A state consistency framework leveraging packet
cloning and piggybacking for programmable
network data planes

Hugo Garcia* and Naercio Magaia*

*LASIGE, Departamento de Informétca, Faculdade de Ciéncias, Universidade de Lisboa
hgarcia@lasige.di.fc.ul.pt, ndmagaia@ciencias.ulisboa.pt

Abstract—The Software-Defined Networking (SDN) technol-
ogy is a network management method that allows dynamic,
programmatically efficient network planning to improve its
performance and monitoring. Given that SDN at each passing
day becomes more prominent, a framework that can ensure
reliable communication and a global state among devices become
more important. We propose a state consistency framework that
leverages a state machine abstraction using network updates
among adjacent switches through packet piggybacking. We also
use a moving average that when a condition is met, P4’s packet
cloning is triggered, hence ensuring that all packets arrive at
their destination in the presence of link failures.

Index Terms—SDN, State consistency, Programmable net-
works, Framework, P4

I. INTRODUCTION

In the primordial phases of the Internet, the foundations
for future work had to be done. They were the following: (i)
the introduction of programmable functions in the network,
(ii) enabling the virtualization of the network, (iii) the ability
to demultiplex, and (iv) the idea to unify the architecture for
middleboxes.

All of these would eventually lead to the separation of the
planes, i.e., the control and data planes, which enabled the
idea of Software Defined Networking (SDN) [1] to appear.
The control plane relates to all the functions and processes
that determine which path to use, and the data plane denotes
all the functions and processes that forward packets from one
interface to another.

However, there can be inconsistencies between the existing
information in the control plane network device, i.e., the
controller, and the one on the data plane network devices, i.e.,
switches, or even among the latter. Let us take a concrete
example to give a better understanding of the problem at
hand. Suppose an attacker can both inject new packets into the
network and take original packets that were sent by trustworthy
sources and alter them for their gain. There are various ways
to do so, but the simplest one would be to sniff the desired
packet, add to it a new “broken link” tag, and send the packet
to its origin. The consistency issue would happen when the

This work was sponsored by FCT through the LASIGE Research Unit, ref.
UIDB/00408/2020 and ref. UIDP/00408/2020.

ISBN 978-3-903176-39-3 © 2021 IFIP

Parser Ethernet

Packet Match | Next state
Packet 0x800 IPv4
0x86dd IPv6
Parser IPv4/IPv6 packet Parser ICMP/TCP/UDP
Match |[Next State[—————» State
Ox1 ICMP Accept
0x6 TCP
0x17 UDP
Fig. 1. An implementation example of a state machine filter used in our
parser.

origin receives the malicious packet. Upon its reception, it
will trigger a transition to divert all subsequent packets from
the original destination.

Another exacerbating factor of this type of attack is the
fact that between adjacent switches there is no form of
authentication. Thus, leading back to the original problem, that
is, “how to avoid it?”, and when trying to prevent it, “which
information to send to the controller?”, “who should have a
consistent view of the network?”, so that the controller can
make appropriate choices.

In this article, a state consistency framework leveraging
packet cloning and piggybacking for programmable network
data planes is proposed. It was implemented using the novel
Programming Protocol independent Packet Processor (P4) [3]
programming language that runs on switches. The proposed
framework guarantees that a consistent state is achieved via
packet piggybacking, that is, every packet that passes through
the switch gets added necessary information for the framework
to work. It uses a moving average that triggers packet cloning,
hence ensuring that packets arrive at their destination even in
the presence of link failures. To the best of our knowledge,
this is the first work implementing a network state consistency
framework that ensures a high packet delivery rate in the
presence of high link error rates using P4.



II. THE PROPOSED SOLUTION

We used the V1 model [4] of P4 as the basis for our
implementation. But even more important than the model itself
is the whole specification of P4 [5]. Please note that the V1
model is used mainly due to its simplicity of implementation
compared to the Portable Switch Architecture (PSA) model
[6].

A. The state machine abstraction

The state machine’s implementation took place using
the various match-action tables, sometimes changing their
contents depending on the table’s purpose. The start-
ing point of our implementation was FAST [2]. How-
ever, and considering the difference between Open vSwitch
(http://www.openvswitch.org/) and P4, we added tables to
ensure that actions related to keeping the information in the
packet or switch itself were properly implemented.

The design of the solution is rather straightforward. Given
that P4 requires data structures, such as headers and metadata,
they were created to enable access to packets.

From Fig. 1, it is possible to see that when a packet arrives
at a switch, it will first try to match the contents of the Ethernet
header to know where to proceed next. Afterward, it will
match the IPv4/IPv6 header’s contents to know again where
to go. It will only accept and finish when it is done with the
ICMP/TCP/UDP header contents.

B. Packet cloning and piggybacking

Packet piggybacking is used to allow switches to exchange
state information, i.e., a timestamp and two ports, among
themselves. It avoids creating new packets, and, as such, to
get better overall network performance. The TCP options [7]
was used, in particular the SACK and Timestamp options.

When a packet arrives, it is parsed and run through the
ingress pipeline, where the state’s maintenance occurs via the
Timestamp option. We decided to use this option because
it provides a straightforward way to send timestamps across
switches. In addition, in case we do not need to send them, this
option provides space for two 4 byte sized timestamp fields
that could be filled with information [7].

bit<32> indexCounter = 0;
indexForPackets.read (indexCounter,
networkPortsEgress
.write ((bit<32>)indexCounter,
meta.ingressMetadata.egress_port);
networkPortsIngress
.write((bit<32>)indexCounter,
meta.ingressMetadata.ingress_port);

0);

The code above shows how state maintenance occurs in
our solution. First, a variable that will be used to store the
index to access the registers is initialized. Afterward, we read
from the register where the indexes are stored and place
the indexCounter variable’s value. Then, we write in the

X Main Flow S1 to S2

Switch S1 Switgh S4

Switch S3 Switch S2

Alternative
Flow from
Slto S2

] s

Host - H2

Fig. 2. An alternative path for packets to go from HI to H2

registers the values of the egress and ingress ports to create
an artificial knowledge of the network state.

Please note that the SACK option [8] is not used in its
intended way. Instead of containing the planned blocks of data,
i.e., two 32-bit unsigned integers [8], we used this space to
put the egress and ingress ports in the packet. We use these
specific ports so that when switches have a few pairs, they can
be aware that traffic flows from these ports. Consequently, they
can perceive as being safe to send packets through them.

Conversely, the Timestamp option is used normally. In its
TS Value, we put the timestamp of the packet so that every
other switch can make the necessary interactions with it after
the first one. Other switches can compare their timestamp
values to the one present in the packet, and depending on
the value of the difference, it will then take the actions
needed when certain conditions are met. These conditions and
actions are rather simple. Suppose the difference between the
timestamp that is stored on the TCP Timestamp option and
V1 model metadata is greater than an average. In that case,
it is assumed that the link can be having connectivity issues,
and as such, the switch starts making clones hence ensuring
that packets reach their intended destination.

A clone is merely a complete copy of the packet, and it is
sent through a different egress port. Fig. 2 further illustrates
this.

Afterward, we do not do anything in the egress pipeline,
and every change is made during the ingress phase of the
implementation. Finally, we remake the hash of the packet
as we insert new data to it because if not and another
switch verifies, it would not match, and the packet would be
discarded. We also deparse the headers in the correct order.
This is done to ensure that the packet is correctly formed hence
avoiding it being discarded by the switches later on.

III. PERFORMANCE EVALUATION

The Mininet (http://www.mininet.org) simulator was used to
evaluate the performance of the proposed framework. It was



10 m=100.7

20 =101
¢ 30 m=100.4
2 4 == .97.9
Q
—é 50 =974
S 60 == 97.5
[
= = 94.9
o 8 == 965
Q0
g 90 E==104.1
[
O 95 =102
Q
o 97 E=—-100.1

99 = 09.2

100 m=98.9

88 90 100 102 104 106

92 9 96. 98
Average of Received Packets

Fig. 3. Average number of received packets to H2.

used to simulate a network setup. We used a simple set of
commands in Python to send a specific number of packets
that the user would insert in a command line or through a
Python script.

Fig. 2 shows a scenario consisting of four switches (Switch
1 - S1, S2, S3, and S4) and three hosts (Host 1 - H1, H2, and
H3). All switches are adjacent to each other. In this scenario,
H1 is connected to S1, H2 to S2, and H3 to S3. From H1 to
H2, there are two possible flows: HI - S1 - S4 - S2 - H2 and
HI - S1-S3-S2 - H2.

We obtained information on how many packets were re-
ceived at the end host (i.e., H2) to compare it with the number
of packets retransmitted using our method. This enabled us
to know how many packets arrived through the regular and
alternative (i.e., retransmissions) paths. With that in mind,
we also needed to collect information on the number of
retransmitted packets. These two go hand in hand with each
other.

1) The number of received packets: First, we start analyzing
the number of packets received at H2. Over the 130 runs,
75% correspond to 97 runs with near 100 received packets (99
to be exact); 13% correspond to 17 runs of received packets
with great deviation (i.e., < 95 packets and > 105 packets);
and, 12% correspond 16 runs of received packets with small
deviation (i.e., between > 95 and < 97 packets and between
> 103 and < 105 packets).

Fig. 3 shows the average number of received packets per
percentage of link packet loss with 95% confidence intervals.
One can conclude that most of the time the same number of
packets that are sent from the source were received, that is,
100 packets. It is possible to see that when the link has a 100%
packet loss rate, the number of packets received is expected to
be equal to the number of packets retransmitted, since based
on our implementation, the first packet is never retransmitted.
Also, due to the moving average, it unclear how to handle this
packet, i.e., whether it arrives or not at its destination.

For link losses between 30% and 90%, one may see that
the proposed framework had a rough time dealing with them.

Nonetheless, our framework still provides high packet delivery
rates.

Throughout the different runs, the lost packet is not always
the same. This can deter the moving average, hence making
the switch not activate packet cloning, leading to some packet
loss.

Finally, from 30% to 10%, the link has a very low packet
loss rate. Since the packets are not lost, and as such, their time
difference will be rather small, and with that, the switch will
not trigger packet cloning. However, there are always some
exceptions to the rule, happening most of the time a (one)
packet is retransmitted. Why not two? Because if almost no
packets are lost, probabilistically speaking, almost every time
100+ 1 packets will arrive at the end host, thus justifying our
results.

2) The number of retransmitted packets: In this scenario
and regarding the types of retransmitted packets, we identified
the following types: (i) retransmissions with spurious retrans-
missions in them, (ii) retransmissions that were affected by the
problem of packet congestion or busy CPU cycles, and (iii)
the normal retransmissions. As the name suggests, the latter
retransmissions are those where nothing out of the ordinary
happens, i.e., cloned packets are sent via the alternative route
to their original destination. We noticed that retransmissions
with spurious packet retransmissions are truly random and
either repeat 1 or 2 packets throughout all those sent.

Lastly, there are the retransmissions that have happen when
the problem might have occurred. They were simply marked
to distinguish them from others. In most cases (i.e., 75% of
the time) 98 packets were retransmitted. It is also possible to
see a higher deviation from the expected value.

IV. CONCLUSIONS AND FUTURE WORK

This article proposes a state consistency framework lever-
aging packet cloning and piggybacking for programmable
network data planes using P4. Performance evaluation results
have shown that despite link failures higher than 70%, our
framework still managed to deliver more than 95% of packets
successfully.

REFERENCES

[11 W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, A Survey on Software-
Defined Networking, IEEE Commun. Surv. Tutorials, 2015.

[2] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, Flow-level
state transition as a new switch primitive for SDN, Comput. Commun.
Rev., vol. 44, no. 4, pp. 377378, 2015.

[3] P. Bosshart et al., P4: Programming protocol-independent packet proces-
sors, Comput. Commun. Rev., vol. 44, no. 3, pp. 8795, 2014.

[4] p4c/vimodel.p4 at master p4lang/p4c GitHub. [Online]. Available:
https://github.com/p4lang/p4c/blob/master/p4include/vimodel.p4.
[Accessed: 29-Sep-2020].

[S] The P4 Language Consortium, P4 16 Language Specification v1.2.1, p.
129, 2018.

[6] p4c/psa.p4 at master pdlang/pdc  GitHub. [Online].
https://github.com/p4lang/p4c/blob/master/p4include/psa.p4.
30-Sep-2020].

[7] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger, RFC 7323
TCP Extensions for High Performance, 2014.

[8] M. Mathis and J. Mahdavi, RFC 2018 TCP Selective Ack Options. pp.
113, 1996.

Available:
[Accessed:



