdarfawbacks of a purely conservative update scheme.
frames or after a given period of time (typically about a few Our update method incorporates three important compo-
seconds); the oldest values are substituted by the new omemits: (1) a memoryless update policy, which ensures a $moot
Despite the rationale behind it, this substitution prifeis decaying lifespan for the samples stored in the background
not so obvious, as there is no reason to remove a valid vahigel models, (2) a random time subsampling to extend the
if it corresponds to a background value. time windows covered by the background pixel models, and

The question of including or not foreground pixel value§3) a mechanism that propagates background pixel samples
in the model is one that is always raised for a backgroumsgatially to ensure spatial consistency and to allow the-ada
subtraction method based on samples; otherwise the modion of the background pixel models that are masked by the
will not adapt to changing conditions. It boils down to a d®i foreground. These components are described, together with
between a conservative and a blind update scheme. Note thatreasons for using them, in the following three subsastio
kernel-based pdf estimation techniques have a softer appro 2) A memoryless update policjany sample-based meth-
to updating. They are able to smooth the appearance of a et use first-in first-out policies to update their models. In
value by giving it a weight prior to inclusion. order to deal properly with wide ranges of events in the scene

A conservative updatpolicy never includes a sample be-background, Wangt al. [65] propose the inclusion of large
longing to a foreground region in the background model. Imumbers of samples in pixel models. But as stated earlier,
practice, a pixel sample can be included in the backgroutids may still not be sufficient for high framerates. Other
model only if it has been classified as a background sampéeithors [53], [58] incorporate two temporal sub-models to
Such a policy seems, at first sight, to be the obvious choidendle both fast and slow modifications. This approach mtove
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Gy Oy Cy This expression shows that the expected remaining lifespan
any sample value of the model decays exponentially. It ajgpea
“ vl that the probability of a sample being preserved for theiaie
e v3 e %3 o (t, t + dt), assuming that it was included in the model prior
o, Y o, to time ¢, is independent of. In other words, the past has
R S e ' % no effect on the future. This property, called teemoryless
c o o property, is known to be applicable to an exponential dgnsit
(see [68]). This is a remarkable and, to our knowledge, wmiqu
]F\;g- 2. \?v of the 6 potshsilfle ?utcomes of ttf;]e updating Iof a pixetieh of SiZH!j? property in the field of background subtraction. It compiete
D et alues ocoupy the same color space 2 1ERSUiees us to define a time period for keeping a sample in the
models after the update. The decision process for selectigy particular history of a pixel and, to some extent, allows the update
model is random (with equal probabilities). mechanism to adapt to an arbitrary framerate.
3) Time subsamplingWe have shown how the use of a

to be effective. However, it increases the parametrizati r%ndom replacement policy allow our pixel model to cover
' ' P large (theoretically infinite) time window with a limited

problem, in that it makes necessary to determine a greg timber of samples. In order to further extend the size of

number of parameter values in order to achieve a practicfﬁil time window covered by a pixel model of a fixed size

implementation. . . . . L we resort to random time subsampling. The idea is that in
From a theoretical point of view, we believe that it is more

. . ... Mmany practical situations, it is not necessary to updaté eac
appropriate to ensure a monotonic decay of the probablllty qckground pixel model for each new frame. By making

a sample value to remain inside the set of samples. A PIXRe background update less frequent, we artificially extend

model should contain samples from the recent past of the pixg. expected lifespan of the background samples. But in the

but older samples should not necessarily be discarded. T L ,
: resence of periodic or pseudo-periodic background mstion
We propose a method that offers an exponential monoto@lc

S use of fixed subsampling intervals might prevent the
plecay for the remaining lifespan of the -sam.ples. The m.emgé?ckground model from properly adapting to these motions.
improves the time relevance of the estimation by allowing

o ) is motivates us to use mndom subsampling policy. In
few old samples to remain in the pixel model. Remember that_~ . . o .
ractice, when a pixel value has been classified as belonging

this approach is combined with a conservative update pol § the background, a random process determines whether this

so that foreground values should never be included in the, . : .
models value is used to update the corresponding pixel model.

The technique, illustrated in Figure 2, is simple but ef; In all ‘our tests, we adopted a time subsampling factor,

fective: instead of systematically removing the oldest [giam denoteds, of 16: a background pixel value haschance in

from the pixel model, we choose the sample to be discardle% of being selected to update its pixel model. But one may

randomly according to a uniform probability density fuocti W!Sh o tune this parameter to adjust the length of the time
indow covered by the pixel model.
The new value then replaces the selected sample. THS

random strategy contradicts the idea that older valuesidhou 4) Spatial consistency through background samples propa-

. - . ation: Since we use a conservative update scheme, we have
be replaced first, which is not true for a conservative updaté

policy. A conservative update policy is also necessary fier t 0'provide a way of updating the background pixel models that

stability of the process. Indeed, the random update polioy p are hidden by the foreground. A popular way of doing this is to

4 : .
duces a non-deterministic background subtraction algworit use what the authors of the” algorithm [33] call a detection

(to our knowledge, this is the first background subtractioSUpport map which counts the number of consecutive times

. . hat a pixel has been classified as foreground. If this number
algorithm to have that property). Only a conservative updal ; ; . )
) . . reaches a given threshold for a particular pixel location,
policy ensures that the models do not diverge over tim

. . . . . "fie current pixel value at that location is inserted into the
Despite this, there may be slight differences, Imloercm)tlbloackground model. A variant consists of including, in the

in our experience, between the results of the same sequefice

: . . ackground, groups of connected foreground pixels tha¢ hav
tpi);c])(ce:sessed by our background subtraction algorithm atrefe been found static for a long time, as in [69]. Some authdts, li

those of thelW* algorithm and those of the SACON model

Mathematically, the probability of a sample present in th o - e
model at timet being preserved after the update of the pix%%‘l]’ [65], use a combination of a pixel-level and an object
evel background update.

model is given byX=t. Assuming time continuity and the . .
N > . The strength of using a conservative update comes from
absence of memory in the selection procedure, we can derive

a similar probability, denoted®(¢, ¢ + dt) hereafter, for any it::sh::g; tn]a;relxila\éiluriinCcliasagf?”réZeflor\?\?r:i(l)gnc%r?vrsn?eer:/ter
further timet 4 dt. This probability is equal to y 9 P ' '

the support map related methods only delay the inclusion of
N — 1) -t foreground pixels. Furthermore, since these methods nely o
P(t, t +dt) = (T) ®) a binary decision, it takes time to recover from a improper
inclusion of a genuine foreground object in the background
model. A progressive inclusion of foreground samples in the

P(t, t+dt) = e~ In(+5x)dt, (6) background pixel models is more appropriate.

which can be rewritten as
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As stated earlier, we have a different approach. We consideMany metrics can be used to assess the output of a
that neighboring background pixels share a similar termpotzackground subtraction algorithm given a series of ground-
distribution and that a new background sample of a pixgluth segmentation maps. These metrics usually involve the
should also update the models of neighboring pixels. Asllowing quantities: the number of true positives (TP),igrh
cording to this policy, background models hidden by theounts the number of correctly detected foreground pixels;
foreground will be updated with background sampfesn the number of false positives (FP), which counts the number
neighboring pixel locationgrom time to time. This allows of background pixels incorrectly classified as foregrouhé,

a spatial diffusion of information regarding the backgrdunnumber of true negatives (TN), which counts the number of
evolution that relies on samples classifiedclusively as correctly classified background pixels; and the numberlséfa
background. Our background model is thus able to adaptregatives (FN), which accounts for the number of foreground
a changing illumination and to structural evolutions (atldepixels incorrectly classified as background.

or removed background objects) while relying onstict The difficulty of assessing background subtraction algo-
conservative update scheme. rithms originates from the lack of a standardized evaluatio

More precisely, let us consider the 4- or 8-connected dpatfeamework; some frameworks have been proposed by various
neighborhood of a pixek, that is Ng(z), and assume that authors but mainly with the aim of pointing out the advantage
it has been decided to update the set of samplé&r) by of their own method. According to [6], the metric most widely
insertingv(«). We then also use this valudz) to update the used in computer vision to assess the performance of a binary
set of samples\ (y € N¢(x)) from one of the pixels in the classifier is the Percentage of Correct Classification (PCC)
neighborhood, chosen at random according to a uniform lawhich combines all four values:

Since pixel models contain many samples, irrelevant infor-
mation that could accidentally be inserted into the neighbo PCC = TP+TN ) (7)
hood model does not affect the accuracy of the detection. TP+TN+FP+FN
Furthermore, the erroneous diffusion of irrelevant infation This metric was adopted for our comparative tests. Note that
is blocked by the need to match an observed value before it ¢he PC'C' percentage needs to be as high as possible, in order
propagate further. This natural limitation inhibits théa$ion to minimize errors.
of error.

Nc_)te that neither the sejlgct.ion policy nor th? sp_atial PO Determination of our own parameters
agation method is deterministic. As stated earlier, if thygpa i ) )
rithm is run over the same video sequence again, the result§™0mM Previous discussions,
will always differ slightly (see Figure 2). Although unuspa following parameters:
the strategy of allowing a random process to determine whiche the radiusR of the sphere used to compare a new pixel
samples are to be discarded proves to be very powerful. $hisi value to pixel samples (see equation 2),
different from known strategies that introduce a fadingdac  « the time subsampling facta,
or that use a long term and a short term history of values. e« the numberN of samples stored in each pixel model,

This concludes the description of our algorithm. ViBe makes » and the numbetmin Of close pixel samples needed to
no assumption regarding the video stream framerate or color classify a new pixel value as background (see equation 2).
space, nor regarding the scene content, the backgroutid itd@ our experience, the use of a radi’ss= 20 and a time
or its variability over time. Therefore, we refer to it as aubsampling factop = 16 leads to excellent results in every

it appears that ViBe has the

universal method. situation. Note that the use @t = 20 is an educated choice,
which corresponds to a perceptible difference in color.
IV. EXPERIMENTAL RESULTS To determine an optimal value fdfn,, we compute the

In this section, we determine optimal values for the pararavolution of the PCC of ViBe on the “pets” sequence fa
eters of ViBe, and compare its results with those of seveanging from 1 to 20. The other parameters were fixed to
other algorithms: two simple methods and five state-of-the @&V = 20, R = 20, and ¢ = 16. Figure 3 shows that the best
techniques. We also describe some advantageous andimtriCCs are obtained fdnin = 2 and fmin = 3.
properties of ViBe, and finally, we illustrate the suitatyilof Since a rise irtmin is likely to increase the computational
ViBe for embedded systems. cost of ViBe, we set the optimal value dfin t0 fmin = 2.

For the sake of comparison, we have produced manualypte that in our experience, the usetgf, = 1 can lead to
ground-truth segmentation maps for subsets of frames talextellent results in scenes with a stable background.
from two test sequences. The first sequence (called “house”Once the value of 2 has been selected ffgr, we study
was captured outdoor on a windy day. The second sequetize influence of the parametaf on the performance of ViBe.
(“pets”) was extracted from the PETS2001 public data-sBigure 4 shows percentages obtained on the “pets” sequence
(data-set 3, camera 2, testing). Both sequences are ajiagenfor N ranging from 2 to 50 R and ¢ were set to 20 and
as they feature background motion, moving trees and bush&8). We observe that higher values &f provide a better
and changing illumination conditions. The “pets” sequeisce performance. However, they tend to saturate for valuesenigh
first used below to determine objective values for some tfan 20. Since as forimn, large NV values induce a greater
the parameters of ViBe. We then compare ViBe with sevamomputational cost, we selegV at the beginning of the
existing algorithms on both sequences. plateau, that igV = 20.
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Fig. 3. Percentages of Correct Classification (PCCs)faf ranging from
1 to 20. The other parameters of ViBe were setNo= 20, R = 20, and
¢ = 16.

(f) Codebook (g) EGMM [Zivkovic] (h) GMM [Li et al.]

g os ]
o8 1 ‘
0.86 - 1 (@) Gassian model () 15t 6rder filter (k) Sigma-Delta Z.
084 1 Fig. 5. Comparative background/foreground segmentati@psmof nine

background subtraction techniques for one frame taken ftloen “house”
sequence. The segmentation maps of ViBe are the closest graund-truth
reference.

1 1 1 1
0 20 40 60 80 100
Number of samples

Fig. 4. Percentages of Correct Classification (PCCs) girennumber of

samples collected in a background model. us with their code to test their method. We implemented

the codebook algorithm ourselves and used the following
parameters50 training frames\ = 34, ¢; = 0.2, e = 50,
B. Comparison with other techniques a = 0.4, and 8 = 1.2. ViBe was tested with the default
values proposed in this papeN = 20, R = 20, #,, = 2,

We now compare the results of ViBe with those of five Stat%fnd 6 — 16. Most of the algorithms were tested using the

of-the-art background subtraction algorithms and two da i .
) : . . B color space; the codebook uses its own color space, and
methods: (1) the gaussian mixture model proposed in [4 N . .

the>. — A filter implementation works on grayscale image. In

(hereafter referred to as GMM); (2) the gaussian mlXtu%leddition, we implemented a grayscale version of ViBe.

model of [50] (referred to as EGMM); (3) the Bayesian _. ,
algorithm based on histograms introduced in [70]; (4) the Figures 5 and 6 show examples of foreground detection

codebook algorithm [62]; (5) the zipfiali — A estimator for one typical frame of each sequence. Foreground and

of [37]; (6) a single gaussian model with an adaptive V‘,maangackground pixels are shown in white and black respectively

(named “gaussian model” hereafter); and (7) the first-order
low-pass filter (that i3, = al; + (1 — ) B,_1, wherel, and Visually, the results of ViBe look better and are the closest

B, are respectively the input and background images at tirffe 9round-truth references. This is confirmed by the PCC
#), which is used as a baseline. scores; the PCC scores of the nine comparison algorithms for

The first-order low-pass filter was tested using a fadiffPth sequences are shown in Figure 7. .
factor o of 0.05 and a detection threshol of 20. A similar ~ We also compared the computation times of these nine
fading factora of 0.05 was used for the gaussian model. Thélgorithms with a profiling tool, and expressed the comporat
GMM of [70] and the Bayesian algorithm of [47] were testedmes in terms of_ achievable framerates. Figure 8 shows thell
using their implementations available in Intel's IPP imag@Verage processing speed on our platform (2.67GHz Core i7
processing library. For the EGMM algorithm of [50], we use@PY. 6GB of RAM, C implementation).
the implementation available on the author's weBsifthe =~ We did not optimize the code of the algorithms explicitly,

authors of the zipfiatt — A filter were kind enough to provide except in the case of tiie— A algorithm, which was optimized
by its authors, the algorithms of the IPP library (GMM and

Lhitp://staff.science.uva.nl/zivkovic/DOWNLOAD. html Bayesian histogram), which are optimized for Intel proocess
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Fig. 6. Comparative background/foreground segmentati@psmof nine
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sequence. Here too, the segmentation maps of ViBe are tlsestldo the
ground-truth reference. Codebook [ NNEG_
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PCC
and ViBe to some extent. To speed up operations involviny

random numbers in ViBe, we used a buffer pre-filled with
random numbers Fig. 7. Percentages of Correct Classification (PCCs) of hiaekground

subtraction techniques. ViBe has the highest PCCs.
We see that ViBe clearly outperforms the seven other

techniques: its PCCs are the highest for both sequences and
its processing speed is as high as a framerate of 200 frames
per second, that is 5 times more than algorithms optimized by
Intel. Compare these figures to those obtained by the afgorit

(b) Results for the second sequence (“pets”).

proposed by Chitet al. [71] recently; they claim to segment S Peta Zp! ravscaie) [
320 x 240 images at a framerate of arourdd frames per vige (grayscale) [ NNRNNEN
second. A simple rescaling to the size of our images lowe viee Ree) N
this value to10 frames per second.

The only method faster than ViBe is the zipfiah— A 8 Frevorertowrassier I
estimator, whose PCC i to 15% smaller than that of ViBe. g Gaussian Mode! [
The guthors of the zipfian S|gma-<_jelta algorithm provide é ecmm Zvkovicl [
us with post-processed segmentation maps of the “hous s
sequence which exhibit an improved PCC but a the cost cmm Lietal] [l
a lower processing speed. One can wonder how it is possit codebook [l
that ViBe runs faster than simpler techniques such as the fir: -

. . . . . . Bayesian Histogram I

order filter model. We discuss this question in Appendix B.

In terms of PCC scores, only the Bayesian algorithm of [7C 0 50 100 150 200 250 300 350 400 450 500
based on histograms competes with ViBe. However, it is mol Number of processed frames per second (FPS)

than 20 times slower than ViBe. As shown in Figures 5

and 6, the grayscale and the color versions of ViBe manala%;ir?é b
to combine both a very small rate of FP and a sharp detection

of the foreground pixels. The low FP rate of ViBe eliminates

Processing speed, expressed in terms of Frames PendSE-PS),
ackground subtraction techniques 6d6 x 480 pixels wide images.
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the need for any post-processing, which further allevidtes
total computational cost of the foreground detection.

Next, we concentrate on the specific strengths of ViBe: f
ghost suppression, intrinsic resilience to camera shatieen =
resilience, and suitability for embedding.

Fig. 10. Background/foreground segmentation maps forghth}i moving
C. Faster ghost suppression camera. If spatial propagation is deactivated, the camet&ns produce false
) positives in high-frequency areas (image in the centerjlenthe activation
A background model has to adapt to modifications of thw spatial propagation avoids a significant proportion dédepositives (right-
background caused by changing lighting conditions but al§8"d image)-
to those caused by the addition, removal, or displacement of
some of its parts. These events are the principal cause of }]het . .
i g istogram algorithm suppresses the same ghost area in 5
appearance of ghosts: regions of connected foregroundispmsnecondS
that do not correspond to any real object. ) . . . .
. . . One may ask how static foreground objects will ultimately
When using a detection support map or a related technqulJJe : . o
" . . . Ve included in the background model. The responsibility
to detect and suppress ghosts, it is very hard, if not imptessi . : :
o . for the absorption of foreground pixels into the background
to distinguish ghosts from foreground objects that areemily

static. As a result. real forearound obiects are includethin lies with the noise inevitably present in the video sequence
' ' g ) .Due to the noise, some pixels of the foreground object end

background model if they remain static for too long. This in the background, and then serve as background seeds.

: . . . . 3]
is a correct behavior since a static foreground object m"é%nsequently, their models are corrupted with foreground

eventually become part of the background after a given tIm%imples. These samples later diffuse into their neighborin

It would be better if ghosts were included in the backgroun odels. as a result of the spatial propagation mechanisheof t
model more rapidly than real objects, but this is impossible ' P propag

since they cannot be distinguished using a detection Suppggf:ekcgt;o.unﬁsagnpfs, an(?jallow a slow inclusion of foregdoun
map. ] in the background.

Our spatial update mechanism speeds up the inclusion of
ghosts in the background model so that the process is fadferResistance to camera displacements
than the inclusion of real static foreground objects. This be In many situations, small displacements of the camera are
achieved because the borders of the foreground objects oféacountered. These small displacements are typically alue t
exhibit colors that differ noticeably from those of the sd@sp vibrations or wind and, with many other techniques, theyseau
stored in the surrounding background pixel models. Whens@nificant numbers of false foreground detections.
foreground object stops moving, the information propamati Another obvious benefit of the spatial consistency of our
technique described in Section I1I-C4 updates the pixelef®d background model is an increased robustness against such
located at its borders with samples coming from surroundisgnall camera movements (see Figure 10). Since samples are
background pixels. But these samples are irrelevant: thehared between neighboring pixel models, small displaoésne
colors do not match at all those of the borders of the objedt the camera introduce very few erroneous foreground detec
In subsequent frames, the object remains in the foregroutidns.
since background samples cannot diffuse inside the fovegio  ViBe also has the capability of dealing with large displace-
object via its borders. ments of the camera, at the price of a modification of the

By contrast, a ghost area often shares similar colors witase algorithm. Since our model is purely pixel-based, we
the surrounding background. When background samples fraam make it able to handle moving cameras by allowing pixel
the area surrounding the ghost try to diffuse inside the ghosodels to follow the corresponding physical pixels acaogdi
they are likely to match the actual color of the image abthe movements of the camera. The movements of the camera
the locations where they are diffused. As a result, the ghasin be estimated either using embedded motion sensors or
is progressively eroded until it disappears entirely. FigQ directly from the video stream using an algorithmic tecleiq
illustrates this discussion. This concept is illustrated in Figures 11 and 12. The first

The speed of this process depends on the texture of #&ies shows images taken from an old DARPA challenge. The
background: the faster ghost suppressions are obtaindd va@amera pans the scene from left to right and the objective is
backgrounds void of edges. Furthermore, if the color of the follow the car. Figure 12 shows a similar scenario acquire
removed object is close to that of the uncovered backgrouwith a Pan-Tilt Zoom video-surveillance camera; the aimeher
area, the absorption of the ghost is faster. When needéedto track the person.
the speed of the ghost suppression process can be tuned blo produce the images of Figures 11 and 12, the displace-
adapting the time subsampling facter For example, in the ment vector between two consecutive frames is estimated for
sequence displayed in Figure 9, if we assume a framerateaofubset of background points located on a regularly spaced
30 frames per second, the ghost fades out after 2 secogdd using Lucas and Kanade’s optical flow estimator [72].
for a time subsampling factop equal to 1. However, if we The global displacement vector of the camera is computed
set ¢ to 64, it takes 2 minutes for ViBe to suppress thby averaging these pixel-wise displacement vectors. Tkel pi
ghost completely. For the sake of comparison, the Bayesiamodels are then relocated according to the displacement
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Fig. 9. Fast suppression of a ghost. In this scene, an olgemdrpet) is moved, leaving a ghost behind it in the backgtpand is detected as being part of
the foreground. It can be seen that the ghost is absorbedhatbackground model much faster than the foreground regporesponding to the real physical
object.

demonstrate that ViBe is the only technique that manages to
combine a low rate of FP with both a precise and accurate
detection of the foreground pixels.

Two factors must be credited for ViBe's high resilience to
noise. The first originates from our design, allowing theepix
models of ViBe to comprisexclusivelyobserved pixel values.
The pixel models of ViBe adapt to noise automatically, ay the
are constructed from noisy pixel values. The second factor
is the pure conservative update scheme used by ViBe (see
Section I1I-C). By relying on pixel values classified exdugdy
Fig. 11. Background/foreground segmentation maps for aiesemp taken as background, the mo.del. update_ policy of ViBe prevents
with a moving camera (from the DARPA challenge). the inclusion of any outlier in the pixel models. As a result,
these two factors ensure a continuous adaptation to the nois
present in the video sequence while maintaining coheraat pi
models.

F. Downscaled version and embedded implementation

Since ViBe has a low computational cost (see Figure 8) and
relies exclusively on integer computations, it is partciy
well suited to an embedded implementation. Furthermore,
the computational cost of ViBe can be further reduced by
using low values fortNV andf,,;,- Appendix B provides some
implementation details and compares the complexity of ViBe
Fig. 12. Background/foreground segmentation maps for aesep taken With respect to the complexity of the first-order filter madel
with a moving camera (surveillance camera). In Figure 14, we give the PCC scores and framerates
for a downscaled version of ViBe, which uses the absolute

¢ th insid | . ‘ . Tminimum of one comparison and one byte of memory per
of the camera inside a larger mosaic reference image. Thee| we also give the PCC scores and framerates for the

back_grou_nd r_no_d_el_ O_f plxe_ls that correspond_ to areas seen Fl?ﬁ version of ViBe and for the two faster techniques from
the f|r§t tlme is |n|.t|al|zed instantaneously using the mqhe our tests in Section IV-B. One can see, on the left hand side
des_cnbed in S(_ecuon II-B. It can _be seen _that., even wnkhsugf the graph in Figure 14, that the downscaled version of
a simple technique, the results displayed in Figures 11 @nd (g maintains a high PCC. Note that its PCC is higher than
are promising. that of the two GMM-based techniques tested in Section I1V-B
. . (see Figure 7a). In terms of processing speed or framerate,
E. Resilience to noise the zipfianX — A filter method of [37] is the only one to
To demonstrate the resilience of ViBe to noise, we comparbd faster than the downscaled version of ViBe. However, a
it to seven other techniques on a difficult noisy sequenpest-processing step of the segmentation map is necessary t
(called “cable™). This sequence shows an oscillating elegt increase the low PCC score of the zipfian- A method, and
cable filmed at a large distance withd@x optical zoom. As the computational cost induced by this post-processingge®
can be seen in Figure 13a, the difficult acquisition conddio reduces the framerate significantly.
result in a significant level of noise in the pixel values. Bac To illustrate the low computational cost of ViBe and its
ground/foreground segmentation maps displayed in Fig8re dimplicity, we embedded our algorithm in a digital camera.
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(c) ViBe (grayscale)

T4

(f) Bayesian histogram  (g) EGMM [Zivkovic] (h) Gaussian model (i) 1t order filter

Fig. 13. Background/foreground segmentation maps for camd taken from the noisy “cable” sequence.

vige (grayscale) [

e
% Vibe (grayscale, downscaled) _
S
k] First-Order Low-Pass Filter _
(V]
£
g Sigma-Delta Zipf (grayscale) _
80.00% 85.00% 90.00% 95.00% 100.00%
PCC
(a) Percentages of Correct Classification.
- vige (grayscale) [ Fig. 15. Embedded implementation of ViBe in a Canon camera.
% Vibe (grayscale, downscaled) _
£
S First-Order Low-Pass Filt : ;
é rt-order LowPass Fiter [N and the corresponding background pixel model. Secondly, we
S sigma-Detta Zipf (grayscale) [NRNRMEM explained how ViBe can be initialized with a single frame.
o 100 200 00 400 50 600 Th|_s_f_re_es us from the need to wait for several se_conds
Number of processed frames per second (FPS) to initialize the background model, an advantage for image
(b) FPS for images 0640 x 480 pixels. processing solutions embedded in digital cameras and for

Fig. 14. Percentages of Correct Classification (PCCs) amaepsing short .S.equences' Fma”y’ We presented our laSt. innovation
speeds of fast techniques, expressed in Frames Per Sedd8), {fcluding a@n original update mechanism. Instead of keeping samples
a downscaled version of ViBe which requires only one conspariand one in the pixel models for a fixed amount of time, we ignore
byte of memory per pixel. the insertion time of a pixel in the model and select a value
to be replaced randomly. This results in a smooth decaying

. i lifespan for the pixel samples, and enables an appropriate
The porting work of ViBe on &anon PowerShot SD870 ISbehavior of the technique for wider ranges of background

was pe_rformed with a modified version of _the OPEN SOUNeKo1ution rates while reducing the required number of saspl
alternative firmware CHDK Parameters of ViBe were set to eeding to be stored for each pixel model. Furthermore, we

N =5 andt,,, = 1. Despite the camera’s low speed ARM.

dt 6 fram@Qok 240 pixel also ensure the spatial consistency of the background model
pr_gce_ssor, We manage do process ra_lt?l it _p|Xﬁs by allowing samples to diffuse between neighboring pixel
;’:Vi'gfre'ranges per second on average. 1he result 1S Shown 13 yels. we observe that the spatial process is responsible f

a better resilience to camera motions, but that it also fuses
from the need to post-process segmentation maps in order to
V. CONCLUSIONS obtain spatially coherent results. To be effective, thetiapa
In this paper, we introduced a universal sample-based baBkoPagation technique and update mechanism are combined
ground subtraction algorithm, called ViBe, which combineith a strictly conservative update scheme: no foregrouxel p
three innovative techniques. value should ever be included in any background model.
Firstly, we proposed a classification model that is based onAfter a description of our algorithm, we determined optimal

a small number of correspondences between a candidate vaRigies for all the parameters of the method. Using this set of
parameter values, we then compared the classification score

2http://chdk.wikia.com and processing speeds of ViBe with those of seven other
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background subtraction algorithms on two sequences. \4Be i
shown to outperform all of these algorithms while beingdast
than six of them. Finally, we discussed the performance of a

14

/Il Euclidean distance computation
dist = EuclidDist(image[x][y],
samples[x][y][index]);

downscaled version of ViBe, which can process morethan 350 if (dist < R){
frames per second on our platform. This downscaled version count++;

was embedded in a digital camera to prove its suitability for
low speed platforms. Interestingly, we found that a version

}

index++;

of ViBe downscaled to the absolute minimum amount of }

resources for any background subtraction algorithm (ire2 o

/I 2. Classify pixel and update model

byte of memory and one comparison with a memorized value if (count >= tnin) {

per pixel) performed better than the state-of-the-artritlgms
in terms of the Percentage of Correct Classification cdteri

ViBe might well be a new milestone for the large family of

background subtraction algorithms.

I/l store that image[x][y] € background
segMap[x][y] = background;

/1l 3. Update current pixel model

/!l get random number between 0 ang-1

Please note that programs and object-code are available at int rand = getRandomNumber(0¢—1);

http://www.motiondetection.org.
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APPENDIXA
C-LIKE SOURCE CODE FOR OUR ALGORITHM

Pseudo-code of ViBe for grayscale images, comprising
default values for all the parameters of the method, is given

hereafter.

/I fixed parameters for ViBe

if (rand == 0)Y // random subsampling
/I replace randomly chosen sample
rand = getRandomNumber(ON—-1);
samples[x][y][rand] = image[x][Y];

/!l 4. Update neighboring pixel model
rand = getRandomNumber(0¢—1);

if (rand == 0 // random subsampling
/!l choose neighboring pixel randomly
int rng, Yng:

zng = getRandomNeighbrXCoordinate (x);
yne = getRandomNeighbrYCoordinate (y);
/I replace randomly chosen sample
rand = getRandomNumber(ON—-1);

/1l number of samples per pixel sampleskn,1[yns][rand] = image[x][y];
int N = 20; }

/I radius of the sphere

int R = 20; else{ // count < fmin

// number of close samples for being // store that image[x][y] € foreground
/Il part of the background (bg) segMap[x][y] = foreground;

int fmn = 2;

/I amount of random subsampling }

int ¢ = 16; }

/] data APPENDIX B

int width, height;
/Il current image
byte image[width][ height];

IMPLEMENTATION DETAILS, AND COMPLEXITY ANALYSIS
OF VIBE AND THE FIRSFORDER MODEL

/I background model As computation times of hardware or software operations
byte samples[width][height]]N]; might depend on the processor or the conjpile_r, it is hard to
/I background/foreground segmentation mapprowde an exact analy_5|s of the computation tmes. Inst_ead
byte segMap[width][height]: we present the steps involved for the computation of ViBe

and the first-order filter model and evaluate the number of
/1 background and foreground identifiers OPerations involved.

byte background = 0; For ViBe, the evaluation runs as follows:
byte foreground = 255; « Segmentation step:
Remember that we compare a new pixel value to back-
// for each pixel ground samples to find two matchegnf = 2). Once
for (int x = 0; x < width; x++){ two matches have been found, we step over to the
for (int y = 0; y < height; y++) next pixel and ignore the remaining background samples.
/l 1. Compare pixel to background model Operations involved during the segmentation step are:
int count = 0, index = 0, dist = O0; — comparison of the current pixel value with the values

while ((count < f#min) & (index < N)){ of the background model. Most of the time, the two
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first values of the background model of a pixel areje]
close to the new pixel value. Therefore, we consider
2,5 (byte) comparisons on average per pixel (this i%]
an experimentally estimated value).

— 1,5 (byte) comparisons of the counter to check if
there are at least 2 matching values in the modef,8
we only need to compare the counter value after the
comparison between the current pixel value and the
second value of the background model. B

« Update step:

— 1 pixel substitution per 16 background pixels (thﬁo]
update factorg, is equal to16). Because we have
to choose the value to substitute and access the

appropriate memory block in the model, we perforrﬁl

an addition on memory addresses. Then we perform
a similar operation, for a pixel in the neighborhood
(first we locate which pixel in the neighborhood td*2l

select, then which value to substitute).

In total, we evaluate the cost of the update step ad13]

additions on memory addresses férbackground
pixels.

[14]

o Summary (average per pixel, assuming that most pixels

belong to the background):

— 4 subtractions on bytes.
- 1% addition on memory addresses.

For the first-order model, we have:
« Segmentation step:
— 1 pixel comparison between an integer and a doull¥]

number.

« Update step:
— 2 multiplications and 1 addition on doubles, td*®

performB; = al; + (1 — a)B;—;.

o Summary (per pixel):

— 2 multiplications and 2 additions on doubles

[15]

[16]

[19]

From this comparison, it appears that, once the random nufe?!
bers are pre-calculated, the number of operations for ViBe
is similar to that of the first-order filter model. However, if21]
processors deal with “integer” (single byte) numbers faste

than “double” numbers or if an addition is computed in less

time than a multiplication, ViBe is faster than the first-erd [22]
model.
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