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Abstract—This paper presents a technique for motion detection
that incorporates several innovative mechanisms. For example,
our proposed technique stores, for each pixel, a set of values taken
in the past at the same location or in the neighborhood. It then
compares this set to the current pixel value in order to determine
whether that pixel belongs to the background, and adapts the
model by choosing randomly which values to substitute from the
background model. This approach differs from those based on
the classical belief that the oldest values should be replaced first.
Finally, when the pixel is found to be part of the background,its
value is propagated into the background model of a neighboring
pixel.

We describe our method in full details (including pseudo-
code and the parameter values used) and compare it to other
background subtraction techniques. Efficiency figures showthat
our method outperforms recent and proven state-of-the-art
methods in terms of both computation speed and detection
rate. We also analyze the performance of a downscaled version
of our algorithm to the absolute minimum of one comparison
and one byte of memory per pixel. It appears that even such
a simplified version of our algorithm performs better than
mainstream techniques. An implementation of ViBe is available
at http://www.motiondetection.org.

Index Terms—Background subtraction, surveillance, video sig-
nal processing, learning (artificial intelligence), imagesegmenta-
tion, vision and scene understanding, computer vision, image
motion analysis, pixel classification, real-time systems.
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I. I NTRODUCTION

T HE number of cameras available worldwide has increased
dramatically over the last decade. But this growth has

resulted in a huge augmentation of data, meaning that the
data are impossible either to store or to handle manually.
In order to detect, segment, and track objects automatically
in videos, several approaches are possible. Simple motion
detection algorithms compare a static background frame with
the current frame of a video scene, pixel by pixel. This is

the basic principle of background subtraction, which can be
formulated as a technique that builds a model of a background
and compares this model with the current frame in order
to detect zones where a significant difference occurs. The
purpose of a background subtraction algorithm is therefore
to distinguish moving objects (hereafter referred to as the
foreground) from static, or slow moving, parts of the scene
(called background). Note that when a static object starts
moving, a background subtraction algorithm detects the object
in motion as well as a hole left behind in the background
(referred to as aghost). Clearly a ghost is irrelevant for motion
interpretation and has to be discarded. An alternative definition
for the background is that it corresponds to a reference frame
with values visible most of the time, that is with the highest
appearance probability, but this kind of framework is not
straightforward to use in practice.

While a static background model might be appropriate for
analyzing short video sequences in a constrained indoor envi-
ronment, the model is ineffective for most practical situations;
a more sophisticated model is therefore required. Moreover,
the detection of motion is often only a first step in the
process of understanding the scene. For example, zones where
motion is detected might be filtered and characterized for the
detection of unattended bags, gait recognition, face detection,
people counting, traffic surveillance, etc. The diversity of scene
backgrounds and applications explains why countless papers
discuss issues related to background subtraction.

In this paper, we present a universal method for background
subtraction. This method has been briefly described in [1]
and in a patent [2]. In Section II, we extensively review the
literature of background subtraction algorithms. This review
presents the major frameworks developed for background
subtraction and highlights their respective advantages. We have
implemented some of these algorithms in order to compare
them with our method. Section III describes our technique and
details our major innovations: the background model, the ini-
tialization process, and the update mechanism. Section IV dis-
cusses experimental results including comparisons with other
state-of-the-art algorithms and computational performance. We
also present a simplified version of our algorithm which
requires only one comparison and one byte of memory per
pixel; this is the absolute minimum in terms of comparisons
and memory for any background subtraction technique. We
show that, even in its simplified form, our algorithm performs
better than more sophisticated techniques. Section V concludes
the paper.
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II. REVIEW OF BACKGROUND SUBTRACTION ALGORITHMS

The problem tackled by background subtraction techniques
involves the comparison of an observed image with an es-
timated image that does not contain any object of interest;
this is referred to as the background model (or background
image) [3]. This comparison process, calledforeground detec-
tion, divides the observed image into two complementary sets
of pixels that cover the entire image: (1) the foreground that
contains the objects of interest, and (2) the background, its
complementary set. As stated in [4], it is difficult to specify
a gold-standard definition of what a background subtraction
technique should detect as a foreground region, as the defini-
tion of foreground objects relates to the application level.

Many background subtraction techniques have been pro-
posed with as many models and segmentation strategies, and
several surveys are devoted to this topic (see for example [3]–
[9]). Some algorithms focus on specific requirements that an
ideal background subtraction technique could or should fulfill.
According to [7], a background subtraction technique must
adapt to gradual or fast illumination changes (changing time of
day, clouds, etc), motion changes (camera oscillations), high
frequency background objects (e.g. tree leave or branches),
and changes in the background geometry (e.g. parked cars).
Some applications require background subtraction algorithms
to be embedded in the camera, so that the computational load
becomes the major concern. For the surveillance of outdoor
scenes, robustness against noise and adaptivity to illumination
changes are also essential.

Most techniques described in the literature operate on each
pixel independently. These techniques relegate entirely to post-
processing algorithms the task of adding some form of spatial
consistency to their results. Since perturbations often affect
individual pixels, this results in local misclassifications. By
contrast, the method described by Seikiet al. in [10] is based
on the assumption that neighboring blocks of background
pixels should follow similar variations over time. While this
assumption holds most of the time, especially for pixels
belonging to the same background object, it becomes problem-
atic for neighboring pixels located at the border of multiple
background objects. Despite this inconvenience, pixels are
aggregated into blocks and eachN ×N block is processed as
an N2-component vector. A few samples are then collected
over time and used to train a Principal Component Analysis
(PCA) model for each block. A block of a new video frame is
classified as background if its observed image pattern is close
to its reconstructions using PCA projection coefficients of8-
neighboring blocks. Such a technique is also described in [11],
but it lacks an update mechanism to adapt the block models
over time. In [12], the authors focus on the PCA reconstruction
error. While the PCA model is also trained with time samples,
the resulting model accounts for the whole image. Individual
pixels are classified as background or foreground using simple
image difference thresholding between the current image and
the backprojection in the image space of its PCA coefficients.
As for other PCA-based methods, the initialization processand
the update mechanism are not described.

A similar approach, the Independent Component Analysis

(ICA) of serialized images from a training sequence, is de-
scribed in [13] in the training of an ICA model. The resulting
de-mixing vector is then computed and compared to that of a
new image in order to separate the foreground from a reference
background image. The method is said to be highly robust to
indoor illumination changes.

A two-level mechanism based on a classifier is introduced
in [14]. A classifier first determines whether an image block
belongs to the background. Appropriate blockwise updates of
the background image are then carried out in the second stage,
depending on the results of the classification. Classification
algorithms are also the basis of other algorithms, as in the
one provided in [15], where the background model learns its
motion patterns by self organization through artificial neural
networks.

Algorithms based on the framework of compressive sensing
perform background subtraction by learning and adapting
a low dimensional compressed representation of the back-
ground [16]. The major advantage of this approach lies in
the fact that compressive sensing estimates object silhouettes
without any auxiliary image reconstruction. On the other hand,
objects in the foreground need to occupy only a small portion
of the camera view in order to be detected correctly.

Background subtraction is considered to be a sparse error
recovery problem in [17]. These authors assumed that each
color channel in the video can be independently modeled as the
linear combination of the same color channel from other video
frames. Consequently, the method they proposed is able to
accurately compensate for global changes in the illumination
sources without altering the general structure of the frame
composition by finding appropriate scalings for each color
channel separately.

Background estimation is formulated in [18] as an optimal
labeling problem in which each pixel of the background image
is labeled with a frame number, indicating which color from
the past must be copied. The author’s proposed algorithm pro-
duces a background image, which is constructed by copying
areas from the input frames. Impressive results are shown for
static backgrounds but the method is not designed to cope with
objects moving slowly in the background, as its outcome is a
single static background frame.

The authors of [19] were inspired by the biological mech-
anism of motion-based perceptual grouping. They propose a
spatio-temporal saliency algorithm applicable to scenes with
highly dynamic backgrounds, which can be used to perform
background subtraction. Comparisons of their algorithm with
other state-of-the-art techniques show that their algorithm
reduces the average error rate, but at a cost of a prohibitive
processing time (several seconds per frame), which makes it
unsuitable for real-time applications.

Pixel-based background subtraction techniques compensate
for the lack of spatial consistency by a constant updating
of their model parameters. The simplest techniques in this
category are the use of a static background frame (which
has recently been used in [20]), the (weighted) running aver-
age [21], first-order low-pass filtering [22], temporal median
filtering [23], [24], and the modeling of each pixel with a
gaussian [25]–[27].
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Probabilistic methods predict the short-term evolution ofa
background frame with a Wiener [28] or a Kalman [29] filter.
In [28], a frame-level component is added to the pixel-level
operations. Its purpose is to detect sudden and global changes
in the image and to adapt the background frame accordingly.
Median and gaussian models can be combined to allow inliers
(with respect to the median) to have more weight than outliers
during the gaussian modeling, as in [30] or [31]. A method
for properly initializing a gaussian background model from
a video sequence in which moving objects are present is
proposed in [32].

The W 4 model presented in [33] is a rather simple but
nevertheless effective method. It uses three values to represent
each pixel in the background image: the minimum and max-
imum intensity values, and the maximum intensity difference
between consecutive images of the training sequence. The
authors of [34] bring a small improvement to theW 4 model
together with the incorporation of a technique for shadow
detection and removal.

Methods based onΣ − ∆ (sigma-delta) motion detection
filters [35]–[37] are popular for embedded processing [38],
[39]. As in the case of analog-to-digital converters, aΣ −∆
motion detection filter consists of a simple non-linear recursive
approximation of the background image, which is based on
comparison and on an elementary increment/decrement (usu-
ally −1, 0, and1 are the only possible updating values). The
Σ−∆ motion detection filter is therefore well suited to many
embedded systems that lack a floating point unit.

All these unimodal techniques can lead to satisfactory re-
sults in controlled environments while remaining fast, easy to
implement, and simple. However, more sophisticated methods
are necessary when dealing with videos captured in complex
environments where moving background, camera egomotion,
and high sensor noise are encountered [5].

Over the years, increasingly complex pixel-level algorithms
have been proposed. Among these, by far the most popular
is the Gaussian Mixture Model (GMM) [40], [41]. First pre-
sented in [40], this model consists of modeling the distribution
of the values observed over time at each pixel by a weighted
mixture of gaussians. This background pixel model is able to
cope with the multimodal nature of many practical situations
and leads to good results when repetitive background motions,
such as tree leaves or branches, are encountered. Since its
introduction, the model has gained vastly in popularity among
the computer vision community [4], [7], [11], [42]–[44], and it
is still raising a lot of interest as authors continue to revisit the
method and propose enhanced algorithms [45]–[50]. In [51],
a particle swarm optimization method is proposed to automat-
ically determine the parameters of the GMM algorithm. The
authors of [52] combine a GMM model with a region-based
algorithm based on color histograms and texture information.
In their experiments, the authors’ method outperform the
original GMM algorithm. However, the authors’ technique
has a considerable computational cost as they only manage
to process seven frames of640× 480 pixels per second with
an Intel Xeon 5150 processor.

The downside of the GMM algorithm resides in its strong
assumptions that the background is more frequently visible

than the foreground and that its variance is significantly
lower. None of this is valid for every time window. Fur-
thermore, if high- and low-frequency changes are present in
the background, its sensitivity cannot be accurately tunedand
the model may adapt to the targets themselves or miss the
detection of some high speed targets, as detailed in [53].
Also, the estimation of the parameters of the model (especially
the variance) can become problematic in real-world noisy
environments. This often leaves one with no other choice than
to use a fixed variance in a hardware implementation. Finally,
it should be noted that the statistical relevance of a gaussian
model is debatable as some authors claim that natural images
exhibit non-gaussian statistics [54].

To avoid the difficult question of finding an appropriate
shape for the probability density function, some authors
have turned their attention to non-parametric methods to
model background distributions. One of the strengths of non-
parametric kernel density estimation methods [53], [55]–[59]
is their ability to circumvent a part of the delicate parameter
estimation step due to the fact that they rely on pixel values
observed in the past. For each pixel, these methods build a
histogram of background values by accumulating a set of
real values sampled from the pixel’s recent history. These
methods then estimate the probability density function with
this histogram to determine whether or not a pixel value of
the current frame belongs to the background. Non-parametric
kernel density estimation methods can provide fast responses
to high-frequency events in the background by directly includ-
ing newly observed values in the pixel model. However, the
ability of these methods to successfully handle concomitant
events evolving at various speeds is questionable since they
update their pixel models in a first-in first-out manner. This
has led some authors to represent background values with
two series of values or models: a short term model and a
long term model [53], [60]. While this can be a convenient
solution for some situations, it leaves open the question of
how to determine the proper time interval. In practical terms,
handling two models increases the difficulty of fine-tuning the
values of the underlying parameters. Our method incorporates
a smoother lifespan policy for the sampled values, and as
explained in Section IV, it improves the overall detection
quality significantly.

In the codebook algorithm [61], [62], each pixel is rep-
resented by a codebook, which is a compressed form of
background model for a long image sequence. Each codebook
is composed of codewords comprising colors transformed by
an innovative color distortion metric. An improved codebook
incorporating the spatial and temporal context of each pixel
has been proposed in [63]. Codebooks are believed to be
able to capture background motion over a long period of
time with a limited amount of memory. Therefore, codebooks
are learned from a typically long training sequence and a
codebook update mechanism is described in [62] allowing
the algorithm to evolve with the lighting conditions once the
training phase is over. However, one should note that the
proposed codebook update mechanism does not allow the
creation of new codewords, and this can be problematic if
permanent structural changes occur in the background (for
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example, in the case of newly freed parking spots in urban
outdoor scenes).

Instead of choosing a particular form of background density
model, the authors of [64], [65] use the notion of “consensus”.
They keep a cache of a given number of last observed
background values for each pixel and classify a new value
as background if it matches most of the values stored in
the pixel’s model. One might expect that such an approach
would avoid the issues related to deviations from an arbitrarily
assumed density model, but since values of pixel models are
replaced according to a first-in first-out update policy, they are
also prone to the problems discussed previously, for example,
the problem of slow and fast motions in the background,
unless a large number of pixel samples are stored. The authors
state that a cache of 20 samples is the minimum required for
the method to be useful, but they also noticed no significant
further improvement for caches with more than 60 samples.
Consequently, the training period for their algorithm must
comprise at least 20 frames. Finally, to cope with lighting
changes and objects appearing or fading in the background,
two additional mechanisms (one at the pixel level, a second at
the blob level) are added to the consensus algorithm to handle
entire objects.

The method proposed in this paper operates differently in
handling new or fading objects in the background, without
the need to take account of them explicitly. In addition to
being faster, our method exhibits an interesting asymmetry
in that a ghost (a region of the background discovered once
a static object starts moving) is added to the background
model more quickly than an object that stops moving. Another
major contribution of this paper resides in the proposed update
policy. The underlying idea is to gather samples from the past
and to update the sample values by ignoring when they were
added to the models. This policy ensures a smooth exponential
decaying lifespan for the sample values of the pixel models and
allows our technique to deal with concomitant events evolving
at various speeds with a unique model of a reasonable size for
each pixel.

III. D ESCRIPTION OF A UNIVERSAL BACKGROUND

SUBTRACTION TECHNIQUE: V IBE

Background subtraction techniques have to deal with at
least three considerations in order to be successful in real
applications: (1) what is the model and how does it behave?,
(2) how is the model initialized?, and (3) how is the model
updated over time? Answers to these questions are given in
the three subsections of this section. Most papers describethe
intrinsic model and the updating mechanism. Only a minority
of papers discuss initialization, which is critical when a fast
response is expected, as in the case inside a digital camera.In
addition, there is often a lack of coherence between the model
and the update mechanism. For example, some techniques
compare the current value of a pixelp to that of a model
b with a given toleranceT . They consider that there is a good
match if the absolute difference betweenp and b is lower
thanT . To be adaptive over time,T is adjusted with respect
to the statistical variance ofp. But the statistical variance is

estimated by a temporal average. Therefore, the adjustment
speed is dependent on the acquisition framerate and on the
number of background pixels. This is inappropriate in some
cases, as in the case of remote IP cameras whose framerate is
determined by the available bandwidth.

We detail below a background subtraction technique, called
“ViBe” (for “VIsual Background Extractor”). For convenience,
we present a complete version of our algorithm in a C-like
code in Appendix A.

A. Pixel model and classification process

To some extent, there is no way around the determination,
for a given color space, of a probability density function (pdf)
for every background pixel or at least the determination of
statistical parameters, such as the mean or the variance. Note
that with a gaussian model, there is no distinction to be made
as the knowledge of the mean and variance is sufficient to
determine the pdf. While the classical approaches to back-
ground subtraction and most mainstream techniques rely on
pdfs or statistical parameters, the question of their statistical
significance is rarely discussed, if not simply ignored. In
fact, there is no imperative to compute the pdf as long as
the goal of reaching a relevant background segmentation is
achieved. An alternative is to consider that one should enhance
statistical significance over time, and one way to proceed isto
build a model with real observed pixel values. The underlying
assumption is that this makes more sense from a stochastic
point of view, as already observed values should have a higher
probability of being observed again than would values not yet
encountered.

Like the authors of [65], we do not opt for a particular
form for the pdf, as deviations from the assumed pdf model
are ubiquitous. Furthermore, the evaluation of the pdf is a
global process and the shape of a pdf is sensitive to outliers.
In addition, the estimation of the pdf raises the non-obvious
question regarding the number of samples to be considered;
the problem of selecting a representative number of samples
is intrinsic to all the estimation processes.

If we see the problem of background subtraction as a
classification problem, we want to classify a new pixel value
with respect to its immediate neighborhood in the chosen
color space, so as to avoid the effect of any outliers. This
motivates us to model each background pixel with a set of
samples instead of with an explicit pixel model. Consequently
no estimation of the pdf of the background pixel is performed,
and so the current value of the pixel is compared to its
closest samples within the collection of samples. This is an
important difference in comparison with existing algorithms,
in particular with those of consensus-based techniques. A new
value is compared to background samples and should be close
to some of the sample values instead of the majority of all
values. The underlying idea is that it is more reliable to
estimate the statistical distribution of a background pixel with
a small number of close values than with a large number of
samples. This is somewhat similar to ignoring the extremities
of the pdf, or to considering only the central part of the
underlying pdf by thresholding it. On the other hand, if one
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Fig. 1. Comparison of a pixel value with a set of samples in a two
dimensional Euclidean color space(C1, C2). To classify v(x), we count
the number of samples ofM(x) intersecting the sphere of radiusR centered
on v(x).

trusts the values of the model, it is crucial to select background
pixel samples carefully. The classification of pixels in the
background therefore needs to be conservative, in the sense
that only background pixels should populate the background
models.

Formally, let us denote byv(x) the value in a given
Euclidean color space taken by the pixel located atx in the
image, and byvi a background sample value with an index
i. Each background pixelx is modeled by a collection ofN
background sample values

M(x) = {v1, v2, . . . , vN} (1)

taken in previous frames. For now, we ignore the notion of
time; this is discussed later.

To classify a pixel valuev(x) according to its corresponding
modelM(x), we compare it to theclosestvalues within the
set of samples by defining a sphereSR(v(x)) of radiusR
centered onv(x). The pixel valuev(x) is then classified as
background if the cardinality, denoted♯, of the set intersection
of this sphere and the collection of model samplesM(x) is
larger than or equal to a given threshold♯min. More formally,
we compare♯min to

♯{SR(v(x)) ∩ {v1, v2, . . . , vN}}. (2)

According to equation 2, the classification of a pixel value
v(x) involves the computation ofN distances betweenv(x)
and model samples, and ofN comparison with a thresholded
Euclidean distanceR. This process is illustrated in Figure 1.
Note that, as we are only interested in finding a few matches,
the segmentation process of a pixel can be stopped once♯min

matches have been found.
As can easily be seen, the accuracy of our model is

determined by two parameters only: the radiusR of the sphere
and the minimal cardinality♯min. Experiments have shown that
a unique radius R of 20 (for monochromatic images) and
a cardinality of 2 are appropriate (see Section IV-A for a
thorough discussion on parameter values). There is no need
to adapt these parameters during the background subtraction
nor do we need to change them for different pixel locations

within the image. Note that since the number of samplesN

and ♯min are chosen to be fixed and since they impact on the
same decision, the sensitivity of the model can be adjusted
using the following ratio

♯min

N
, (3)

but in all our comparative tests we kept these values un-
changed.

So far we have detailed the nature of the model. In the
coming sections, we explain how to initialize the model from
a single frame and how to update it over time.

B. Background model initialization from a single frame

Many popular techniques described in the literature, such
as [53], [62], and [65], need a sequence of several dozens
of frames to initialize their models. Such an approach makes
sense from a statistical point of view as it seems imperative
to gather a significant amount of data in order to estimate
the temporal distribution of the background pixels. But one
may wish to segment the foreground of a sequence that is
even shorter than the typical initialization sequence required by
some background subtraction algorithms. Furthermore, many
applications require the ability to provide anuninterrupted
foreground detection, even in the presence of sudden light
changes, which cannot be handled properly by the regular
update mechanism of the algorithm. A possible solution to
both these issues is to provide a specific model update process
that tunes the pixel models to new lighting conditions. But the
use of such a dedicated update process is at best delicate, since
a sudden illumination may completely alter the chromatic
properties of the background.

A more convenient solution is to provide a technique that
will initialize the background model from a single frame.
Given such a technique, the response to sudden illumination
changes is straightforward: the existing background model
is discarded and a new model is initialized instantaneously.
Furthermore, being able to provide a reliable foreground
segmentation as early on as the second frame of a sequence
has obvious benefits for short sequences in video-surveillance
or for devices that embed a motion detection algorithm.

Since there is no temporal information in a single frame,
we use the same assumption as the authors of [66], which is
that neighboring pixels share a similar temporal distribution.
This justifies the fact that we populate the pixel models with
values found in the spatial neighborhood of each pixel. More
precisely, we fill them with values randomly taken in their
neighborhood in the first frame. The size of the neighborhood
needs to be chosen so that it is large enough to comprise
a sufficient number of different samples, while keeping in
mind that the statistical correlation between values at different
locations decreases as the size of the neighborhood increases.
From our experiments, selecting samples randomly in the
8-connected neighborhood of each pixel has proved to be
satisfactory for images of640× 480 pixels.

Formally, we assume thatt = 0 indexes the first frame and
that NG(x) is a spatial neighborhood of a pixel locationx,
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therefore
M0(x) = {v0(y | y ∈ NG(x))} (4)

where locationsy are chosen randomly according to a uniform
law. Note that it is possible for a givenv0(y) to be selected
several times (for example if the size of the neighborhood is
smaller than the cardinality ofM0(x)) or to not be selected
at all. However, this is not an issue if one acknowledges that
values in the neighborhood are excellent sample candidates.

This strategy has proved to be successful. The only draw-
back is that the presence of a moving object in the first frame
will introduce an artifact commonly called aghost. According
to [24], a ghost is “a set of connected points, detected as in
motion but not corresponding to any real moving object”. In
this particular case, the ghost is caused by the unfortunate
initialization of pixel models with samples coming from the
moving object. In subsequent frames, the object moves and
uncovers the real background, which will be learned progres-
sively through the regular model update process, making the
ghost fade over time. Fortunately, as shown in Section IV-C,
our update process ensures both a fast model recovery in the
presence of a ghost and a slow incorporation of real moving
objects into the background model.

C. Updating the background model over time

In this Section, we describe how to continuously update the
background model with each new frame. This a crucial step
if we want to achieve accurate results over time: the update
process must be able to adapt to lighting changes and to handle
new objects that appear in a scene.

1) General discussions on an update mechanism:The
classification step of our algorithm compares the current
pixel value vt(x) directly to the samples contained in the
background model of the previous frame,Mt−1(x) at time
t − 1. Consequently, the question regardingwhich samples
have to be memorized by the model and forhow long is
essential. One can see the model as a background memory or
background history, as it is often referred to in the literature.
The classical approach to the updating of the background
history is to discard and replace old values after a number of
frames or after a given period of time (typically about a few
seconds); the oldest values are substituted by the new ones.
Despite the rationale behind it, this substitution principle is
not so obvious, as there is no reason to remove a valid value
if it corresponds to a background value.

The question of including or not foreground pixel values
in the model is one that is always raised for a background
subtraction method based on samples; otherwise the model
will not adapt to changing conditions. It boils down to a choice
between a conservative and a blind update scheme. Note that
kernel-based pdf estimation techniques have a softer approach
to updating. They are able to smooth the appearance of a new
value by giving it a weight prior to inclusion.

A conservative updatepolicy never includes a sample be-
longing to a foreground region in the background model. In
practice, a pixel sample can be included in the background
model only if it has been classified as a background sample.
Such a policy seems, at first sight, to be the obvious choice.

It actually guarantees a sharp detection of the moving objects,
given that they do not share similar colors with the back-
ground. Unfortunately, it also leads to deadlock situations and
everlasting ghosts: a background sample incorrectly classified
as foreground prevents its background pixel model from being
updated. This can keep indefinitely the background pixel
model from being updated and could cause a permanent mis-
classification. Unfortunately, many practical scenarios lead to
such situations. For example, the location freed by a previously
parked car cannot be included in the background model with a
purely conservative update scheme, unless a dedicated update
mechanism handles such situations.

Blind update is not sensitive to deadlocks: samples are
added to the background model whether they have been
classified as background or not. The principal drawback of this
method is a poor detection of slow moving targets, which are
progressively included in the background model. A possible
solution consists of using pixel models of a large size, which
cover long time windows. But this comes at the price of both
an increased memory usage and a higher computational cost.
Furthermore, with a first-in first-out model update policy such
as those employed in [53] or [65], 300 samples cover a time
window of only 10 seconds (at 30 frames per second). A pixel
covered by a slowly moving object for more than 10 seconds
would still be included in the background model.

Strictly speaking, temporal information is not available
when the background is masked. But background subtraction
is a spatio-temporal process. In order to improve the technique,
we could assume, as we proposed in Section III-B, that
neighboring pixels are expected to have a similar temporal
distribution. According to this hypothesis, the best strategy is
therefore to adopt a conservative update scheme and to exploit
spatial information in order to inject information regarding
the background evolution into the background pixel models
masked locally by the foreground. This process is common in
inpainting, where objects are removed and values are taken
in the neighborhood to fill holes [67]. In Section III-C4,
we provide a simple but effective method for exploiting
spatial information, which enables us to counter most of the
drawbacks of a purely conservative update scheme.

Our update method incorporates three important compo-
nents: (1) a memoryless update policy, which ensures a smooth
decaying lifespan for the samples stored in the background
pixel models, (2) a random time subsampling to extend the
time windows covered by the background pixel models, and
(3) a mechanism that propagates background pixel samples
spatially to ensure spatial consistency and to allow the adap-
tation of the background pixel models that are masked by the
foreground. These components are described, together with
our reasons for using them, in the following three subsections.

2) A memoryless update policy:Many sample-based meth-
ods use first-in first-out policies to update their models. In
order to deal properly with wide ranges of events in the scene
background, Wanget al. [65] propose the inclusion of large
numbers of samples in pixel models. But as stated earlier,
this may still not be sufficient for high framerates. Other
authors [53], [58] incorporate two temporal sub-models to
handle both fast and slow modifications. This approach proved
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Fig. 2. 3 of the 6 possible outcomes of the updating of a pixel model of size
N = 6. We assume that values occupy the same color space as in Figure 1
and that we have decided to update the model. This figure shows3 possible
models after the update. The decision process for selectingone particular
model is random (with equal probabilities).

to be effective. However, it increases the parametrization
problem, in that it makes necessary to determine a greater
number of parameter values in order to achieve a practical
implementation.

From a theoretical point of view, we believe that it is more
appropriate to ensure a monotonic decay of the probability of
a sample value to remain inside the set of samples. A pixel
model should contain samples from the recent past of the pixel
but older samples should not necessarily be discarded.

We propose a method that offers an exponential monotonic
decay for the remaining lifespan of the samples. The method
improves the time relevance of the estimation by allowing a
few old samples to remain in the pixel model. Remember that
this approach is combined with a conservative update policy,
so that foreground values should never be included in the
models.

The technique, illustrated in Figure 2, is simple but ef-
fective: instead of systematically removing the oldest sample
from the pixel model, we choose the sample to be discarded
randomly according to a uniform probability density function.

The new value then replaces the selected sample. This
random strategy contradicts the idea that older values should
be replaced first, which is not true for a conservative update
policy. A conservative update policy is also necessary for the
stability of the process. Indeed, the random update policy pro-
duces a non-deterministic background subtraction algorithm
(to our knowledge, this is the first background subtraction
algorithm to have that property). Only a conservative update
policy ensures that the models do not diverge over time.
Despite this, there may be slight differences, imperceptible
in our experience, between the results of the same sequence
processed by our background subtraction algorithm at different
times.

Mathematically, the probability of a sample present in the
model at timet being preserved after the update of the pixel
model is given byN−1

N
. Assuming time continuity and the

absence of memory in the selection procedure, we can derive
a similar probability, denotedP (t, t+ dt) hereafter, for any
further timet+ dt. This probability is equal to

P (t, t+ dt) =

(

N − 1

N

)(t+dt)−t

(5)

which can be rewritten as

P (t, t+ dt) = e− ln( N

N−1
)dt. (6)

This expression shows that the expected remaining lifespanof
any sample value of the model decays exponentially. It appears
that the probability of a sample being preserved for the interval
(t, t + dt), assuming that it was included in the model prior
to time t, is independent oft. In other words, the past has
no effect on the future. This property, called thememoryless
property, is known to be applicable to an exponential density
(see [68]). This is a remarkable and, to our knowledge, unique
property in the field of background subtraction. It completely
frees us to define a time period for keeping a sample in the
history of a pixel and, to some extent, allows the update
mechanism to adapt to an arbitrary framerate.

3) Time subsampling:We have shown how the use of a
random replacement policy allow our pixel model to cover
a large (theoretically infinite) time window with a limited
number of samples. In order to further extend the size of
the time window covered by a pixel model of a fixed size,
we resort to random time subsampling. The idea is that in
many practical situations, it is not necessary to update each
background pixel model for each new frame. By making
the background update less frequent, we artificially extend
the expected lifespan of the background samples. But in the
presence of periodic or pseudo-periodic background motions,
the use of fixed subsampling intervals might prevent the
background model from properly adapting to these motions.
This motivates us to use arandom subsampling policy. In
practice, when a pixel value has been classified as belonging
to the background, a random process determines whether this
value is used to update the corresponding pixel model.

In all our tests, we adopted a time subsampling factor,
denotedφ, of 16: a background pixel value has1 chance in
16 of being selected to update its pixel model. But one may
wish to tune this parameter to adjust the length of the time
window covered by the pixel model.

4) Spatial consistency through background samples propa-
gation: Since we use a conservative update scheme, we have
to provide a way of updating the background pixel models that
are hidden by the foreground. A popular way of doing this is to
use what the authors of theW 4 algorithm [33] call a “detection
support map” which counts the number of consecutive times
that a pixel has been classified as foreground. If this number
reaches a given threshold for a particular pixel location,
the current pixel value at that location is inserted into the
background model. A variant consists of including, in the
background, groups of connected foreground pixels that have
been found static for a long time, as in [69]. Some authors, like
those of theW 4 algorithm and those of the SACON model
[64], [65], use a combination of a pixel-level and an object-
level background update.

The strength of using a conservative update comes from
the fact that pixel values classified as foreground are never
included in any background pixel model. While convenient,
the support map related methods only delay the inclusion of
foreground pixels. Furthermore, since these methods rely on
a binary decision, it takes time to recover from a improper
inclusion of a genuine foreground object in the background
model. A progressive inclusion of foreground samples in the
background pixel models is more appropriate.
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As stated earlier, we have a different approach. We consider
that neighboring background pixels share a similar temporal
distribution and that a new background sample of a pixel
should also update the models of neighboring pixels. Ac-
cording to this policy, background models hidden by the
foreground will be updated with background samplesfrom
neighboring pixel locationsfrom time to time. This allows
a spatial diffusion of information regarding the background
evolution that relies on samples classifiedexclusively as
background. Our background model is thus able to adapt to
a changing illumination and to structural evolutions (added
or removed background objects) while relying on astrict
conservative update scheme.

More precisely, let us consider the 4- or 8-connected spatial
neighborhood of a pixelx, that is NG(x), and assume that
it has been decided to update the set of samplesM(x) by
insertingv(x). We then also use this valuev(x) to update the
set of samplesM(y ∈ NG(x)) from one of the pixels in the
neighborhood, chosen at random according to a uniform law.

Since pixel models contain many samples, irrelevant infor-
mation that could accidentally be inserted into the neighbor-
hood model does not affect the accuracy of the detection.
Furthermore, the erroneous diffusion of irrelevant information
is blocked by the need to match an observed value before it can
propagate further. This natural limitation inhibits the diffusion
of error.

Note that neither the selection policy nor the spatial prop-
agation method is deterministic. As stated earlier, if the algo-
rithm is run over the same video sequence again, the results
will always differ slightly (see Figure 2). Although unusual,
the strategy of allowing a random process to determine which
samples are to be discarded proves to be very powerful. This is
different from known strategies that introduce a fading factor
or that use a long term and a short term history of values.

This concludes the description of our algorithm. ViBe makes
no assumption regarding the video stream framerate or color
space, nor regarding the scene content, the background itself,
or its variability over time. Therefore, we refer to it as a
universal method.

IV. EXPERIMENTAL RESULTS

In this section, we determine optimal values for the param-
eters of ViBe, and compare its results with those of seven
other algorithms: two simple methods and five state-of-the art
techniques. We also describe some advantageous and intrinsic
properties of ViBe, and finally, we illustrate the suitability of
ViBe for embedded systems.

For the sake of comparison, we have produced manually
ground-truth segmentation maps for subsets of frames taken
from two test sequences. The first sequence (called “house”)
was captured outdoor on a windy day. The second sequence
(“pets”) was extracted from the PETS2001 public data-set
(data-set 3, camera 2, testing). Both sequences are challenging
as they feature background motion, moving trees and bushes,
and changing illumination conditions. The “pets” sequenceis
first used below to determine objective values for some of
the parameters of ViBe. We then compare ViBe with seven
existing algorithms on both sequences.

Many metrics can be used to assess the output of a
background subtraction algorithm given a series of ground-
truth segmentation maps. These metrics usually involve the
following quantities: the number of true positives (TP), which
counts the number of correctly detected foreground pixels;
the number of false positives (FP), which counts the number
of background pixels incorrectly classified as foreground;the
number of true negatives (TN), which counts the number of
correctly classified background pixels; and the number of false
negatives (FN), which accounts for the number of foreground
pixels incorrectly classified as background.

The difficulty of assessing background subtraction algo-
rithms originates from the lack of a standardized evaluation
framework; some frameworks have been proposed by various
authors but mainly with the aim of pointing out the advantages
of their own method. According to [6], the metric most widely
used in computer vision to assess the performance of a binary
classifier is the Percentage of Correct Classification (PCC),
which combines all four values:

PCC =
TP + TN

TP + TN + FP + FN
. (7)

This metric was adopted for our comparative tests. Note that
thePCC percentage needs to be as high as possible, in order
to minimize errors.

A. Determination of our own parameters

From previous discussions, it appears that ViBe has the
following parameters:

• the radiusR of the sphere used to compare a new pixel
value to pixel samples (see equation 2),

• the time subsampling factorφ,
• the numberN of samples stored in each pixel model,
• and the number♯min of close pixel samples needed to

classify a new pixel value as background (see equation 2).

In our experience, the use of a radiusR = 20 and a time
subsampling factorφ = 16 leads to excellent results in every
situation. Note that the use ofR = 20 is an educated choice,
which corresponds to a perceptible difference in color.

To determine an optimal value for♯min, we compute the
evolution of the PCC of ViBe on the “pets” sequence for♯min

ranging from 1 to 20. The other parameters were fixed to
N = 20, R = 20, andφ = 16. Figure 3 shows that the best
PCCs are obtained for♯min = 2 and ♯min = 3.

Since a rise in♯min is likely to increase the computational
cost of ViBe, we set the optimal value of♯min to ♯min = 2.
Note that in our experience, the use of♯min = 1 can lead to
excellent results in scenes with a stable background.

Once the value of 2 has been selected for♯min, we study
the influence of the parameterN on the performance of ViBe.
Figure 4 shows percentages obtained on the “pets” sequence
for N ranging from 2 to 50 (R and φ were set to 20 and
16). We observe that higher values ofN provide a better
performance. However, they tend to saturate for values higher
than 20. Since as for♯min, largeN values induce a greater
computational cost, we selectN at the beginning of the
plateau, that isN = 20.
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B. Comparison with other techniques

We now compare the results of ViBe with those of five state-
of-the-art background subtraction algorithms and two basic
methods: (1) the gaussian mixture model proposed in [47]
(hereafter referred to as GMM); (2) the gaussian mixture
model of [50] (referred to as EGMM); (3) the Bayesian
algorithm based on histograms introduced in [70]; (4) the
codebook algorithm [62]; (5) the zipfianΣ − ∆ estimator
of [37]; (6) a single gaussian model with an adaptive variance
(named “gaussian model” hereafter); and (7) the first-order
low-pass filter (that isBt = αIt +(1−α)Bt−1, whereIt and
Bt are respectively the input and background images at time
t), which is used as a baseline.

The first-order low-pass filter was tested using a fading
factorα of 0.05 and a detection thresholdT of 20. A similar
fading factorα of 0.05 was used for the gaussian model. The
GMM of [70] and the Bayesian algorithm of [47] were tested
using their implementations available in Intel’s IPP image
processing library. For the EGMM algorithm of [50], we used
the implementation available on the author’s website1. The
authors of the zipfianΣ−∆ filter were kind enough to provide

1http://staff.science.uva.nl/˜zivkovic/DOWNLOAD.html

(a) Input image (b) Ground-truth

(c) ViBe (RGB) (d) ViBe (gray) (e) Bayesian histogram

(f) Codebook (g) EGMM [Zivkovic] (h) GMM [Li et al.]

(i) Gaussian model (j) 1st order filter (k) Sigma-Delta Z.

Fig. 5. Comparative background/foreground segmentation maps of nine
background subtraction techniques for one frame taken fromthe “house”
sequence. The segmentation maps of ViBe are the closest to the ground-truth
reference.

us with their code to test their method. We implemented
the codebook algorithm ourselves and used the following
parameters:50 training frames,λ = 34, ǫ1 = 0.2, ǫ2 = 50,
α = 0.4, and β = 1.2. ViBe was tested with the default
values proposed in this paper:N = 20, R = 20, ♯min = 2,
and φ = 16. Most of the algorithms were tested using the
RGB color space; the codebook uses its own color space, and
theΣ−∆ filter implementation works on grayscale image. In
addition, we implemented a grayscale version of ViBe.

Figures 5 and 6 show examples of foreground detection
for one typical frame of each sequence. Foreground and
background pixels are shown in white and black respectively.

Visually, the results of ViBe look better and are the closest
to ground-truth references. This is confirmed by the PCC
scores; the PCC scores of the nine comparison algorithms for
both sequences are shown in Figure 7.

We also compared the computation times of these nine
algorithms with a profiling tool, and expressed the computation
times in terms of achievable framerates. Figure 8 shows their
average processing speed on our platform (2.67GHz Core i7
CPU, 6GB of RAM, C implementation).

We did not optimize the code of the algorithms explicitly,
except in the case of theΣ−∆ algorithm, which was optimized
by its authors, the algorithms of the IPP library (GMM and
Bayesian histogram), which are optimized for Intel processors,
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(a) Input image (b) Ground-truth

(c) ViBe (RGB) (d) ViBe (gray) (e) Bayesian histogram

(f) Codebook (g) EGMM [Zivkovic] (h) GMM [Li et al.]

(i) Gaussian model (j) 1st order filter (k) Sigma-Delta Z.

Fig. 6. Comparative background/foreground segmentation maps of nine
background subtraction techniques for one frame taken fromthe “pets”
sequence. Here too, the segmentation maps of ViBe are the closest to the
ground-truth reference.

and ViBe to some extent. To speed up operations involving
random numbers in ViBe, we used a buffer pre-filled with
random numbers.

We see that ViBe clearly outperforms the seven other
techniques: its PCCs are the highest for both sequences and
its processing speed is as high as a framerate of 200 frames
per second, that is 5 times more than algorithms optimized by
Intel. Compare these figures to those obtained by the algorithm
proposed by Chiuet al. [71] recently; they claim to segment
320 × 240 images at a framerate of around40 frames per
second. A simple rescaling to the size of our images lowers
this value to10 frames per second.

The only method faster than ViBe is the zipfianΣ − ∆
estimator, whose PCC is12 to 15% smaller than that of ViBe.
The authors of the zipfian sigma-delta algorithm provided
us with post-processed segmentation maps of the “house”
sequence which exhibit an improved PCC but a the cost of
a lower processing speed. One can wonder how it is possible
that ViBe runs faster than simpler techniques such as the first-
order filter model. We discuss this question in Appendix B.

In terms of PCC scores, only the Bayesian algorithm of [70]
based on histograms competes with ViBe. However, it is more
than 20 times slower than ViBe. As shown in Figures 5
and 6, the grayscale and the color versions of ViBe manage
to combine both a very small rate of FP and a sharp detection
of the foreground pixels. The low FP rate of ViBe eliminates
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(a) Results for the first sequence (“house”).
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(b) Results for the second sequence (“pets”).

Fig. 7. Percentages of Correct Classification (PCCs) of ninebackground
subtraction techniques. ViBe has the highest PCCs.
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Fig. 8. Processing speed, expressed in terms of Frames Per Second (FPS),
of nine background subtraction techniques for640×480 pixels wide images.
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the need for any post-processing, which further alleviatesthe
total computational cost of the foreground detection.

Next, we concentrate on the specific strengths of ViBe: fast
ghost suppression, intrinsic resilience to camera shake, noise
resilience, and suitability for embedding.

C. Faster ghost suppression

A background model has to adapt to modifications of the
background caused by changing lighting conditions but also
to those caused by the addition, removal, or displacement of
some of its parts. These events are the principal cause of the
appearance of ghosts: regions of connected foreground points
that do not correspond to any real object.

When using a detection support map or a related technique
to detect and suppress ghosts, it is very hard, if not impossible,
to distinguish ghosts from foreground objects that are currently
static. As a result, real foreground objects are included inthe
background model if they remain static for too long. This
is a correct behavior since a static foreground object must
eventually become part of the background after a given time.
It would be better if ghosts were included in the background
model more rapidly than real objects, but this is impossible
since they cannot be distinguished using a detection support
map.

Our spatial update mechanism speeds up the inclusion of
ghosts in the background model so that the process is faster
than the inclusion of real static foreground objects. This can be
achieved because the borders of the foreground objects often
exhibit colors that differ noticeably from those of the samples
stored in the surrounding background pixel models. When a
foreground object stops moving, the information propagation
technique described in Section III-C4 updates the pixel models
located at its borders with samples coming from surrounding
background pixels. But these samples are irrelevant: their
colors do not match at all those of the borders of the object.
In subsequent frames, the object remains in the foreground,
since background samples cannot diffuse inside the foreground
object via its borders.

By contrast, a ghost area often shares similar colors with
the surrounding background. When background samples from
the area surrounding the ghost try to diffuse inside the ghost,
they are likely to match the actual color of the image at
the locations where they are diffused. As a result, the ghost
is progressively eroded until it disappears entirely. Figure 9
illustrates this discussion.

The speed of this process depends on the texture of the
background: the faster ghost suppressions are obtained with
backgrounds void of edges. Furthermore, if the color of the
removed object is close to that of the uncovered background
area, the absorption of the ghost is faster. When needed,
the speed of the ghost suppression process can be tuned by
adapting the time subsampling factorφ. For example, in the
sequence displayed in Figure 9, if we assume a framerate of
30 frames per second, the ghost fades out after 2 seconds
for a time subsampling factorφ equal to 1. However, if we
set φ to 64, it takes 2 minutes for ViBe to suppress the
ghost completely. For the sake of comparison, the Bayesian

Fig. 10. Background/foreground segmentation maps for a slightly moving
camera. If spatial propagation is deactivated, the camera motions produce false
positives in high-frequency areas (image in the center), while the activation
of spatial propagation avoids a significant proportion of false positives (right-
hand image).

histogram algorithm suppresses the same ghost area in 5
seconds.

One may ask how static foreground objects will ultimately
be included in the background model. The responsibility
for the absorption of foreground pixels into the background
lies with the noise inevitably present in the video sequence.
Due to the noise, some pixels of the foreground object end
up in the background, and then serve as background seeds.
Consequently, their models are corrupted with foreground
samples. These samples later diffuse into their neighboring
models, as a result of the spatial propagation mechanism of the
background samples, and allow a slow inclusion of foreground
objects in the background.

D. Resistance to camera displacements

In many situations, small displacements of the camera are
encountered. These small displacements are typically due to
vibrations or wind and, with many other techniques, they cause
significant numbers of false foreground detections.

Another obvious benefit of the spatial consistency of our
background model is an increased robustness against such
small camera movements (see Figure 10). Since samples are
shared between neighboring pixel models, small displacements
of the camera introduce very few erroneous foreground detec-
tions.

ViBe also has the capability of dealing with large displace-
ments of the camera, at the price of a modification of the
base algorithm. Since our model is purely pixel-based, we
can make it able to handle moving cameras by allowing pixel
models to follow the corresponding physical pixels according
to the movements of the camera. The movements of the camera
can be estimated either using embedded motion sensors or
directly from the video stream using an algorithmic technique.
This concept is illustrated in Figures 11 and 12. The first
series shows images taken from an old DARPA challenge. The
camera pans the scene from left to right and the objective is
to follow the car. Figure 12 shows a similar scenario acquired
with a Pan-Tilt Zoom video-surveillance camera; the aim here
is to track the person.

To produce the images of Figures 11 and 12, the displace-
ment vector between two consecutive frames is estimated for
a subset of background points located on a regularly spaced
grid using Lucas and Kanade’s optical flow estimator [72].
The global displacement vector of the camera is computed
by averaging these pixel-wise displacement vectors. The pixel
models are then relocated according to the displacement
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Fig. 9. Fast suppression of a ghost. In this scene, an object (a carpet) is moved, leaving a ghost behind it in the background, and is detected as being part of
the foreground. It can be seen that the ghost is absorbed intothe background model much faster than the foreground regioncorresponding to the real physical
object.

Fig. 11. Background/foreground segmentation maps for a sequence taken
with a moving camera (from the DARPA challenge).

Fig. 12. Background/foreground segmentation maps for a sequence taken
with a moving camera (surveillance camera).

of the camera inside a larger mosaic reference image. The
background model of pixels that correspond to areas seen for
the first time is initialized instantaneously using the technique
described in Section III-B. It can be seen that, even with such
a simple technique, the results displayed in Figures 11 and 12
are promising.

E. Resilience to noise

To demonstrate the resilience of ViBe to noise, we compared
it to seven other techniques on a difficult noisy sequence
(called “cable”). This sequence shows an oscillating electrical
cable filmed at a large distance with a40× optical zoom. As
can be seen in Figure 13a, the difficult acquisition conditions
result in a significant level of noise in the pixel values. Back-
ground/foreground segmentation maps displayed in Figure 13

demonstrate that ViBe is the only technique that manages to
combine a low rate of FP with both a precise and accurate
detection of the foreground pixels.

Two factors must be credited for ViBe’s high resilience to
noise. The first originates from our design, allowing the pixel
models of ViBe to compriseexclusivelyobserved pixel values.
The pixel models of ViBe adapt to noise automatically, as they
are constructed from noisy pixel values. The second factor
is the pure conservative update scheme used by ViBe (see
Section III-C). By relying on pixel values classified exclusively
as background, the model update policy of ViBe prevents
the inclusion of any outlier in the pixel models. As a result,
these two factors ensure a continuous adaptation to the noise
present in the video sequence while maintaining coherent pixel
models.

F. Downscaled version and embedded implementation

Since ViBe has a low computational cost (see Figure 8) and
relies exclusively on integer computations, it is particularly
well suited to an embedded implementation. Furthermore,
the computational cost of ViBe can be further reduced by
using low values forN and ♯min. Appendix B provides some
implementation details and compares the complexity of ViBe
with respect to the complexity of the first-order filter model.

In Figure 14, we give the PCC scores and framerates
for a downscaled version of ViBe, which uses the absolute
minimum of one comparison and one byte of memory per
pixel. We also give the PCC scores and framerates for the
full version of ViBe and for the two faster techniques from
our tests in Section IV-B. One can see, on the left hand side
of the graph in Figure 14, that the downscaled version of
ViBe maintains a high PCC. Note that its PCC is higher than
that of the two GMM-based techniques tested in Section IV-B
(see Figure 7a). In terms of processing speed or framerate,
the zipfianΣ − ∆ filter method of [37] is the only one to
be faster than the downscaled version of ViBe. However, a
post-processing step of the segmentation map is necessary to
increase the low PCC score of the zipfianΣ−∆ method, and
the computational cost induced by this post-processing process
reduces the framerate significantly.

To illustrate the low computational cost of ViBe and its
simplicity, we embedded our algorithm in a digital camera.
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(a) Input image (b) ViBe (RGB) (c) ViBe (grayscale) (d) GMM [Li et al.] (e) Codebook

(f) Bayesian histogram (g) EGMM [Zivkovic] (h) Gaussian model (i) 1st order filter (j) Sigma-Delta Zipf

Fig. 13. Background/foreground segmentation maps for one frame taken from the noisy “cable” sequence.
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(b) FPS for images of640× 480 pixels.

Fig. 14. Percentages of Correct Classification (PCCs) and processing
speeds of fast techniques, expressed in Frames Per Second (FPS), including
a downscaled version of ViBe which requires only one comparison and one
byte of memory per pixel.

The porting work of ViBe on aCanon PowerShot SD870 IS
was performed with a modified version of the open source
alternative firmware CHDK2. Parameters of ViBe were set to
N = 5 and ♯min = 1. Despite the camera’s low speed ARM
processor, we managed to process 6 frames of320×240 pixels
wide images per second on average. The result is shown in
Figure 15.

V. CONCLUSIONS

In this paper, we introduced a universal sample-based back-
ground subtraction algorithm, called ViBe, which combines
three innovative techniques.

Firstly, we proposed a classification model that is based on
a small number of correspondences between a candidate value

2http://chdk.wikia.com

Fig. 15. Embedded implementation of ViBe in a Canon camera.

and the corresponding background pixel model. Secondly, we
explained how ViBe can be initialized with a single frame.
This frees us from the need to wait for several seconds
to initialize the background model, an advantage for image
processing solutions embedded in digital cameras and for
short sequences. Finally, we presented our last innovation:
an original update mechanism. Instead of keeping samples
in the pixel models for a fixed amount of time, we ignore
the insertion time of a pixel in the model and select a value
to be replaced randomly. This results in a smooth decaying
lifespan for the pixel samples, and enables an appropriate
behavior of the technique for wider ranges of background
evolution rates while reducing the required number of samples
needing to be stored for each pixel model. Furthermore, we
also ensure the spatial consistency of the background model
by allowing samples to diffuse between neighboring pixel
models. We observe that the spatial process is responsible for
a better resilience to camera motions, but that it also freesus
from the need to post-process segmentation maps in order to
obtain spatially coherent results. To be effective, the spatial
propagation technique and update mechanism are combined
with a strictly conservative update scheme: no foreground pixel
value should ever be included in any background model.

After a description of our algorithm, we determined optimal
values for all the parameters of the method. Using this set of
parameter values, we then compared the classification scores
and processing speeds of ViBe with those of seven other
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background subtraction algorithms on two sequences. ViBe is
shown to outperform all of these algorithms while being faster
than six of them. Finally, we discussed the performance of a
downscaled version of ViBe, which can process more than 350
frames per second on our platform. This downscaled version
was embedded in a digital camera to prove its suitability for
low speed platforms. Interestingly, we found that a version
of ViBe downscaled to the absolute minimum amount of
resources for any background subtraction algorithm (i.e. one
byte of memory and one comparison with a memorized value
per pixel) performed better than the state-of-the-art algorithms
in terms of the Percentage of Correct Classification criterion.
ViBe might well be a new milestone for the large family of
background subtraction algorithms.

Please note that programs and object-code are available at
http://www.motiondetection.org.
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APPENDIX A
C-LIKE SOURCE CODE FOR OUR ALGORITHM

Pseudo-code of ViBe for grayscale images, comprising
default values for all the parameters of the method, is given
hereafter.

/ / f i x e d pa rame te rs f o r ViBe
/ / number o f samp les per p i x e l
i n t N = 20 ;
/ / r a d i u s o f t h e sphe re
i n t R = 20 ;
/ / number o f c l o s e samp les f o r be ing
/ / p a r t o f t h e background ( bg )
i n t ♯min = 2 ;
/ / amount o f random subsamp l ing
i n t φ = 16 ;

/ / da ta
i n t width , h e i g h t ;
/ / c u r r e n t image
byte image [ w id th ] [ h e i g h t ] ;
/ / background model
byte samp les [ w id th ] [ h e i g h t ] [N ] ;
/ / background / fo reg round s e g m e n t a t i o n map
byte segMap [ w id th ] [ h e i g h t ] ;

/ / background and fo reg round i d e n t i f i e r s
byte background = 0 ;
byte f o r e g r o u n d = 255 ;

/ / f o r each p i x e l
f o r ( i n t x = 0 ; x < wid th ; x++){

f o r ( i n t y = 0 ; y < h e i g h t ; y++){
/ / 1 . Compare p i x e l t o background model
i n t coun t = 0 , i ndex = 0 , d i s t = 0 ;
whi le ( ( coun t < ♯min ) && ( index < N ) ) {

/ / Euc l i dean d i s t a n c e compu ta t i on
d i s t = E u c l i d D i s t ( image [ x ] [ y ] ,

samp les [ x ] [ y ] [ i ndex ] ) ;
i f ( d i s t < R ) {
coun t ++;

}
i ndex ++;

}
/ / 2 . C l a s s i f y p i x e l and upda te model
i f ( coun t >= ♯min ) {

/ / s t o r e t h a t image [ x ] [ y ] ∈ background
segMap [ x ] [ y ] = background ;
/ / 3 . Update c u r r e n t p i x e l model
/ / g e t random number be tween 0 andφ−1
i n t rand = getRandomNumber ( 0 ,φ−1) ;
i f ( rand == 0){ / / random subsamp l ing

/ / r e p l a c e randomly chosen sample
rand = getRandomNumber ( 0 ,N−1) ;
samp les [ x ] [ y ] [ rand ] = image [ x ] [ y ] ;

}
/ / 4 . Update n e i g h b o r i n g p i x e l model
rand = getRandomNumber ( 0 ,φ−1) ;
i f ( rand == 0){ / / random subsamp l ing

/ / choose n e i g h b o r i n g p i x e l randomly
i n t xNG

, yNG
;

xNG
= getRandomNeighbrXCoord inate ( x ) ;

yNG
= getRandomNeighbrYCoord inate ( y ) ;

/ / r e p l a c e randomly chosen sample
rand = getRandomNumber ( 0 ,N−1) ;
samp les [xNG

] [ yNG
] [ rand ] = image [ x ] [ y ] ;

}
}
e l s e{ / / coun t < ♯min

/ / s t o r e t h a t image [ x ] [ y ] ∈ f o reg round
segMap [ x ] [ y ] = f o r e g r o u n d ;

}
}

}

APPENDIX B
IMPLEMENTATION DETAILS, AND COMPLEXITY ANALYSIS

OF V IBE AND THE FIRST-ORDER MODEL

As computation times of hardware or software operations
might depend on the processor or the compiler, it is hard to
provide an exact analysis of the computation times. Instead,
we present the steps involved for the computation of ViBe
and the first-order filter model and evaluate the number of
operations involved.

For ViBe, the evaluation runs as follows:
• Segmentation step:

Remember that we compare a new pixel value to back-
ground samples to find two matches (♯min = 2). Once
two matches have been found, we step over to the
next pixel and ignore the remaining background samples.
Operations involved during the segmentation step are:

– comparison of the current pixel value with the values
of the background model. Most of the time, the two
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first values of the background model of a pixel are
close to the new pixel value. Therefore, we consider
2,5 (byte) comparisons on average per pixel (this is
an experimentally estimated value).

– 1,5 (byte) comparisons of the counter to check if
there are at least 2 matching values in the model;
we only need to compare the counter value after the
comparison between the current pixel value and the
second value of the background model.

• Update step:

– 1 pixel substitution per 16 background pixels (the
update factor,φ, is equal to16). Because we have
to choose the value to substitute and access the
appropriate memory block in the model, we perform
an addition on memory addresses. Then we perform
a similar operation, for a pixel in the neighborhood
(first we locate which pixel in the neighborhood to
select, then which value to substitute).
In total, we evaluate the cost of the update step as3
additions on memory addresses per16 background
pixels.

• Summary (average per pixel, assuming that most pixels
belong to the background):

– 4 subtractions on bytes.
– 3

16 addition on memory addresses.

For the first-order model, we have:

• Segmentation step:

– 1 pixel comparison between an integer and a double
number.

• Update step:

– 2 multiplications and 1 addition on doubles, to
performBt = αIt + (1 − α)Bt−1.

• Summary (per pixel):

– 2 multiplications and 2 additions on doubles

From this comparison, it appears that, once the random num-
bers are pre-calculated, the number of operations for ViBe
is similar to that of the first-order filter model. However, if
processors deal with “integer” (single byte) numbers faster
than “double” numbers or if an addition is computed in less
time than a multiplication, ViBe is faster than the first-order
model.
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