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Abstract—With the proliferation of encrypted traffic, machine
learning (ML) based network traffic classification (NTC) has be-
come the mainstream method. However, most studies ignored two
issues. On the one hand, Internet traffic presents a natural uneven
distribution. On the other hand, machine learning algorithms
generally aim to achieve the highest overall accuracy without
considering class imbalance. This leads to severe performance
degradation of existing ML-based NTC schemes when facing
imbalanced scenarios. In this paper, we design a novel Generative
Adversarial Network (GAN) architecture to generate traffic
samples, in which the addition of the classifier and the pre-
training module makes the generation process more stable and
effective. We propose an end-to-end framework for imbalanced
traffic classification, named ITCGAN, which can generate traffic
samples for minority classes to adaptively rebalance the original
traffic and simultaneously train the optimal classifier. We evaluate
its effectiveness on the public ISCXVPN2016 dataset based on the
global metrics and individual metrics. The results show that our
method performs well in imbalanced NTC tasks, fully alleviating
the performance degradation (a 10.27-percentage-point improve-
ment to the precision of the most minority class). Meanwhile, it
surpasses five state-of-the-art oversampling methods.

Index Terms—network traffic classification, machine learning,
class imbalance, Generative Adversarial Network

I. INTRODUCTION

In recent years, network traffic classification (NTC) has
been extensively studied because of its fundamental role in
network management and cyber security [1], [2]. With the full
encryption of traffic, port-based and deep packet inspection-
based NTC technologies gradually become invalid. Machine
learning (ML) technology has become the most effective and
mainstream method. A large number of studies on mining the
effective traffic feature and exploring the optimal classification
network have emerged in the academic community, and have
achieved good results [3]–[8]. However, most studies over-
looked two important issues. First, Internet traffic presents a
natural imbalance distribution [9]. The proportion of traffic
generated by different protocols and applications is completely
different [10]. Second, most machine learning algorithms
are designed to pursue the highest overall accuracy without
considering class imbalance, which shifts the training of the
classifier to the majority class [11]. Generally, the class with
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the largest sample size is named the majority class, while
the class with a smaller sample size is called the minority
class [12]. This results in the performance of existing ML-
based NTC schemes being greatly degraded when facing real-
world imbalanced traffic classification tasks [3], [6], [13]–[16].
In certain scenarios, such as network censorship, intrusion
detection, etc. where high-value traffic tends to occupy only
a small proportion, performance degradation on the minority
class is catastrophic. Therefore, the imbalance problem in NTC
researches should attract enough attention.

The methods that have been proposed to combat imbalance
in NTC can be categorized in three main levels: data level,
algorithm level and cost-sensitive level [11], [13]. Data level
methods address class imbalance by increasing the sample size
of minority classes or decreasing the majority classes’ sample
number, corresponding to oversampling [17] and undersam-
pling [9], respectively. Algorithm level methods employ the
algorithms that can award the minority classes and punish the
majority while training [18]. Cost-sensitive level methods con-
sider different misclassifying costs for different classes [19].
Among these methods, oversampling are the most commonly
used methods for imbalanced traffic classification due to its
intuitive principle and good effects [13], [20].

Oversampling refers to increasing the number of samples
in the minority class to rebalance the original dataset [17],
[20]. Some general oversampling techniques such as Random
Oversampling (ROS) [21] and Synthetic Minority Oversam-
pling Technique (SMOTE) [22] are often used to combat
the imbalance in traffic. However, these general techniques
simply replicate minority samples or generate samples based
on Euclidean distance and heuristic rules, without considering
the characteristics of traffic, which may easily cause overfitting
and introduce noise [23]. In order to better alleviate the imbal-
ance in traffic, recent studies began to use deep learning (DL)
for oversampling. Generative Adversarial Network (GAN) [24]
is a typical generative network, and its powerful generation
capability shows very strong potential [25]–[27]. But the
sample generation process is difficult to control, especially for
traffic data, a kind of non-visual data. In addition, all studies
mentioned above have separated the traffic oversampling and
the classifier training into two independent processes, which
is not conducive to obtaining the global optimal classifier.



In this article, we first analyze the characteristics of network
traffic and point out the inapplicability of the general over-
sampling methods. Inspired by triple-GAN [28], we designed
a novel GAN architecture that trains the classifier while
training the generator, so that the generator can flexibly adjust
the training direction according to the performance of the
current classifier. We propose an end-to-end imbalanced traffic
classification framework named ITCGAN, which consists of
Traffic Vectorization module, Pre-training module and Formal
Training module. The original imbalanced traffic is directly
input into the framework and the optimal classifier that is
robust to imbalance can be obtained without any manual
operation. It also solves the problem that the quality of the
synthesized traffic samples are difficult to judge.

The main contributions of our work are briefly summarized
as follows:
• We propose an integrated ITCGAN framework for imbal-

anced traffic classification. Considering the characteristics
of traffic, ITCGAN uses GAN to enhance the minority
traffic, and combines traffic oversampling and classifier
training into a whole.

• The pre-training module can provide more effective infor-
mation at an early stage and accelerate the convergence
of the formal training. In addition, by using the empirical
optimal network as the pre-training network, ITCGAN
can extend the existing DL-based NTC schemes to be
suitable for imbalanced scenarios.

• The constraint design between the classifier and the
generator guarantees the quality of the generated traf-
fic samples. According to the constraints, the generator
synthesize traffic samples that are most beneficial to the
final classification.

• ITCGAN achieves good results on the real-world public
ISCXVPN2016 dataset, and outperforms several state-
of-the-art methods, proving its superiority in imbalanced
traffic classification tasks.

The rest of this paper is organized as follows: Section II dis-
cusses the related work. Our proposed framework is introduced
in detail in section III. We describe the experimental setup in
section IV and analyze the results in section V. Finally, we
conclude this paper in section VI.

II. RELATED WORK

As discussed in the previous section, increasing sample size
for minority classes is the most commonly used strategy to
counter imbalance in network traffic classification researches.
In this section, we introduce the related researches on this
from two perspectives according to their different underlying
principles, including general oversampling techniques based
methods and deep learning based methods.

A. General Oversampling Techniques Based Methods

As the class imbalance problem is widely studied as one of
the most challenging problems in machine learning, some gen-
eral oversampling techniques have been proposed and adopted
by imbalanced traffic classification researches. The simplest

technique is ROS, which raises the sample size by randomly
copying samples from minority classes. [20], [23], [29] em-
ployed ROS to rebalance the traffic dataset before training.
However, ROS does not introduce any extra information,
which will cause overfitting. SMOTE synthesizes new samples
through distance-based rules, improving the problem that ROS
is prone to overfitting. Seo et al. proposed an approach
to find the optimal SMOTE ratio for imbalanced intrusion
detection datasets [17]. Cieslak et al. designed a method
called Cluster-SMOTE, which first clustered the minority
samples and then used SMOTE to generate traffic samples
in individual clusters [30]. They claimed that Cluster-SMOTE
improved SMOTE’s performance. Similarly, Vu et al. used a
variant of SMOTE, SMOTE-SVM, to solve the imbalance in
SSH traffic identification [23]. In another work, SMOTE and
an undersampling technique were combined to mitigate the
imbalance in multiple traffic datasets [31]. SMOTE is proven
to be an effective method in imbalanced traffic classification,
but it does not consider the situation of the samples located
around minority classes, which is easy to introduce noise and
cause unstable effect of traffic classification. Gomez et al.
made a comprehensive review of imbalanced NTC studies
and finally concluded several well-performing oversampling
methods [13]. However, these general oversampling techniques
are completely separated with the classifier training phase, i.e.,
oversampling must be performed first, then the classifier can
be trained on the obtained balanced dataset.

B. Deep Learning Based Methods

Recently, some DL-based methods have been proposed
to solve imbalanced NTC problems. Hasibi et al. presented
a novel data augmentation approach based on the use of
Long Short Term Memory (LSTM) networks for generating
traffic flow patterns and Kernel Density Estimation (KDE)
for replicating the numerical features of each class [32].
However, this method limits the form of the input traffic
features and has poor versatility. Another well-known data
generation technique is GAN, which generates new instances
by modeling and learning the distribution of real data. Wang
et al. used the traditional GAN to perform data augmentation
on the minority classes of ISCXVPN2016 traffic dataset for
application classification [25]. Their subsequent work adopted
conditional GAN (CGAN) to achieve the same purpose [26].
However, it is difficult to judge the quality of the generated
samples because traffic data are invisible. Moreover, these
studies also split the imbalanced traffic classification problem
into two isolated stages.

In addition to confronting imbalance, GAN is also adopted
to generate traffic data for enhancing Intrusion Detection Sys-
tem (IDS) [33], [34], circumventing censorship [35], and ver-
ifying the availability of the fake traffic data [36], [37]. GAN
shows broad application prospects and good performance,
which is worth further exploration. Therefore, in this paper, we
propose an imbalanced traffic classification framework using
GAN for oversampling and verify its superiority.



III. DESIGN OF FRAMEWORK

In this section, we introduce our proposed framework for
imbalanced traffic classification with GAN-based oversam-
pling, named ITCGAN.
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Fig. 1. Visualization of a 6-class imbalanced traffic data by t-SNE.

We first visualize a 6-class real-world traffic data to observe
the characteristic of traffic distribution. We use t-SNE to
reduce the high-dimensional traffic data to two dimensions
and show it in Fig. 1. It can be seen that the six types of
traffic have a huge gap in their sample numbers. Moreover,
there is much overlap between classes, and the distribution of
minority classes is scattered. As mentioned in the previous
section, general oversampling algorithms such as SMOTE
perform new sample synthesis based on Euclidean distance
and specific rules such as interpolation. But the prerequisite
for these algorithms to achieve good results is that in the
Euclidean space, the samples surrounding the minority sam-
ples still belong to the minority class with a high probability.
However, traffic data may not meet this premise according
to Fig. 1. In fact, traffic samples may consist of statistical
features, sequence features, protocol field features, or raw
bytes. Euclidean distance and interpolation cannot be simply
used to predict the distribution of new samples. Different from
the principle of general sampling technologies, GAN generates
new samples by fitting the distribution of real data. GAN
has powerful learning and generation capabilities, avoiding
the drawbacks of general sampling algorithms. Therefore, we
decide to use GAN to enhance the minority traffic.

Fig. 2 illustrates the framework of ITCGAN. It consists
of three parts, Traffic Vectorization, Pre-training and Formal
Training. The Formal Training includes synchronous training
of the Generator, the Discriminator and the Classifier. Next,
we will introduce each part in detail.

A. Traffic Vectorization

Whether for real-time traffic or stored pcap files, we need
to vectorize the raw traffic before proceeding. As we know,
traffic is composed of flows, and a flow is often used as a
sample. A flow refers to a set of packets with the same 5-
tuple (source IP, destination IP, source port, destination port,

and transport layer protocol). In order to reduce the interfer-
ence of irrelevant information, we removed SYN, ACK and
other handshake packets, as well as protocol headers. Some
irrelevant fingerprints in protocol headers, such as operating
system fingerprints, may interfere with classification. We select
the first 784 bytes of the application layer data of each flow
as its vectorized representation. The part exceeding 784 bytes
is truncated, and the insufficient part is filled with 0x00. On
the one hand, the use of original datagram reduces the loss
of potentially valuable information; on the other hand, only
the first 784 bytes are required to identify the traffic, ensuring
real-time performance.

After the vectorization, we will get an imbalanced traffic
dataset X consisting of n classes and N samples in total,
which will be used as the training set. Label the n traffic
classes from 1 to n according to each class’ sample size in
ascending order, i.e., the class with the smallest sample size
N1 is encoded as class 1 and its traffic sample set is X1, while
the class with the largest sample size Nn is encoded as class
n and its traffic sample set is Xn. Ni and Xi respectively
represent the number and collection of all traffic samples of
the i-th class, where i ∈ L = {1, 2, · · ·n}, L being the set
of possible class labels. We aim to build an end-to-end model
containing an effective generator that can synthesize traffic
samples for minority classes to eliminate the imbalance, and
a synchronously well-trained classifier, which can predict the
correct label Li for any subsequent traffic sample x(i).

B. Pre-training

The Pre-training process refers to training an empirically
superior network called Net on the original imbalanced X
and saving the pre-trained architecture and parameters as the
initial state of the Classifier in the subsequent Formal Training.
Numerous existing NTC researches draw on the achievements
in the field of computer vision, using the classic Convolutional
Neural Networks (CNN) as the traffic classification network.
Therefore, we depict Net as the architecture shown in Fig. 2,
which is exactly the network architecture employed in the
following experiments. When faced with different NTC tasks,
Net can be replaced with a more suitable network architecture.

In addition, the focal loss [38] is involved as the loss func-
tion in Pre-training process to help alleviate class imbalance,
avoiding the model collapse on the most minority class. The
focal loss for multi-classification can be calculated as follows:

FL (ypred) = −α (1− softmax (ypred))
γ

· log (softmax (ypred))
(1)

where ypred is the predicted output of Net on the true label and
softmax (ypred) is the corresponding probability defined by
(2). α is the balancing factor and γ is the focusing parameter.

softmax (ypred) =
exp (ypred)∑n
i=1 exp (yi)

(2)

There are two reasons for setting the Pre-training module.
Firstly, it can accelerate the convergence of the Generator and
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Fig. 2. The framework of ITCGAN. The feedback provided by Discriminator to Generator is omitted.

Discriminator. Compared to a random initialization, using the
pre-trained model as the initial for the Classifier will provide
the Generator with a much more meaningful signal at the early
stage. Secondly, it makes ITCGAN be able to serve as an
extension and improvement of the existing DL-based NTC
schemes. As mentioned before, existing NTC studies have
proposed many excellent methods, including traffic feature
extraction and network design. But they ignored the imbalance
of traffic data, resulting in the performance degradation on
imbalanced NTC tasks. By adopting their proposed superior
network architectures as that of the Pre-training Net, ITCGAN
could easily adapt the existing studies to imbalanced network
traffic tasks.

C. Formal Training

1) Generator: The Generator is one of the most critical
parts in ITCGAN. The quality of the traffic samples generated
by it will directly determine the final performance of the
Classifier. The generator in the original GAN proposed by [24]
is trained to learn a mapping from a low-dimension latent
space, which is always a uniform random distribution, to
the target data distribution. Considering that our goal is to
eliminate the imbalance in traffic data by synthesizing the
minority samples with the Generator, the synthesized samples
should well fit the original distribution and be as realistic as
possible, but in the meanwhile, be different from the existing
data.

Inspired by [39], the generator can be designed to generate
a set of weights for each minority class rather than directly
generate the data itself. Specifically, our Generator consists

of a series of Weight Generation Units (wGU ). Each wGUi
corresponds to a minority class, whose task is to learn a
conditional mapping gi from the latent space to a vector
wi = gi(z|i) of Ni weights, where z is the input noise.
Hence, the sample generated by the Generator for class i is
G(z|i) = wTi Xi, that is, in each feature dimension, every
sample of class i contributes the value of the corresponding
weight, and the synthesized sample value in this dimension
is obtained by summarizing these contributions. In addition,
the Generator is designed to automatically compensate for
the imbalance of different minority classes. The sample set
it generates for the i-th class (i < n) is X ′i and its size is
Nn −Ni.

The objective optimization function for the Generator is
presented as follows:

min
G

V (G) =
∑
i∈L

(Vi1 − Vi2 − Vi3) (3)

where Vi1 =
Nn −Ni

N
EG(z|i)∼pgi [log(1−D(G(z|i)))],

Vi2 =
Nn −Ni

N
EG(z|i)∼pgi [logCi(G(z|i))] ,

Vi3 =
∑

j∈L\{i}

Nn −Nj
N

EG(z|j)∼pgj [log (1− Ci(G(z|j)))] ,

pdi and pgi separately indicate the real and generated class
conditional probability distributions of class i. Minimizing Vi1
aims to fool the Discriminator with the synthesized fake sam-
ples, while maximizing Vi2+Vi3 means to make the generated



samples be predicted as the correct labels, a constraint from
the Classifier.

2) Discriminator: The function of the Discriminator in
ITCGAN is the same as that in traditional GAN, which is
designed for distinguishing whether the input sample is real
or generated by the generator.

The Discriminator’s objective function is expressed by (4):

max
D

V (D) =
∑
i∈L

(Vi1 + Vi4) (4)

where Vi4 =
Ni
N

Ex∼pdi [logD(x)]

3) Classifier: The initial Classifier is obtained through Pre-
training, and then trained synchronously with the Generator
and Discriminator. Its input includes two parts, the real and
the synthesized traffic samples. For each minority class, the
number of traffic samples generated by the Generator is the
difference between its original sample size and Nn. There-
fore, the oversampling ratio is automatically adapted without
manual designation.

There are three roles playing by the Classifier in the whole
framework. Firstly, it is the ultimate goal of ITCGAN, that is, a
target classifier suitable for the imbalanced traffic classification
task. The Formal Training finishes when the Classifier’s best
performance is achieved. Secondly, it provides guidance and
constraints for the Generator to generate high-quality traffic
data. The samples synthesized by the Generator have to go
through the Classifier, which will feed back the classification
results to the Generator in the form of gradients to guide its
training. As shown in Fig. 2, when the Classifier predicts a
generated sample correctly, it will provide a positive feedback
to the Generator (i.e., the loss is zero), while when the
predicted label is incorrect, a negative feedback is delivered.
Thirdly, the Classifier also serves as an indicator. The quality
of the generated samples can be inferred from the change of
the metric scores instead of paying attention to whether the
Generator and Discriminator are converged, which is usually
difficult to judge, especially for non-image data.

The principle above is equivalent to the following optimiza-
tion problem:

max
C

V (C) =
∑
i∈L

(Vi1 + Vi2 + Vi5 + Vi6) (5)

where Vi5 =
Ni
N

Ex∼pdi [logCi(x)] ,

Vi6 =
∑

j∈L\{i}

Nj
N

Ex∼pdj [log (1− Ci(x))]

IV. EXPERIMENTAL SETUP

A. Dataset

The datasets used to evaluate ITCGAN come from the
real-world public ISCXVPN2016 dataset [40]. There are two
considerations about choosing ISCXVPN2016. Firstly, it pro-
vides 28G real-world traffic captured from ISCX, assuring the

richness in diversity and quantity. Secondly, Secondly, it is
publicly available which aids in making our evaluation more
convincing and credible. ISCXVPN2016 mainly contains 7
types of traffic based on different user behaviors and appli-
cations. Each type includes a regular encrypted traffic session
and a VPN-encapsulated traffic session. We choose the VPN-
encapsulated traffic as our experimental dataset for its greater
classification difficulty due to the full encryption.

To get the labeled training set and test set for the ex-
periments, we discard the ”Web Browsing” category that is
difficult to label. After Traffic Vectorization, we get the dataset,
namely VPN ISCX , as described in Table I. The class labels
for each dataset are encoded in ascending order according
to their sample sizes, as described in section III. ‘#Train’
and ‘#Test’ denote the number of samples in each class in
the training set and test set respectively. Moreover, we use
imbalance ratio per label (IR) defined by (6) to measure the
imbalance level of each dataset. IR is the ratio between the
sample size of the majority class and that of class i. It is equal
to 1 for the majority class and the fewer samples a minority
class has, the larger its IR will be. As can be seen, VPN ISCX
has a maximum IR of 11.07.

IRi =
Nmajority class

Ni
(6)

TABLE I
THE OVERVIEW OF VPN ISCX DATASET

Traffic type Label #Train IR #Test
Email 0 976 11.07 108
P2P 1 1410 7.66 156
Streaming 2 1530 7.06 170
File transfer 3 3300 3.27 360
Chat 4 10800 1 1200
VoIP 5 10800 1 1200

B. Performance Metrics

Metric selection should be very cautious in imbalanced
NTC tasks. Since the designs of some traditional metrics do
not consider the class imbalance. Overall accuracy, a popular
metric often used by NTC studies to measure the classifier’s
performance, is actually vulnerable to the class distribution
skew [13]. In this paper, we adopt metrics from two levels:
Global metrics and Individual metrics. Global metrics can
measure the classifier on the entire dataset, while Individual
metrics assess it more meticulously, providing us with a clear
observation of how the given method influences each class.

a) Individual metrics: For individual classes, Precision
and Recall from the field of information retrieval are good
choices. Although Precision and Recall are first proposed
for binary classification, they can be extended to multi-
classification tasks with One-versus-All principle, which are
defined by (7) and (8) respectively. For class i, TPi represents
the number of samples correctly classified as class i, FPi
is the number of samples misclassified as class i, TNi is
the number of samples correctly predicted as non-class i,



TABLE II
THE COMPARISON METHODS USED IN OUR EVALUATIONS

Algorithm Description
Random OverSampling

(ROS)
The samples from the minority class are randomly selected, duplicated and added to the training
dataset. This is the simplest oversampling technique, that is also proven to be robust [41].

Synthetic Minority Oversampling TEchnique
(SMOTE)

SMOTE generates new synthetic samples for the minority class. Selecting k nearest minority
neighbors for each minority sample and choosing one of those k neighbors. New sample is
generated at the line between the current minority sample and its chosen neighbor [22].

ADAptive SYNthetic algorithm
(ADASYN)

ADASYN builds on SMOTE by shifting the importance of the classification boundary to those
minority classes which are difficult. It uses a weighted distribution for different minority samples
according to their level of difficulty in learning, so that more synthetic samples are generated
for minority samples that are harder to learn [42].

SMOTE+Support Vector Machine
(SMOTE-SVM)

SMOTE-SVM focuses on generating new minority samples using SMOTE near borderlines with
SVM, so as to generate minority samples with greater values [43].

SMOTE+Tomek Links
(SMOTE-TL)

SMOTE-TL is a hybrid sampling method that combining oversampling and undersampling
techniques. It firstly oversamples minority samples using SMOTE and, afterwards, removes
the TL links [44].

Conditional generative adversarial network
(CGAN)

CGAN is an extension of the GAN where a conditional setting is applied. Both the generator
and discriminator are conditioned on some sort of auxiliary information such as class labels
or data from other modalities [45].

and FNi is the number of samples that are misclassified
as non-class i. Besides, F1 score and Area Under Precision-
Recall Curve (AUC-PR), which can take Precision and Recall
into consideration at the same time, are also employed as
our Individual metrics. F1 score is the harmonic mean of
Precision and Recall, as shown in (9). AUC-PR is a rank metric
calculated from the area under the Precision-Recall curve.

Precisioni =
TPi

TPi + FPi
(7)

Recalli =
TPi

TPi + FNi
(8)

F1i = 2 · Precisioni ·Recalli
Precisioni +Recalli

(9)

b) Global metrics: G-mean (GM) and MAUC-PR
(MAUC) are chosen as Global metrics in this paper. GM is
the geometric mean of all individual Recalls. MAUC is the
macro average of all AUC-PRs. Both Global metrics treat all
categories equally, meaning that the majority and minority
classes have the same effect on the final score. They are
separately defined by (10) and (11).

GM = n

√√√√ n∏
i=1

Recalli (10)

MAUC =
1

n

n∑
i=1

AUC-PRi (11)

C. Comparison methods

We train a classifier directly on the original traffic dataset
without any operations for solving imbalance as the Base-
line. As for the comparison methods, we collect the best
5 traditional oversampling methods and 1 GAN-based data
augmentation method that are frequently used to combat the

imbalance in traffic classification: ROS, ADASYN, SMOTE,
SMOTE-SVM, SMOTE-TL and CGAN. Table II contains a
brief description of each algorithm.

Additionally, the 1D-CNN network proposed in [15] proves
to have the best performance on the ISCXVPN2016 dataset.
Therefore, it is adopted by our baseline, all comparison
methods, and the Pre-training Net in ITCGAN. Table III lists
its specific network architecture.

TABLE III
THE MAIN PARAMETERS OF THE 1D-CNN NETWORK USED IN OUR

EVALUATIONS

Layer Operation Input Filter Stride Pad Output
1 Conv+ReLU 784*1 25*1 1 same 784*32
2 1D Max Pool 784*32 3*1 3 same 262*32
3 Conv+ReLU 262*32 25*1 1 same 262*64
4 1D Max Pool 262*64 3*1 3 same 88*64
5 FC+ReLU 88*64 – – none 1024
6 FC 1024 – – none 6
7 softmax 6 – – none 6

D. Setting of the ITCGAN

In Pre-training, the focal loss is employed as the loss
function, where α and γ are respectively set as 0.25 and 2.
The model is trained up to 300 epochs with a 512-batch-
size. In Formal Training, the batch sizes of the Generator,
Discriminator and Classifier are all set to 512, and the maxi-
mum training step is set to 40000. One step here represents a
parameters-update of the entire ITCGAN, which occurs twice
within a batch. The Classifier uses the parameters obtained
through pre-training to continue being trained, where the loss
function is replaced by Cross Entropy, and the learning rate is
set as 0.0003 with a decay of 1×10−6. Both the Generator and
Discriminator are models consisting of several fully-connected
layers. Their loss functions are Cross Entropy and the learning
rate is 0.001 with a decay of 0.0001. Besides, all models



are optimized by the Adam optimizer. Our model ITCGAN
is implemented with Keras.

V. RESULTS AND ANALYSIS

A. Results of Comparison Experiments

The comparison experiment results are shown in Table IV
and Fig. 3. In order to show the effects of each method more
intuitively, we mark the results with different colors. The red
number indicates an improvement compared to the Baseline,
while the blue number implies that the Baseline is weakened.
The bold red highlights the highest score of all methods under
the current metric.

As can be seen, ITCGAN is the only method that enhances
Baseline on all metrics and outperforms other methods on
most metrics. In terms of global metrics, ITCGAN improves
GM and MAUC by 4.30 and 2.27 percentage points, respec-
tively, indicating a good enhancement on overall effect of the
classifier. SMOTE-SVM and SMOTE perform second, which
shows that SMOTE is a good oversampling algorithm and
its advanced variant also works well. However, SMOTE-TL
performs worse than Baseline. The reason may be that it
introduces the undersampling method TL. Massive removal of
the majority samples leads to the loss of potentially valuable
information. Both ROS and ADASYN have a higher GM
score and a lower MAUC score than the Baseline, suggesting
that these two methods help improve the Recall rate of the
classifier, but fail to perform well in Precision, resulting in
low MAUC values. ITCGAN’s sample generation principle is
different from the above-mentioned oversampling techniques,
that is, it integrates the information of all samples within a
class and generates new traffic samples based on the distri-
bution, leading to its superiority. Besides, the performance
of CGAN is also quite poor, because it cannot accurately
give a signal about the quality of the generated samples. We
have no way of knowing when the generated samples are
most suitable for traffic augmentation, so that we can only
take the samples synthesized when the losses of the generator
and the discriminator both converge. Nevertheless, GAN’s
convergence is not equivalent to the fact that the synthesized
samples can provide good augmentation effect for minority
classes, especially for traffic data, a kind of non-image data.
The Formal training of ITCGAN solves this problem well,
so that the generated traffic samples can make the classifier
achieve the best performance.

As for individual metrics, from Fig. 3(a), ITCGAN has the
greatest degree of improvement in F1 scores of all categories,
especially for class 0, class 1 and class 2, which are improved
by 7.30, 4.53, and 6.62 percentage points, respectively, and
their corresponding IRs are 11.07, 7.66 and 7.06, demon-
strating that ITCGAN is remarkably effective in enhancing
the minority classes. The improvements of Precision0 and
Recall1 as high as 10.27 and 7.26 percentage points also prove
this. For class 4 and class 5 with the largest sample size,
ITCGAN’s Precision and Recall scores also increase, while
the scores of other comparison methods have almost declined.
This proves the robustness of ITCGAN, that is, it guarantees

the performance of the majority classes while enhancing the
minority classes. Although ITCGAN did not get the highest
score on a few individual metrics, as shown in Fig. 3(b) that
the AUC score of ROS on class 0 is a little higher than that
of ITCGAN, all metric scores of ROS on other classes are
far inferior to ITCGAN. In other words, ITCGAN has the
best overall performance, taking every class into consideration.
This is why the F1 scores of ITCGAN are completely higher
than other methods.

B. Further Analysis on ITCGAN

We conduct further analysis on ITCGAN and a few more
experiments are performed:
• ITCGAN-NP (ITCGAN-No Pre-training): We take off

the Pre-training in ITCGAN and directly use the Classi-
fier with random initialization parameters to participate
in the Formal Training.

• ITCGAN-NCC (ITCGAN-No Classifier Constraint):
We remove the constraint provided by the Classifier to
the Generator. Only the adversarial interaction from the
Discriminator is maintained.

• ITCGAN-conv: We change the network of the Gener-
ator and Discriminator from the fully connect network
to the convolutional network in Table III to see if a
more complex network can further enhance ITCGAN’s
performance.

The results are shown in Table V. We can draw the
following conclusions:

1. The Pre-training can indeed accelerate the convergence
and make it achieve better performance. ITCGAN needs to
train 27660 steps to achieve the best results. Without the Pre-
training, ITCGAN-NP requires 46710 steps training to reach
its best performance, and the best results is still inferior to
ITCGAN.

2. The constraint design can better guide the Generator’s
training process, as well as the sample generation. Viewing
ITCGAN-NCC’s performance, the metric scores on class 0,
class 1 and class 2 are relatively low, indicating its unsatisfying
ability for data augmentation. Adding the constraint from the
Classifier to the Generator can improve the quality of the
generated traffic samples to better eliminate imbalance.

3. Finally, the results of ITCGAN-conv show that using
convolutional networks in the Generator and Discriminator
does not improve further, but increases training difficulty and
time consumption. The fully-connected network can fully meet
the sample generation requirements on the current dataset.

Furthermore, we explore the influence of input noise di-
mension on ITCGAN’s performance. Different dimensions of
input noise (25, 50, 75, 100, 125, 150, 175, 200) are set
and the results are shown in Figure 4. Obviously, ITCGAN
achieves the best performance when the noise dimension is
125. Too small value may cause the diversity of generated
data to become worse, while large value will increase the
calculation burden. Therefore, 125 is a compromise and the
best choice in our experiments. When employing ITCGAN in



TABLE IV
GLOBAL AND INDIVIDUAL METRICS OBTAINED BY DIFFERENT METHODS. THE RESULTS ARE EXPRESSED IN %

Global metric Individual metricMethods GM MAUC P0 R0 P1 R1 P2 R2 P3 R3 P4 R4 P5 R5

Baseline 86.89 91.90 84.96 89.74 96.22 88.74 82.10 68.41 88.01 87.52 94.86 95.50 96.95 94.53
ROS 90.06 91.00 88.66 95.30 94.89 90.74 79.25 75.47 84.71 90.80 94.05 95.00 97.12 94.83

ADASYNC 90.82 91.31 93.41 93.41 96.63 94.31 68.39 79.00 81.35 90.80 97.44 93.5 95.97 95.00
SMOTE 89.75 93.17 91.86 95.30 97.65 92.59 83.00 73.12 85.98 90.26 94.99 94.83 95.35 94.67

SMOTE-SVM 90.08 93.08 86.27 87.89 90.46 95.15 78.26 79.71 87.24 89.16 95.82 95.50 96.44 94.17
SMOTETL 86.24 91.80 93.34 91.59 95.05 92.59 87.52 62.53 86.22 84.79 91.96 95.73 94.70 95.50

CGAN 86.84 91.52 95.08 89.74 99.00 87.46 84.71 69.59 83.82 87.52 92.11 94.83 95.31 94.67
ITCGAN 91.19 94.17 95.23 93.94 97.72 96.00 86.67 76.47 88.30 90.90 97.65 95.83 97.46 95.67
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Fig. 3. The individual F1 score and AUC-PR score of different methods.

TABLE V
RESULTS OF THE FURTHER EXPERIMENTS FOR ITCGAN. THE RESULTS ARE EXPRESSED IN %

Global metric Individual metric StepGM MAUC F10 F11 F12 F13 F14 F15

ITCGAN-NP 90.11 93.05 95.41 96.29 80.63 87.43 96.10 95.81 46710
ITCGAN-NCC 90.07 92.57 92.73 93.88 80.87 87.69 96.78 96.05 27630
ITCGAN-conv 90.98 92.99 94.44 94.67 82.63 86.43 96.37 96.66 34590

ITCGAN 91.19 94.17 94.58 96.85 81.25 89.58 96.73 96.55 27660
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Fig. 4. Results of ITCGAN with different dimensions of input noise.

other NTC tasks, the dimension of input noise should be set
according to the actual demand.

VI. CONCLUSION AND FUTURE WORK

Due to the neglect of traffic imbalance, most ML-based
NTC schemes may face performance degradation in actual
application. In this paper, we propose an end-to-end GAN-

based imbalanced traffic classification framework named ITC-
GAN. It employs GAN to oversample the minority traffic to
rebalance the imbalanced traffic data. Adding the Classifier to
the traditional GAN makes the integration of oversampling and
training become possible, which helps the classification results
achieve the global optimal. The constraint from the Classifier
to the Generator ensures the quality of synthesized traffic
samples. Besides, Pre-training module can easily expand the
existing DL-based NTC methods to adapt to imbalanced tasks.
Comprehensive experiments on the public real-world dataset
ISCXVPN2016 prove that ITCGAN can effectively alleviate
the performance degradation caused by traffic imbalance, and
outperforms other state-of-the-art comparison methods.

In the future, we will verify the effectiveness of our pro-
posed method on more real-world traffic datasets, and carry
out further research on the data-level solution of imbalanced
network traffic classification. In addition, it is a promising
direction to solve the problem of imbalanced NTC directly
from the algorithm level without any data preprocessing. We
will also carry out in-depth researches on that.
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