
Implementation of Virtual Network Function Allocation with Diversity
and Redundancy in Kubernetes

Rui Kang, Mengfei Zhu, Fujun He, and Eiji Oki
Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract—Diversity in network function virtualization is to use
a group of thin replicas to provide the network services under the
required processing ability. Redundancy is to provide a certain
number of replicas against function failures and improve network
reliability. Kubernetes is a system to deploy and manage virtual
network functions automatically. Existing tools in Kubernetes
do not provide a resource type to provide required functions
jointly considering VNF diversity and redundancy. This paper
designs and implements a custom resource and the corresponding
controller in Kubernetes to manage the VNF diversity and
redundancy jointly. The controller selects suitable replicas from a
pool of replica templates to satisfy the required processing ability
with the minimum required number of replicas and converts the
backup functions to the primary functions when the primary
functions cannot provide the required ability. Demonstration
validates that the controller automatically manages the resources
correctly, improves the resource utilization, and increases the
number of acceptable requests.

Index Terms—Virtual network function allocation, redun-
dancy, network diversity, controller, Kubernetes, demonstration

I. INTRODUCTION

Virtual network functions (VNFs) are usually packaged in
VMs or containers. Kubernetes [1] is an open-source system
for automating deployment, scaling, and management of con-
tainerized applications. A Pod is the smallest deployable unit
of computing that we can create and manage in Kubernetes.
The deployment with a given number of the replicas of Pods
is a realization of a network function in Kubernetes. The
controller of a resource in Kubernetes adjusts the current state
to the expected state through the control loop [2]. For example,
the deployment controller maintains the desired number of
Pod replicas. The providable processing ability of a network
function can be required instead of the number of active
replicas of the function.

VNF diversity uses a group of replicas with different
processing abilities and resource requirements to replace a
single VNF instance, which can fully utilize server computing
resources, especially for edge computing devices. The replicas
of a VNF are chosen from a pool of replica templates, which
is given by the cloud provider. The service providers allocate
replicas with the requirements of resources to provide certain
processing abilities. VNF diversity may increase the risk of
service unavailability since it allocates replicas to different
servers. The unavailability of a server leads to service perfor-
mance degradation. VNF redundancy which provides backups

This work was supported in part by JSPS KAKENHI, Japan, under Grant
Number 18H03230.

Add/Update/Delete 

DRPS
Kubernetes 

API server
Informer WorkQueue

Control loop
Schedulers

Listen & Watch

Controller

Add/Update/Delete 

Event

Handel events with 

corresponding 

functionsAdd/Update/Delete 

Pods

Fig. 1. Overall structure.

for replicas is adopted to increase the service reliability. The
works in [3] and [4] provided allocation models considering
VNF diversity and redundancy jointly, which improves the
service resiliency.

However, the current deployment in Kubernetes is based
on the allocation of a given number of replicas with fixed
specifications. The fixed specifications may not fully utilize
the computing resources of servers. If the deployment can be
realized by the replicas with different resource requirements
and processing abilities, the deployment becomes flexible to
be deployed to the servers with different capacities, and the
computing resources of servers can be fully utilized. The
automatic selection, creation, and management of diversity and
redundancy resources are not considered in Kubernetes.

This paper designs and implements a custom resource
controller in Kubernetes based on the processing ability. The
custom defined resource (CDR) jointly considers the diversity
and redundancy of VNFs. We call it diversity and redundancy
Pod set (DRPS). We use exact and approximate methods to
select suitable replicas from a pool of replica templates to sat-
isfy the required processing ability with the minimum required
number of replicas. At last, we perform demonstrations of the
controller including the function allocation and the switching
from primary replicas to backups, to show the improvement
of server utilization by adopting DRPS.

II. DESIGN AND IMPLEMENTATION

A. Overall structure

Fig. 1 overviews the structure of the reported controller
and relative components. The service providers submit the
configurations including adding, updating, and deleting, in a
form defined in DRPS definition to the Kubernetes application
programming interface (API) server. Informer listens to the
changes of the DRPS instances and pushes the corresponding
events to the WorkQueue. The unterminated control loop
handles the events in WorkQueue with the corresponding
functions to let the current state of the DRPS instances keep
pace with the desired state of the DRPS instances configured
by the users. The key point is how to use the controller toAnnex to ISBN 978-3-903176-39-3© 2021 IFIP



Start

Collect and update 

current status of the 

instance and cluster

Current 

ability of PPs 

< RB ?

Delete all PPs

Y

Current 

ability of BPs 

≥ RB ?

Convert BPs to PPs

Y

Delete all BPs

N

Number of Pods 

hosted by the 

instance = 0 ?

N
Get new allocations for PPs 

and BPs by set method

Y
Number of PPs or 

BPs hosted by the 

instance = 0 ?

N

Get new allocations for PPs 

or BPs by set method

Y

Abilities of PPs and BPs 

satisfy the required ability, 

respectively ?

N

N

End

Y

Fig. 2. Flow chart of controller. PP: primary Pod. BP: backup Pod. RB:
required ability.

cooperate with the “add”, “delete”, “update”, and “get” of
the DRPS instances in Kubernetes. The scheduler decides the
locations of the created Pods with the default scheduler or
allocation-model-based scheduler in [5].

B. Definition of DRPS instance

The definition of a DRPS instance includes three parts:
metadata, specification, and status. Metadata contains the
information that distinguishes different DRPS instances, e.g.,
name and creation timestamp. Specification contains the prop-
erties of a DRPS instance, e.g., required processing ability,
specified solution methods, and the pool of replica templates.
The pool of replica templates contains the templates of Pods,
which includes the processing ability of the replica, the re-
source requirements, and the container image. Status contains
the latest status of the CDR instance, e.g., the number and
the names of Pods hosted by the instance. Status is updated
periodically or updated after modification in the control loop.

C. Control loop

The control loop receives and handles the create, update,
and delete events. When a DRPS instance is created, the Pods
are created and allocated to nodes. The selection of replica
templates from pools and the scheduling of the created Pods
can be determined by two methods: an exact method, e.g,
integer linear programming (ILP), and an approximate method,
e.g., heuristic algorithms. When some primary Pods hosted
by the instance fail, backup Pods are converted to primary
Pods. The remaining primary Pods are deleted and a group
of new backup Pods is created and allocated. Alternatively,
the remaining primary Pods are converted to backup Pods and
new backup Pods are created to compensate for the loss of
processing ability. Fig. 2 shows the flow chart of the controller.

III. DEMONSTRATIONS

We implement the controller by Operator SDK v1.4.2,
Golang 1.15, and Python 3.7 in Kubernetes 1.20 on a five-node
Kubernetes cluster (one master node and four worker nodes).
The memory and central processing unit (CPU) of four nodes
are up to 2.3 GB and two cores, 2.3 GB and two cores, 4.2
GB and three cores, and 4.2 GB and four cores, respectively.
We deploy the controller as a deployment on the master node.
We create a DRPS instance by applying a configuration file
shown in Fig. 3 and the list of Pods is shown in Fig. 4. A
primary Pod hosted by the instance fails, the backup Pods is

Fig. 3. Configuration file of DRPS instance.

Fig. 4. Pod list after allocation.

Fig. 5. Pod list after primary Pod fails.

Node 1 Node 2 Node 3 Node 4

442 2 3 13 3

Fig. 6. Allocation results of DRPS instance. A circular is a Pod. The number
in a circle means the template which the Pod uses.

10
23

97

66

10
25

97
7987

61

98

7366 60

98
79

0

50

100

CPU (%) Memory (%) CPU (%) Memory (%)

Worker 1 Worker 2 Worker 3 Worker 4
Fig. 7. CPU and memory utilization comparison between default deployment
method (left) and DRPS (right).
switched to primary Pods and new backup Pods are generated,
as shown in Fig. 5. We can observe that the backup Pod is
converted to the primary Pod and a new backup Pod is started.

We deploy the instances with the same required ability and
the pool in Fig. 3 by using two types: traditional deployment
and DRPS. The traditional deployment accepts one request of
the instance and completes the allocations of a primary Pod
and a backup Pod in 0.004 [s]. The DRPS instance accepts
two requests and completes the allocations in 2.931 [s]. The
allocation of the DRPS instance is shown in Fig. 6. The
CPU and memory utilizations are compared in Fig.7. We can
observe that DRPS can accept more requests and improve
the system resource utilization compared with the default
deployment method with the cost of longer deployment time.

REFERENCES

[1] The Kubernetes Authors, “Kubernetes,” https://kubernetes.io/, accessed
Mar. 8, 2021.

[2] ——, “kube-controller-manager,” https://kubernetes.io/docs/reference/
command-line-tools-reference/kube-controller-manager/, accessed Mar.
8, 2021.

[3] A. Alleg, T. Ahmed, M. Mosbah, and R. Boutaba, “Joint diversity and
redundancy for resilient service chain provisioning,” IEEE J. Sel. Areas
Commun., vol. 38, no. 7, pp. 1490–1504, 2020.

[4] R. Kang, F. He, and E. Oki, “Resilient resource allocation model in
service function chains with diversity and redundancy,” in 2021 IEEE
Int. Conf. on Commun. (ICC). IEEE, Jun. 2021, pp. 1–6.

[5] R. Kang, M. Zhu, F. He, T. Sato, and E. Oki, “Design of scheduler plugins
for reliable function allocation in kubernetes,” in Conf. Design of Reliable
Commun. Netw. IEEE, Apr. 2021, pp. 1–3.


